
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Coulomb-driven terahertz-frequency intrinsic current
oscillations in a double-barrier tunneling structure

O. Jonasson and I. Knezevic
Phys. Rev. B 90, 165415 — Published 14 October 2014

DOI: 10.1103/PhysRevB.90.165415

http://dx.doi.org/10.1103/PhysRevB.90.165415


Coulomb-driven THz-frequency intrinsic current oscillations

in a double-barrier tunneling structure

O. Jonasson∗ and I. Knezevic†

University of Wisconsin-Madison, Madison, Wisconsin 53706-1691, USA

(Dated: September 26, 2014)

We investigate time-dependent, room-temperature quantum electronic transport in GaAs/AlGaAs
double-barrier tunneling structures (DBTSs). The open-boundary Wigner-Boltzmann transport
equation is solved by the stochastic ensemble Monte Carlo technique, coupled with Poisson’s equa-
tion and including electron scattering with phonons and ionized dopants. We observe well-resolved
and persistent THz-frequency current density oscillations in uniformly-doped, dc-biased DBTSs at
room temperature. We show that the origin of these intrinsic current oscillations is not consistent
with previously proposed models, which predicted an oscillation frequency given by the average
energy difference between the quasi-bound states localized in the emitter and main quantum wells.
Instead, the current oscillations are driven by the long-range Coulomb interactions, with the oscil-
lation frequency determined by the ratio of the charges stored in the emitter and main quantum
wells. We discuss the tunability of the frequency by varying the doping density and profile.

PACS numbers: 73.63.-b,73.21.-b,05.60.Gg

I. INTRODUCTION

The THz-frequency range of the electromagnetic spec-
trum (0.1 – 10 THz) has received considerable attention is
recent years1. THz-frequency radiation is a valuable tool
in the characterization of doped semiconductors, whose
typical electron relaxation rates and plasma frequencies
are in this range 2,3. Other uses of THz radiation include
non-destructive imaging of samples that are too sensitive
for x-rays, opaque at optical and near-infrared frequen-
cies, but transparent to THz-frequency illumination4,5.
Unfortunately, a lack of compact and efficient sources in
this frequency range, referred to as the THz gap, is an
impediment to the development and application of THz-
based technologies6.

Semiconductor double-barrier tunneling structures
(DBTSs) in which an undoped region, several tens of
nanometers wide, envelops the main quantum well and
barriers, are usually referred to as resonant-tunneling
diodes (RTDs) and can act as a source of power with
frequency up to several hundred GHz when biased in the
negative differential resistance regime7. Recently, RTD
oscillators working in the THz-regime have been experi-
mentally realized at room temperature by coupling RTDs
with external circuit elements such as slot-antennas8–11.
However, these experimental systems have low output
power, typically in the micro-watt range8–11, because the
oscillations are induced by exchanging energy with exter-
nal circuit elements12.

Intrinsic current oscillations in dc-biased RTDs were
first observed in numerical calculations by Jensen and
Buo13, who found that the oscillations were persistent
(did not decay over time). Theoretical work by several
other groups predicted the same phenomenon 13–16. It
has been suggested that the RTD intrinsic current oscil-
lations could circumvent the low-power problem and lead
to THz-frequency power in the milli-watt range12. How-
ever, the effect has not yet been observed in experiment.

It is therefore critical to understand the mechanism be-
hind the intrinsic current oscillations, in order to predict
the optimal experimental conditions for its observation.
Zhao et al. 17 proposed a mechanism that emphasized
the importance of the formation of a quantum well on
the emitter side of the device (the emitter quantum well,
EQW) and connected the frequency of the oscillations to
the average energy spacing between the bound states in
the EQW and the main quantum well (MQW). The work
of Jensen and Buo13 and others 14–16,18,19 on intrinsic
current oscillations focused on RTDs with a traditional
doping profile (no doping in the region around the well
and barriers), where the EQW only forms at low temper-
ature (77 K or below) and in a narrow bias window. For
this reason, and due to thermal broadening effects, it has
been argued that intrinsic current oscillations could only
occur at low temperatures17.

In this paper, we investigate room-temperature intrin-
sic current oscillations in GaAs/AlGaAs-based DBTSs
under dc bias. We show that the intrinsic oscillations
stem from long-range Coulomb interactions and are as-
sociated with a periodic charge redistribution between
the emitter and main quantum wells. The oscillations
have the highest amplitude and are closest to single-
frequency (harmonic) when the two wells are both deep
enough to support well-localized quasibound states close
in energy; otherwise, there is a continuum on the emit-
ter side and the oscillations are low in amplitude and
have a considerable frequency spread. However, the fre-
quency of the oscillations is not determined by the level
spacing between the quasibound states17, but instead by
the amounts of charge stored in the two quantum wells.
Considering the Coulomb origin of the oscillations, it
is not surprising that a structure different than a tra-
ditional RTD is required for observing the oscillations
with a high amplitude and sharp frequency. Therefore,
instead of the traditionally-doped RTD structures, we
focus on DBTSs with a uniform doping profile, which
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ensures the formation of a deep EQW for all values
of applied bias and at room temperature. While the
uniformly-doped DBTSs have a low peak-to-valley ra-
tio (a commonly employed figure-of-merit of RTD perfor-
mance), a wide peak plateau, and would generally per-
form poorly in traditional RTD applications, they are
superior as intrinsic THz-frequency oscillators. We sim-
ulate time-dependent room-temperature quantum trans-
port in these systems by solving the Wigner-Boltzmann
transport equation (WBTE) by the stochastic ensemble
Monte Carlo technique with particle affinities20,21, cou-
pled self-consistently with Poisson’s equation. Scatter-
ing is treated microscopically within the WBTE, with
rates obtained from time-dependent perturbation the-
ory (Fermi’s golden rule)22. Our treatment of scatter-
ing is more detailed than in earlier work, where scat-
tering was either neglected23 or was treated using the
relaxation-time approximation with a constant (energy-
independent) relaxation time 13–15. We show that the
current oscillations are associated with the EQW and
MQW ground states being periodically and adiabatically
tuned in and out of alignment due to a charge redis-
tribution. The frequency of current oscillations depends
linearly on the ratio of the charges stored in the two wells
and is lower than the plasma frequency. We discuss the
dependence of the current-density-oscillation amplitude
(which can be as high as 50–80% of the time-averaged
current density), frequency, and bandwidth on the dop-
ing density and profile.
This paper is organized into four sections and an ap-

pendix. In Sec. II, we present the simulation framework,
while Sec. III features the results. We address the in-
trinsic current oscillations in a uniformly-doped DBTS
(Sec. III A) and show a comparison with a comparable
traditionally-doped RTD (Sec. III B). We investigate the
effects of phonon and ion scattering on the current den-
sity in a uniformly-doped DBTS (Sec. III C), provide an
explanation for the mechanism behind the current oscil-
lations by employing a quasistatic picture (Sec. III D),
show how the doping density affects the device perfor-
mance as a source of THz ac-current (Sec. III E), and
discuss some considerations relevant for potential fabri-
cation of these devices (Sec. III F). We conclude with a
summary and final remarks in Sec. IV. In the Appendix,
we present our method for treating applied bias when
solving the WTBE, which differs from the approaches
found in the literature21,24.

II. SYSTEM AND MODEL DESCRIPTION

The generic structure we consider is a GaAs-based
DBTS with two AlGaAs barriers. A schematic of the
device is shown in Fig. 1. To simulate the considered sys-
tem, we solve the open boundary WBTE21,25,26, which
governs the time evolution of the Wigner quasiprobability
distribution fw

27. We employ the effective-mass approx-
imation (we assume uniform effective mass throughout

FIG. 1. (Color online) A schematic of the double-
barrier GaAs/AlGaAs tunneling structure. The barrier and
quantum-well widths are denoted by d and w, respectively,
and L is the system length. We assume that the device di-
mensions in the x and y directions are much greater than its
length L.

the structure) with effective mass m∗ = 0.067m0, with
m0 being the free-electron rest mass, and assume trans-
lational invariance in the x − y plane. The WBTE for
quasi-1D transport along z, with k denoting the wave
number along z, can be written as21,26

∂fw
∂t

+
~k

m∗

∂fw
∂z

− 1

~

∂Vcl
∂z

∂fw
∂k

= QVqm
[fw] + C[fw] ,

(1)

where QVqm
[fw] is the quantum evolution term defined

by

QVqm
[fw](z, k, t) =

∞
∫

−∞

Vw(z, k − k′, t)fw(z, k
′, t)dk′ ,

(2)

while Vw(z, k) is the non-local Wigner potential

Vw(z, k, t) =
1

h

∞
∫

−∞

sin(kz′)[Vqm(z + z′/2, t)

−Vqm(z − z′/2, t)]dz′ . (3)

Note that in Eqs. (1)-(3), we have assumed that the to-
tal potential can be split into a spatially-slowly-varying
term Vcl(z, t) and a fast-varying term Vqm(z, t). It can be
shown21 that potential terms linear or quadratic in posi-
tion can be included in the slowly-varying term without
any approximations, but higher-order terms must be in-
cluded in the fast-varying term. (In the Appendix, we
explain how we perform the separation.)

In Eq. (1), scattering is incorporated via the Boltz-
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mann collision operator, defined by

C[fw](z, k, t) =
∑

i

∫

[si(k
′,k)fw(z, k

′, t)

− si(k,k
′)fw(z, k, t)]d

3k′ , (4)

where si(k
′,k) is the transition rate from state k

′ to k

due to scattering mechanism i. In this work, we con-
sider a GaAs-based device, so the relevant scattering
mechanisms are with polar optical phonons and ionized
donors28.
Well-established methods of solving the open-

boundary WBTE include the finite-difference ap-
proaches13,14,29 and Monte Carlo methods 20,30–33. We
solve Eq. (1) using a particle-based ensemble Monte Carlo
approach, where particles are assigned a property called
affinity20,21. Quantum effects are accounted for via a
time evolution of particle affinities, which are induced
by the quantum evolution term in Eq. (1). The method
was originally proposed by Shifren and Ferry20,24,34 and
later improved upon by Querlioz and Dollfus21. Our ap-
proach deviates from that of Querlioz and Dollfus in our
treatment of contacts and bias. Here, contacts are as-
sumed to be Ohmic, where charge neutrality and cur-
rent continuity are enforced by injecting carriers with a
velocity-weighted, drifted Maxwell-Boltzmann probabil-
ity density (Querlioz and Dollfus assumed an equilibrium
Maxwell-Boltzmann density21) defined by

pL(k) ∝ k exp

{

−~
2(k − kL)

2

2m∗kBT

}

, k ≥ 0 (5a)

pR(k) ∝ |k| exp
{

−~
2(k − kR)

2

2m∗kBT

}

, k ≤ 0 , (5b)

where L (R) refers to the left (right) contact. The drift
wave numbers kL and kR are drift wave numbers in the
left and right contacts, calculated as the expectation val-
ues of k on the device side of the contact-device interface,

kL,R =

∫∞

−∞
kfw(zL,R, k, t)dk

∫∞

−∞
fw(zL,R, k, t)dk

, (6)

where zL (zR) is the position of the left (right) contact.
The in-plane wave numbers kx and ky are generated ran-
domly from a Maxwell-Boltzmann distribution.
Electron–electron interaction is accounted for on a

mean-field level, by a self-consistent solution of Poisson’s
equation. The resulting time-dependent electrostatic po-
tential is included in the Vqm term in Eq. (3). Bias is
incorporated through the boundary conditions in Pois-
son’s equation (see Appendix).
We calculate the current, I, that would be measured

by an external ammeter based on the Shockley-Ramo
theorem35,36, given by Eq. (7a):

I(t) =
q

L

∑

i

Aivi (7a)

=
qS

L

∫ L/2

−L/2

dz 〈v〉 (z, t)n(z, t). (7b)

Here, q is the elementary charge, L is the device length,
vi = ~ki/m

∗ is the velocity of i-th particle, and Ai is the
particle’s affinity in the WMC simulation. The above ex-
pression (7a) has been widely used in current calculations
and is equivalent to tracking the particles that exit/enter
each contact, but with less numerical noise because the
entire ensemble partakes21,37,38. In one dimension, ex-
pression (7a) is also proportional to the current density
averaged over the device, as captured by Eq. (7b), where
S is the device area, 〈v〉 (z, t) is the average z-component
of the electron velocity, and n(z, t) is the electron density.

III. RESULTS

A. DBTS with a uniform doping profile
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FIG. 2. (Color online) (a) Time-averaged potential profile
(solid) and charge density (dashed) as a function of position
for the uniformly-doped DBTS at an applied bias of 96 mV
(bias for which intrinsic current oscillations are observed).
The potential profile is obtained from a self-consistent solu-
tion of the coupled WBTE and Poisson’s equation. (b) Time-
averaged current density vs applied bias for DBTSs with 6-
nm-wide (solid red) and 7-nm-wide (dashed blue) quantum
wells. The time average is obtained over 1 ps intervals. Ar-
rows in panel (b) are guides for Fig. 3. Arrow 2 also corre-
sponds to the bias value of 96 mV, which is used in (a).

The device we consider in this section is a 150-nm-long
GaAs DBTS with a 6-nm-wide quantum well, sandwiched
between two 2-nm-thick Al0.26Ga0.74As barriers with a
conduction band offset of 0.35 eV 39 (p. 260). The doping
profile is uniform throughout the device, with a density of
1018cm−3. The sample potential profile of the 6-nm-well
device for an applied bias of 96 mV is shown in Fig. 2a.
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FIG. 3. Current density vs time (left column) and the corre-
sponding Fourier transform amplitudes (right column) for the
uniformly-doped DBTS from Sec. III A at an applied bias of
1: 50 mV (top row), 2: 96 mV (middle row) and 3: 130 mV
(bottom row). Panel numbers 1-3 refer to the bias values
marked in Fig. 2.

Intrinsic oscillations are well-resolved observed in the bias
range 94 mV to 98 mV for the 6-nm-well device. In
Fig. 2b, two I-V diagrams, one for the 6-nm device and
another for a 7-nm-well but otherwise identical device
are shown. Arrow 2 in Fig. 2b points to 96 mV, the
bias value from Fig. 2a. In contrast to the 6-nm device,
no intrinsic oscillations are observed at any bias for the
7-nm-well device.
Figure 3 shows the current density vs time for the three

values of applied bias denoted in Fig. 2b, along with the
corresponding Fourier transform amplitudes of the cur-
rent density. We see that the current density fluctuates
over time for all considered bias values. However, only
for bias values in the range 94 mV to 98 mV do the fluc-
tuations have a well-resolved frequency (i.e. a narrow
peak in the frequency domain, middle right panel). The
current oscillations do not diminish when the number of
particles in the simulation is increased, eliminating the
possibility that the current oscillations are artifacts of
the stochastic nature of the Monte Carlo method.

B. Traditionally-doped RTD

For comparison, we have considered a traditionally-
doped RTD with a 30-nm-wide undoped region that in-
cludes the center of the device. Figure 4a shows the
potential profile, charge density and doping profile for
an applied bias of 180 mV (see Fig. 4b for IV-diagram).
The main quantum well is 7-nm-wide (this well width
provided the most pronounced current oscillations), with
other parameters the same as the uniformly-doped struc-
ture considered in Fig. 2. As in the case of the uniformly-
doped DBTS considered in Sec. III A, we observe persis-
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FIG. 4. (Color online) (a) Time-averaged potential profile
(solid line) and charge density (short dashed line) as a func-
tion of position for the traditionally-doped RTD at an ap-
plied bias of 180 mV. Long dashed line shows the doping
profile of the device. The potential profile is obtained from a
self-consistent coupled solution of the WBTE and Poisson’s
equation. (b) Time-averaged current density vs applied bias.
The time average is obtained over 1 ps intervals. The arrow
marks the bias value 180 mV, which is used in (a).
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FIG. 5. (Color online) (a) Current density as a function of
time for a bias of 180 mV (peak current) for the traditionally-
doped RTD (lower blue curve) and a comparison with the
uniformly-doped DBTS from Sec. III A for a bias of 0.096 mV
(upper red curve). (b) Fourier spectrum of the current den-
sity oscillations for the traditionally-doped (blue curve) and
uniformly-doped DBTS (red curve). Fourier transform am-
plitudes are normalized so the maximum equals one.

tent current oscillations for all values of bias, but only in
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a limited bias window (175 mV to 185 mV) do the oscil-
lations have a single well-pronounced Fourier component.

In Fig. 5, we observe intrinsic current oscillations
when the traditionally-doped RTD is under peak bias of
180 mV. In Fig. 5a, we can see that the current density is
smaller by a factor of ∼ 3 compared with the uniformly-
doped device at a bias of 96 mV. The amplitude of cur-
rent oscillations (peak to bottom) is also smaller in the
traditionally-doped case (1.5×105 A/cm2 compared with
4.0× 105 A/cm2 in uniformly-doped device). As can be
seen in Fig. 5b, due to the low current density in the
traditionally-doped RTD, the main Fourier component
of the current density is considerably widened by scat-
tering, with respect to the uniformly-doped case.

C. Effects of scattering

In order to investigate the role of scattering, we ran
simulations where the conventional scattering rates22

were artificially modified via multiplication by a factor of
0.5 and 0.25. The results, as well as a comparison with
the full scattering case (unchanged rates), are presented
in Fig. 6, which shows the Fourier transform amplitude
of the current density when the uniformly-doped DBTS
from Sec. III A is biased in such a way that intrinsic os-
cillations are well resolved (96 mV).

With full scattering, the main frequency component
has a full-width at half-maximum (FWHM) of 0.2 THz.
Multiplying the scattering rates by a factor of 0.5 results
in a reduced FWHM of about 0.08 THz. However, re-
ducing the scattering rates further does not decrease the
peak FWHM.

3.5 4.0 4.5 5.0 5.5 6.0
Frequency [THz]

0.0

0.2

0.4

0.6

0.8

1.0

F
o
u

ri
e
r 

tr
a
n

sf
o
rm

 a
m

p
li

tu
d

e

25% scattering

50% scattering

100% scattering

−60 −40 −20 0 20
Position [nm]

−140

−120

−100

−80

−60

−40

−20

0

P
o
te

n
ti

a
l 

[m
e
V

]

FIG. 6. (Color online) Fourier transform amplitude of
the time-dependent current density for the uniformly-doped
DBTS from Sec. III A with the full scattering rates (blue
squares), 50% of the full scattering rates (green triangles) and
25% of the full scattering rates (red circles). The inset shows
the corresponding time-averaged potential profiles for a part
of the device.

D. The quasi-bound-state picture. The Coulomb

mechanism behind the current-density oscillations

To get a qualitative picture of the mechanism behind
the current oscillations, several authors have previously
solved the time-independent Schrödinger equation (ob-
tained eigenstates and energies) for a sub-region of the
device in question17,18,40. Here, we do the same. The
potential we use for the eigenvalue problem is the po-
tential that was obtained by solving the coupled WBTE
and Poisson’s equation. Note that, due to the time-
dependent distribution of charge in the device, the elec-
trostatic potential is time-dependent. For a general
time-dependent potential, solving the time-independent
Schrödinger equation for different times is not meaning-
ful. However, if the wave functions of the bound states
vary weakly in time, an eigenvalue equation of the fol-
lowing form is valid17

Ĥ(t)ψi(z, t) = Ei(t)ψi(z, t) , (8)

where Ĥ(t) is the system Hamiltonian, which includes the
effects of the time-dependent “electrostatic” potential, ψi

is the i-th eigenstate and Ei(t) its corresponding energy.
Following such a procedure, we consider the emitter

quantum well (EMQ) and main quantum well (MQW)
regions of the uniformly-doped DBTS from Sec. III A
seperately and solve the eigenvalue problem in each re-
gion (see Fig. 7a). This approach is only valid if the
eigenfunctions are well-localized within each region. For
example, in calculating the MQW bound states, we as-
sume that the two barriers extend to ±∞ and use the
boundary condition ψ(±∞) = 0. A condition for the va-
lidity of the approach is that the resulting wavefunction
does not penetrate deeper than 2 nm (the thickness of the
barriers) into the barriers. From Fig. 7a, we can see that
this is indeed the case — the well ground state does not
extend into the emitter side and the emitter ground state
does not penetrate into the well. Our motivation for the
splitting of the emitter and well regions is to elucidate
the nature of the temporal evolution of the device po-
tential, shown in Fig. 8. We see that the largest Fourier
components of potential oscillations in both the EQW
and MQW regions are at frequencies around 9.6 THz,
considerably higher than the frequency of current oscil-
lations (4.5 THz). We note that the high-frequency oscil-
lations correspond to the bulk electron plasma frequency
in GaAs, given by

fp =
1

2π

√

nq2

εm∗
≃ 9.65 THz , (9)

with an electron density equal to the doping density
n = 1018 cm−3 and ε = 12.8ε0 the dielectric constant
of GaAs. However, the high-frequency potential oscilla-
tions of the two wells are in phase; in contrast, the poten-
tial difference between the two regions oscillates with the
same frequency as the current, implying that the current
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FIG. 7. (Color online) (a) Snapshot of the potential pro-
file (thick black curve) for the uniformly-doped DBTS from
Sec. III A at an applied bias of 96 mV (bias for which intrinsic
oscillations are observed). The solid red and the dashed blue
curves correspond to the ground state probability densities in
the well and emitter regions, respectively. (b) Snapshot of the
potential profile (thick black curve) of the traditionally-doped
RTD from Sec. III B in a steady state for an applied bias of
180 mV (bias for which intrinsic oscillations are observed).
The solid red curve corresponds to the ground state proba-
bility density of the main quantum well bound state. The
emitter quantum well is very shallow and contains no bound
states. In both (a) and (b), the two arrows define the emit-
ter and well regions (the computational domain for the wave
functions). The two domains overlap in the region of the left
barrier.

oscillations are Coulombic in nature and that the electro-
static potential difference between the two regions plays
a central role in the mechanism. The Coulomb nature of
the mechanism was qualitatively mentioned in41 in con-
nection with a simplified 1D version of the DBTS, fea-
turing a linear potential drop across the well and barriers
and a constant density of states in the contacts. However,
we found that the oscillations were impossible to observe
with a linear potential drop; a self-consistent solution of
coupled Poisson’s equation and a transport kernel is nec-
essary to capture the oscillations. In fact, current oscilla-
tions in the DBTS appear to be closely related to the ex-
perimentally observed phenomena of charge bistability42

and self-sustained oscillations in doped superlattices43,44,
which are associated with the formation of electric-field
domains45. The doped DBTS might be considered as the
ultra-short limit of a doped superlattice, which also im-
plies a higher frequency of oscillations (THz in the DBTS,
as opposed to the MHz – GHz frequency range observed
in superlattices44).
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FIG. 8. (Color online) Fourier transforms of the potential on
the left side of the first barrier at zb = 6 nm (red open cir-
cles), the middle of the well at zw = 0 (green closed circles)
and the potential difference ∆(t) = V (zb, t) − V (zw, t) (blue
squares) for the uniformly-doped DBTS from Sec. III A. In
the legend, the tilde denotes a Fourier transform from the
time to frequency (ν) domain. The inset shows a snapshot of
the potential profile where the positions zb (red downward-
pointing triangle) and zw (green upward-pointing triangle)
are marked. The figure shows that the largest Fourier com-
ponents of the emitter and well potential oscillations are for
frequencies above the intrinsic current oscillations. However,
these high-frequency plasmonic oscillations [Eq. (9)] are in
phase, as are the low frequency oscillations around 0.4 THz.
In contrast, the potential difference between the barrier and
well region oscillates with the same frequency as the current
density (4.5 THz).

Figure 9a shows the results of the same bound state
analysis as in Fig. 7a, performed at different times over
a time period of 4 ps. The figure shows that the energy
difference between the ground states in the EQW and
MQW, defined by ∆(t) = EMQW(t) − EEQW(t), is os-
cillating with the same frequency as the current density
oscillations (also plotted in Fig. 9) with a minimum near
zero. With increased current, charge accumulates in the
MQW, raising the energy of the MQW state out of align-
ment with the EQW state via the self-consistent electro-
static potential. Charge then tunnels from the MQW
region into the collector, lowering the well bound state
back into alignment with the emitter state. The process
is cyclic and is the cause of the periodic current oscilla-
tions.

There is a phase difference of about 49◦ between the
peak in the current density and ∆. The current actually
takes the highest value when the MQW energy is slightly
(by about 10meV ≈ kBT/2) higher than the EQW en-
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ergy. The phase difference has to do with considerable
inelastic scattering and the fact that the system is non-
degenerately doped, with the Fermi level below the con-
duction band edge; the states are populated according
to the distribution-function tail, so the concept of level
alignment holds with an energy uncertainty on the order
of kBT/2.
Figure 9b shows that temporal variation in the EQW

ground state wavefunction is small and time variation of
the MQW state (not shown) would not be visible on a
similar graph, justifying our use of Eq. (8). The reason
the wave functions are only weakly affected is that most
of the time-dependent potential drop between the bottom
of the EQW and the center of the MQW takes place
inside the left barrier, where the EQW and MQW ground
states have very small amplitudes and are therefore only
weakly affected.
In the case of the traditionally-doped RTD from

Sec. III B, the EQW is too shallow to form a bound
state (see Fig. 7b). However, as already mentioned in
Sec. III B, we still observe intrinsic current oscillations
when the RTD is biased in such a way that it exhibits
peak current (resonant condition). As can be seen in
Fig. 7b, under these resonant conditions, the MQW
quasi-bound ground state is slightly (on the order of
kBT ) higher than the emitter conduction band edge and
a large portion of incoming electrons have energy match-
ing the MQW ground state and current is at a maximum.
With increased current, the amount of charge in the well
goes up, bringing the MQW state out of the transport
window via the self consistent electrostatic potential. As
in the case for the uniformly-doped DBTS, the process
is cyclic and is the cause for the intrinsic current oscilla-
tions.

E. Frequency of the current-density oscillations.

Effect of varying doping density

In a model proposed by Zhao et al. 17, the frequency
of intrinsic current oscillations is given by ∆̃/h, where

∆̃ is the time average of ∆(t). From the data presented

in Fig. 9a, we get ∆̃/h ≃ 1.7 THz, which is well below
4.5 THz, the frequency of the current density oscillations
(Fig. 8). Another important difference between our re-
sults and the results of Zhao et al. is that they found the
potential oscillations in the EQW and MQW to be com-
pletely in-phase, and thus concluded that the current os-
cillations were not driven by the charge exchange between
the EQW and MQW, i.e., that the source of current os-
cillations is not the long-range Coulomb interaction. In
contrast, as shown earlier in this section, we found that
current oscillations are driven by the time-dependent po-
tential difference between the EQW and MQW. Saku-
rai and Tanimura worked within a hierarchy-equation-
of-motion formalism and also observed intrinsic current
oscillations in RTDs 18,19. To explain their results, they
performed a similar bound-state analysis. However, for
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FIG. 9. (Color online) (a) Time evolution of ∆, the energy dif-
ference between the MQW ground state and the EQW ground
state (red circles) and current density (blue triangles) for the
uniformly-doped DBTS from Sec. III A. From the figure we
see that the energy difference between the ground states in
the EQW and the MQW is oscillating with the same fre-
quency as the current density and is close to zero when ∆ is
at a minimum. The current density leads ∆ in phase by 49◦.
(b) Probability density for the emitter ground state at a few
points in time (the corresponding values of ∆ are denoted in
the inset). We see that the EQW wavefunction varies weakly
over time.

their eigenvalue problem, they used a time average of
the device potential. When we employed the method
proposed by Sakurai and Tanimura, we were not able to
predict the frequency of current oscillations. This result
is not surprising, considering that, in time-averaging the
device potential, we lose all information about the poten-
tial variation between the EQW and MQW, which plays
a pivotal role in the current oscillations in the present
work. On the other hand, Ricco and Azbel41, who quali-
tatively discussed the Coulomb origin of the oscillations,
argued that the oscillation frequency would be on the or-
der of the carrier lifetime in the well, related to the peak
width in the coherent transmission coefficient.
Here, we show that the frequency of current oscillations

is in fact determined by the ratio of charges stored in the
MQW and EQW, and that it can be tuned by varying the
doping density. We observe well-resolved (near single-
frequency) intrinsic current oscillations in the uniformly-
doped DBTS presented in Sec. III A for doping density in
the range 0.8− 1.8× 1018 cm−3, where frequency can be
tuned between 4.2 THz and 4.9 THz (see Fig. 10a). Fig-
ure 10 shows how several physical quantities vary with
doping density. From Fig. 10a we see that the frequency
of oscillation is a non-monotonically increasing function
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of doping density. The amplitude of current oscillation
JA (Fig. 10b) has a maximum between 1.5× 1018 cm−3

and 1.7 × 1018 cm−3 and from Fig. 10c we see that the
relative current-oscillation amplitude JA/Jav (Jav is the
time-averaged current density) varies weakly once dop-
ing is increased above 1.0× 1018 cm−3. Below doping of
1.0×1018 cm−3, the relative current-oscillation amplitude
decreases rapidly with decreasing doping density. Mod-
ifying the doping density affects the IV-diagram of the
device and shifts the operating bias. By operating bias,
we mean the bias in which the device exhibits the clear-
est current oscillations (lowest FWHM of the main Fourer
transform amplitude). Figure 10d shows how the operat-
ing bias changes with doping density. Figure 10e shows
that the frequency of current oscillations is roughly a lin-
ear function of the ratio QMQW/QEQW , where QMQW

is the time-averaged total charge (per unit area) in the
MQW region andQEQW is the time-averaged total charge
in the EQW region. In calculating QEQW, we intergrate
the charge density over a region extending 20 nm to the
left of the left barrier, corresponding roughly to the ex-
tent of the EQW shown in Fig. 7a.
Outside of the doping range 0.8−1.8×1018 cm−3, cur-

rent still oscillates, but with a much greater frequency
spread, similar to the top and bottom panels in Fig. 3.
When scattering rates are artificially lowered, we observe
the intrinsic current oscillations for doping densities lower
than 0.8×1018 cm−3, so we conclude that for doping den-
sities lower than 0.8×1018 cm−3, the long-range Coulomb
force cannot sustain periodic current oscillations owing to
the dampening effects from phonon and ion scattering.
As the doping density is increased, the potential well on
the collector side of a uniformly-doped DBTS gets deeper
and a large amount of charge builds up in this well (see
Fig. 11). We suspect that the charge exchange between
the collector well and the main quantum well is what
disturbs intrinsic current oscillations for higher doping
densities. To prevent the collector quantum well from
forming, other doping profiles can be considered, such as
a gradual doping density towards the collector side. An-
other possible explanation for the lack of well-resolved
intrinsic current oscillations at higher doping densities is
that, as the doping density is increased, potential varia-
tions due to the electron plasma oscillations are stronger
(have a larger Fourier amplitude) and a higher frequency
(see Fig. 12), and the quasistatic picture presented in
Sec. III D may not be warranted.

F. Experimental Considerations Relevant for

Observing Persistent Oscillations

Since the well-resolved current oscillations are only ob-
served when the ground states in the EQW and MQW
have similar energies, it is expected that they will be no-
table only in a limited bias window in which this align-
ment takes place. For the 6-nm-well uniformly-doped
DBTS, this range is 94–98 mV (Fig. 2); below 94 mV,
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FIG. 10. (Color online) (a) Frequency of current oscillation
fmax vs doping density. (b) Amplitude of current oscillations
JA vs doping density. The amplitude is calculated using
JA = 2

√
2σ, where σ is the standard deviation in current

density. (c) Relative amplitude of current oscillations JA/Jav

where Jav is the time averaged current density. (d) Operat-
ing bias Vop (see main text for definition) as a function of
doping density. (e) Frequency of current oscillations vs the
ratio of time averaged charge in the MQW and the EQW (see
main text for details). All panels are for the uniformly-doped
DBTS from Sec. III A.

the MQW ground state is considerably above the EQW
one, while above 98 mV the order reverses.

The necessity of this alignment is manifested in the
sensitivity of the oscillation prominence on the DBTS
geometry. While the 6-nm-well uniformly-doped DBTS
supports really sharp-frequency, large-amplitude oscilla-
tions, a similar 7-nm-well uniformly-doped DBTS (Fig.
2) does not. The reason is the strong dependence of the
MQW ground state energy on the well width, where a
wider well translates into a lower ground state energy. A
natural follow-up question is why the current oscillations
are simply not observed at a lower bias, but at a low
bias the EQW is too shallow to support a well-localized
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FIG. 11. (Color online) Time-averaged potential profile in the
uniformly-doped DBTS from Sec. III A at a doping density
of 1.0 × 1018 cm−3 (solid red) and 2.0 × 1018 cm−3 (dashed
blue) for applied bias of 96 mV and 77 mV, respectively. For
the higher doping density, the potential well on the collector
side is deep enough to form a bound state, which disrupts
the current density oscillations that are governed by charge
transfer between the emitter and main quantum wells.
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FIG. 12. (Color online) Fourier transform of the time-
dependent potential value at the center of the MQW region,
corresponding to V (zw, t) in Fig. 8, for doping densities of
1.0×1018 cm−3 (blue squares), 1.5×1018 cm−3 (filled circles)
and 1.8×1018 cm−3 (red circles). Vertical lines mark the cor-
responding electron plasma frequencies, 9.65 THz, 11.81 THz,
and 12.94 THz, respectively. Plasma frequences are calculated
using Eq. (9), assuming an electron density equal to doping
density. We see that, as the electron density is increased,
plasma oscillations increase both in frequency and amplitude.
The lower-frequency Fourier component, corresponding to the
frequency of intrinsic current oscillations, varies more slowly
and remains between 4 and 5 THz.

bound state. Current oscillations are thus very sensitive
to quantum-well-width fluctuations. As the lattice pa-
rameter for GaAs is about 0.5 nm, monolayer precision

is fabrication in required to observe the oscillations.
Barrier thickness is another parameter that can fluctu-

ate in fabricated devices. We performed simulations for
uniformly-doped DBTSs with the same well width (6 nm)
but with thicker (3 nm) and thinner (1 nm) barriers than
the 2-nm one, which had been found as ideal for the min-
imal frequency spread and highest amplitude. We found
that varying the barrier thickness had a negligible effect
on the frequency of current oscillations. The main effect
of the increased barrier width was a drastic decrease in
the amplitude of both current oscillations and the time-
averaged current, because thicker barrier impede tunnel-
ing. The effect of barrier thinning washed out the oscilla-
tions, because with very thin wells the EQW and MQW
states cease to be well-localized in their respective wells
(Sec. III D). Consequently, the barrier thickness also has
to be achieved with monolayer precision.
The doping density is a parameter that critically affects

the characteristic frequency of intrinsic current oscilla-
tions. As the current oscillations are driven by a cyclic
redistribution of charge in the device, the frequency will
be on the same order of magnitude as the 3D plasma fre-
quency for the electron density equal to the doping den-
sity, Eq. (9). An accurate prediction of the frequency,
however, requires a detailed numerical calculation.

IV. SUMMARY AND CONCLUDING

REMARKS

By solving the WBTE self-consistently coupled with
Poisson’s equation, we analyzed the persistent THz cur-
rent oscillations in GaAs/AlGaAs-based DBTSs. We
showed that a uniform doping profile results in a higher
amplitude of current oscillations, as well as a reduced
frequency spread, than the traditional doping profiles,
where the well region is undoped. By varying device pa-
rameters, we found that the barrier and well widths of
2 nm and 6 nm, respectively, provided the greatest am-
plitude of current oscillations as well as the lowest fre-
quency spread (FWHM of the main Fourier component).
We provided a qualitative explanation for the source of
current oscillations by employing a quasistatic picture,
where localized states in the EQW and MQW are peri-
odically tuned in and out of alignment due to a redis-
tribution of charge between the EQW and MQW. The
frequency of current oscillations was found to depend
linearly on the ratio of the time average of the charge
stored in the EQW and MQW regions. We found that
the frequency of current oscillations in a uniformly-doped
DBTS can be tuned by varying the doping density be-
tween 0.8×1018 cm−3 and 1.8×1018 cm−3. In this doping
range, frequency is a nonmonotonically increasing func-
tion of doping density and can be varied between 4.2 and
4.9 THz, with a typical frequency spread of 0.2 THz. The
highest amplitude of current oscillations we observed was
5.5 × 105 A/cm2, for a doping density in the range 1.5
to 1.7 × 1018 cm−3. However, above the doping den-
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sity of 1.0× 1018 cm−3, the ratio of the current-density-
oscillation amplitude and the average current density did
not vary considerably and had values in the range 0.7 to
0.8.
We conclude that utilization of intrinsic current oscil-

lations in uniformly-doped DBTSs shows potential for
solid-state-based ac-current generation in the THz range
at room temperature. However, as we have demon-
strated, tunability of the frequency of oscillation is lim-
ited (4.2 to 4.9 THz). The limited tuning range is a
consequence of the fact that the ratio of time-averaged
charge in the EQM and MQW does not vary considerably
in the doping range in which intrinsic current oscillations
are manifested. In order to provide more tunability, it is
worth considering the effect of a more complicated doping
profile and variation of other device parameters. Another
limitation is the ∼ 0.2 THz frequency spread of the main
Fourier component of current oscillations. We showed
that artificially reducing scattering rates reduces the fre-
quency spread and allows us to observe well-resolved in-
trinsic current oscillations at lower doping densities. Ex-
perimentally, lowering the scattering rates can be accom-
plished by lowering the temperature and doping density.
However, tuning the temperature also changes the dis-
tribution of electrons in the contacts and modification of
the doping profile results in changes in the electrostatic
potential. Optimization of the RTD performance as a
THz power source with respect to temperature and dop-
ing profile is therefore an involved process and is beyond
the scope of this publication. Another possible extension
to the current work is a self-consistent solution of the
WBTE with Maxwell’s equations, to estimate the radi-
ated power and account for losses due to attenuation.
Last but not least, the effect of nonequilibrium phonons
and lattice heating on intrinsic oscillations in DBTSs is
an interesting open question.
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Appendix: Bias Treatment

The method we use to solve the WBTE in Eq. (1)
requires use to perform a Wigner transform of the fast

varying-potential term Vqm defined in Eq. (3). A more
computationally efficient way is to use46

Vw(z, k) =
2

π~
Im

{

e2ikz Ṽqm(2k)
}

, (A.1)

where Ṽqm(k, t) is the spatial Fourier transform of
Vqm(z, t) with the convention

Ṽqm(k, t) =

∞
∫

−∞

Vqm(z, t)e
−ikzdz . (A.2)

Equation (A.2) represents a problem when Vqm does
not decay to zero as z → ±∞, such in the case of an
applied bias. As an example, let us take a prototype bias
potential of the form (erf is the error function)

V∆(z) = −V0
2

erf[β(z − z0)] , (A.3)

which represents a bias drop of V0, antisymmetric around
z0 and β controls how abruptly the potential changes
(see Fig. 13). Because V∆ does not decay to zero as
z → ±∞, its Fourier transform is only defined in the
distributional sense which makes a numerical evaluation
troublesome. However, the Wigner transform of V∆ can
be done analytically using Eq. (A.2), giving

Vw,∆(z, k) =
V0
~π

P 1

k
e−k2/β2

cos[2k(z − z0)] , (A.4)

where P denotes the principal value. The quantum evo-
lution term resulting from Vw,∆ can be calculated using
Eq. (2), giving

QV∆
[fw](z, k) =

∞
∫

−∞

Vw,∆(z, k
′)fw(z, k − k′)dk′

=
V0
π~

∞
∫

−∞

P 1

k′
e−k′2/β2

cos[2k′(z − z0)]fw(z, k − k′)dk′

=
V0
π~

kc
∫

−kc

P 1

k′
e−k′2/β2

cos[2k′(z − z0)]fw(z, k − k′)dk′

+
V0
π~

∫

|k′|>kc

P 1

k′
e−k′2/β2

cos[2k′(z − z0)]fw(z, k − k′)dk′

≡ QV∆,c +QV∆,∞ (A.5)

where kc > 0 is a cutoff wave number. In Eq. (A.5), we
have split the k′ integral into the long wavelength part
QV∆,c and short wavelength part QV∆,∞. If we choose
kc small enough such that fw(z, k) varies weakly in the
range [k−kc, k+kc], we can replace fw(z, k) with its first
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order Taylor expansion in the neighborhood of k and get

QV∆,c[fw] = −V0
π~

∂fw
∂k

∫ kc

−kc

e−k′2/β2

cos[2k′(z − z0)]dk
′

= − 1

~

∂fw
∂k

βV0√
π
e(z−z0)

2β2

Re {erf[kc/β + i(z − z0)β]}

≡ − 1

~

∂fw
∂k

F∆(z) . (A.6)

where Re refers to the real part. Comparison with Eq. (1)
shows that the quantum evolution term in Eq. (A.6)
has reduced to a semi-classical drift term with force F∆

defined in the bottom line of Eq. (A.6) and can ab-
sorbed into the slowly varying potential term such that
F∆(z) = −∂Vcl/∂z. The short wavelength part QV∆,∞

is still treated quantum mechanically. When choosing a
length for the considered device, care must be taken that
the device is long enough such that F∆(z) is small outside
the device region.
Now consider the potential profile of the uniformly-

doped DBTS from section IIIA under an applied bias of
0.096 V (see Fig. 13). Define the total potential as V (z).
Now define a new quantity

Vδ(z) = V (z)− V∆(z)− VB(z) , (A.7)

where VB(z) is the potential of the barriers. Figure 13
shows a plot of Vδ(z). The main idea is to compute the
Wigner transform of VB and V∆ analytically, so that only
the Wigner transform of Vδ needs to be performed nu-
merically. Any numerical difficulties are avoided because
Vδ varies slowly and decays rapidly to zero for z → ±∞,
due to the fact that we have removed the barriers through
VB and the potential drop through V∆.
Analytic evaluation of the Wigner transform of a bar-

rier potential can be done by considering it as a linear
combination of error functions. For example the poten-
tial of the left barrier can be written as

VLB(z) =
VL
2
{ − erf[βL(z − zL − aL)]

+ erf[βL(z − zL + aL)]} , (A.8)

where the subscript L refers to the left potential bar-
rier, 2aL is the barrier width, VL the barrier height, zL
its center position and βL controls how much the bar-
rier edge is smoothed. The barrier becomes abrupt in
the limit βL → ∞, however a finite value must be used
because the numerical method we use is only convergent
for continuous potentials47. The corresponding Wigner
transform is

Vw,LB(z, k) =
2VL
~π

1

k
e−k2/β2

L sin[2k(z − zL)] sin[2kaL] .

(A.9)

We note that this approach does not only work for RTDs,
but any device with an applied potential where compu-
tation of the Wigner potential is required. The specific
choice of parameters β and z0 in the bias potential is

not important, however, a good guess will minimize Vδ,
which contains the part of the total potential which must
be Wigner transformed numerically.
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FIG. 13. (Color online)Solid black curve shows the potential
profile for the uniformly-doped DBTS described in Sec. III A.
Long-dashed red curve shows the bias potential V∆(z), with
parameters β = 0.035 nm−1, z0 = 0, and V0 = 0.096 eV.
Short-dashed blue curve shows Vδ(z), which is the potential
remaining when the bias and barriers have been subtracted
from the total potential V (z).
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