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We study interaction-induced backscattering in clean quantum wires with adiabatic contacts ex-
posed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady
state only on length scales exponentially large in the ratio of bandwidth of excitations and temper-
ature. Here we focus on shorter wires in which full equilibration is not accomplished. Signatures of
relaxation then are due to backscattering of hole excitations close to the band bottom which perform
a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is
reminiscent to the first passage problem of a Brownian particle and, regardless of the interaction
strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions
of the latter we calculate the hole backscattering rate for different wire lengths and discuss the
resulting length dependence of interaction-induced correction to the conductance of a clean single
channel quantum wires.

PACS numbers: 72.10.–d, 71.10.–w, 71.10.Pm, 72.15.Lh

I. INTRODUCTION

The study of equilibration in many-particle quantum
systems has moved into the focus of recent research in-
terest.1,2 This interest has been partially driven by the
impressive experimental progress in realizing and manip-
ulating many-particle quantum systems. One remarkable
example is the recent cold atom realization of the Tonks
Girardeau gas, which allowed to study the suppression of
relaxation in an integrable many-body system.3

Clean mesoscopic quantum wires provide another ex-
ample of systems in which equilibration is strongly sup-
pressed.4 Specifically, in clean single channel quantum
wires equilibration is due to backscattering of excitations
which occur at energies of the order of their bandwidth
∆.5–9 As a consequence, the equilibration rate displays
activated temperature dependence, τ−1

eq ∝ e−∆/T and,
when exposed to a finite voltage bias, a fully equilibrated
steady state only occurs in wires exceeding an exponen-
tially large length scale `eq ∝ e∆/T .

In shorter wires, L � `eq, effects of equilibration on
electrons at the Fermi level can be neglected and sig-
natures of relaxation are due to backscattering of parti-
cles close to the band bottom.10,11 The key process for
relaxation in this case is one in which a thermally ac-
tivated hole overcomes, as it scatters from excitations
at the Fermi level, a barrier of energetically unfavorable
states at the band bottom via random small steps in mo-
mentum space. This picture of a Brownian particle ap-
plies regardless of the interaction strength and thus opens
the possibility to study equilibration of one-dimensional
fermions beyond the weak interaction regime.

Strongly interacting electrons are commonly described
within the Luttinger liquid framework and previous work
has studied scattering of a Brownian particle in a ho-

mogeneous Luttinger liquid.12 The focus of the present
paper is on the equilibration in voltage biased quantum
wires. Here, the nature of the specific boundary condi-
tions requires to address a space-dependent, i.e. inhomo-
geneous problem.

The outline of the paper is as follows. Section II intro-
duces the backscattering rate of holes and reviews how
a finite rate affects the conductance of the wire. In Sec-
tion III we discuss the relevant kinetic equation. Solu-
tions of the latter, the resulting backscattering rate and
interaction-induced correction to the conductance of the
wire are discussed in Sections IV and V. Details of the
calculations are relegated to the appendices.

II. BACKSCATTERING RATE

Consider interacting electrons in a clean one-
dimensional quantum wire adiabatically connected to
two-dimensional reservoirs via fully transparent contacts.
A non-equilibrium situation arises when reservoirs at left
and right contacts are biased by a finite voltage V . Then,
right- and left-moving electrons injected into the wire
from the left and right reservoir, respectively, are at dif-
ferent equilibria, see Fig. 1. In the absence of interactions
the conductance of the wire reads

G0 = Gq

(
1− e−µ/T

)
, (1)

where Gq = 2e2/h is the quantum of conductance, and
µ is the chemical potential. Accounting for interactions
within the Luttinger liquid framework, the conductance
of a finite wire remains Gq.

13–15 While electrons inside a
realistic voltage biased wire relax towards a new steady
state, excitations within the Luttinger liquid model have
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FIG. 1: One-dimensional quantum wire of length L, adia-
batically connected to two-dimensional reservoirs which are
kept at different equilibria characterized by chemical poten-
tials µL/R = µ±eV/2. Right- and left-moving electrons enter
the wire from different reservoirs and relax towards a new
equilibrium state through interaction-induced backscattering
of particles.

an infinite life time. To study effects of equilibration on
finite temperature transport coefficients, one thus has to
go beyond the Luttinger liquid model. As we discuss
below, this can be accomplished even if interactions are
strong.

Taking into account relaxation into a new steady
state, the latter can be characterized in terms of a lo-
cal backscattering rate ṅR(x) of fermions. In the limit of
weak interactions, nR(x) = 2

L

∑
p>0 fp,x is the density of

right-moving electrons. The dot here and in the following
refers to the total time derivative, fp,x is the Fermi distri-
bution of (weakly interacting) electrons and the factor 2
is due to spin-degeneracy. The total backscattering rate

of electrons is then ṄR =
∫ L/2
−L/2 dx ṅ

R(x) and a finite

rate results from backscattering of highly excited holes
close to the band bottom, see Fig. 2.

The above picture readily generalizes to strong inter-
actions. Indeed, one can extend the concept of a hole ex-
citation to arbitrary interaction strengths by noting that
for a system with concave spectrum the lowest energy
excitation at a given momentum Q is a hole.2,16 Even
though interactions renormalize its spectrum εQ, the hole
remains a spin-1/2 excitation with a two-fold degeneracy
of the energy levels protected by spin-rotation symme-
try. The energy spectrum is periodic, εQ = εQ+2pF , and
quasi-momenta of hole excitations may thus be restricted
to the first Brillouin zone |Q| < pF . Building on this ob-
servation, a backscattering event corresponds to an umk-
lapp process in which the highly excited hole crosses the
edge of the Brillouin zone. Notice here that the edge
of the Brillouin zone corresponds to the band bottom of
the spectrum of the non-interacting fermions, and both
terms will be used synonymously below, see also Fig. 2.
In particular, in both pictures the relaxation is due to
processes taking place at the bottom of the band, i.e.
involving highly excited holes. To simplify notation, in
the subsequent discussion instead of the momentum of
the hole Q measured from the nearest Fermi point we
will use the momentum of the missing electron near the
bottom of the band, p = pF sgn(Q)−Q.

Regardless of the interaction strength the total
backscattering rate of holes is calculated in terms of the

FIG. 2: Left: Spectrum of weakly interacting electrons. Re-
laxation at weak interactions occurs via three-particle scat-
tering processes in the course of which a highly excited hole
at the band bottom is backscattered. Right: The concept of
backscattering of a highly excited hole also applies at strong
interactions. The energy of a hole excitation εQ is shown as
a function of its momentum Q. First Brillouin zone |Q| < pF
corresponds to the momentum Q of the hole measured from
the nearest Fermi point. As a result of many collisions with
low energy bosonic excitations the latter may increase its mo-
mentum Q and enter the second Brillouin zone, after which
it is more likely to fall toward Q = 2pF than to return to
the vicinity of Q = 0. Each backscattering event thus corre-
sponds to an umklapp process in which a highly excited hole
crosses the edge of Brillouin zone (dashed lines).

hole distribution gp,x,

ṄR = −2

∫ L/2

−L/2
dx
∑
p>0

ġp,x. (2)

In the short wires considered in this paper the backscat-
tering rate (2) is controlled by momenta close to the band
bottom |p| � pF . We will discuss the hole occupation
numbers gp,x in the following sections. The factor of 2 in
Eq. (2) again results from spin-degeneracy, and the minus
sign from expressing the backscattering rate in terms of
the hole distribution. A finite backscattering rate mani-
fests in a reduced steady state current,6,8

I = G0V + eṄR, (3)

corresponding to a conductance which differs from that
of a non-interacting system (1),

G = G0 + δG, δG =
eṄR

V
. (4)

The backscattering rate (2) recently has been studied
in the limit of relatively short10,11 (L � `0) and rel-
atively long (L � `1) wires.6 While the characteristic
scales `0 and `1 are discussed in detail below, we mention
here that the condition L . `0 defines a quasi-ballistic
regime, in which a hole at the bottom of the band typi-
cally scatters at most once from excitations at the Fermi
level during its passage through the wire. On the other
hand, the condition L � `1 defines a homogeneous dif-
fusive regime where the hole suffers from many collisions
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granting fully diffusive dynamics in momentum space on
a scale set by temperature. In both cases the distribu-
tion function of the holes at the bottom of the band is
space-independent. That is, one effectively deals with
a homogeneous problem and consequently linear depen-
dences ṄR ∝ L are found. Slopes, however, are para-
metrically different in the quasi-ballistic and homogenous
diffusive regimes. One should therefore expect a nontriv-
ial length dependence δG(L) in the intermediate regime
which at low temperatures of interest defines a wide re-
gion of length scales `0 � L � `1 specified below. As
we discuss next, this condition defines an inhomogeneous
diffusive regime, in which the typical range of diffusive
dynamics in momentum space is set by the length of the
wire. This latter is addressed within an inhomogeneous
Fokker-Planck equation.

III. FOKKER-PLANCK EQUATION

The Fokker-Planck equation (FPE) describes the
paradigmatic situation in which a heavy ‘Brownian’ par-
ticle propagates in a dilute gas of light particles. Col-
lisions between heavy and light particles then lead to a
diffusive motion of the former. In our context, the typical
momentum δp transferred in a collision between a hole
at the band bottom and thermally excited electron-hole
excitations (plasmons) is restricted due to Fermi block-
ing to be of the order of δp ∼ T/v, where v is the velocity
of excitations at the Fermi level. Below we consider the
case in which the dispersion of a hole at the bottom of
the band is quadratic,

εp = ∆− p2

2m∗
, (5)

with m∗ being the effective mass of the hole. We then en-
counter the above situation at low enough temperatures
where the typical momentum of the hole p0 ∼

√
m∗T �

δp, see also Fig. 3.
Formally, we start out from the Boltzmann equation

p

m∗
∂xgp,x = Ip,x[g] (6)

for the hole distribution gp,x = 1− fp,x in a steady state
∂tgp,x = 0. Employing the small parameter δp/p0 � 1
one may perform a Kramers-Moyal expansion and ap-
proximate the collision integral by the Fokker-Planck
form

Ip,x[g] ' −∂p
(
A(p)gp,x −

1

2
∂p[B(p)gp,x]

)
. (7)

The Fokker-Planck operator describes an interplay of
drift and diffusion which sends the system into the new
steady state. Coefficients A(p) and B(p) in Eq. (7) are
model specific functions. In all cases of interest, varia-
tion of the coefficient B(p) occurs on a momentum scale
much larger than p0, and it may thus be approximated

by a constant B(p) = B. Employing common statistical
mechanics arguments, we further know that in a homo-
geneous equilibrium situation, eV = 0, the dilute hole
at the band bottom is described by a Boltzmann distri-
bution. This fixes A(p) = Bp/(2m∗T ), and the (dilute)
hole distribution thus follows the space-dependent FPE,
also known as Kramers equation17,18

p

m∗
∂xgp,x =

B

2
∂p

(
−pgp,x
m∗T

+ ∂pgp,x

)
. (8)

All microscopic details are stored in the single constant
B, which physically speaking has the meaning of a dif-
fusion constant in momentum space. It can be explicitly
calculated in the special cases of either weak or strong
interactions.6,9,11,19 Interestingly, one can also obtain a
phenomenological expression for B in terms of the spec-
trum of the mobile impurity (hole) in the Luttinger liq-
uid.7,16,20 Inhomogeneity in Eq. (8) is induced by the
boundary conditions taking into account the finite volt-
age bias. For a dilute hole at the band bottom the latter
can be approximated by a classical Boltzmann form

gp,−L/2 = eεp/T e−(∆+eV/2)/T , for p > 0, (9a)

gp,L/2 = eεp/T e−(∆−eV/2)/T , for p < 0, (9b)

where ∆ is the bandwidth of the hole excitations, see
Eq. 5.

While the above expressions (9a) and (9b) are obvi-
ous in the limit of weak interactions, let us notice that
independent of the interaction strength the occupation
of (dilute) high-energy excitations in a fluid at rest is
given by the Boltzmann factor gQ = e−εQ/T , where εQ
the excitation spectrum. A finite voltage bias sets the
fluid in motion and changes the excitation spectrum of
the Galilean invariant system in the stationary frame ac-
cording to εQ → εQ + uQ where u = I/(en) is the fluid
velocity expressed in terms of the electric current I and
the particle density n. Restricting then |Q| ≤ pF to
the first Brillouin zone and measuring momenta from the
zone boundary we substitute Q = pF sgn(p) − p, where

for our purposes |p| ∼
√
m∗T � pF . Substituting fur-

ther particle density n = 4pF /h and current I ' GqV ,
one arrives at the above boundary conditions.

Using Eq. (7) one finds the backscattering rate in the
Fokker-Planck approximation

ṄR =
B

h

∫ L/2

−L/2
dx (∂pgp,x) |p=0. (10)

Here (∂pgp,x) |p=0 affords the interpretation of the cur-
rent of the holes in momentum space through the band
bottom, resulting in the interaction-induced correction
δG(L) to the conductance of non-interacting electrons,
see Eq. (4).

Before we start a detailed analysis of the Kramers
equation (8), it is instructive to obtain the character-
istic scales of distance `1 and momentum p0 inherent to
it. Assuming that the expression in the left-hand side of
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FIG. 3: A hole in the vicinity of the bottom of the band
with dispersion Eq. (5) performs a random walk in momen-
tum space. In the process of equilibration the holes reverses
its direction. The backscattering occurs in a sequence of col-
lisions with excitations at the Fermi level, in which a small
relative momentum δp/p0 � 1 is transferred to the hole. In-
set: Evolution of the hole-distribution at small momenta as
the wire length is increased. In the quasi-ballistic regime of
relatively short wires L . `0 a hole close to the band bot-
tom suffers on average less than one collision when traversing
the wire. The voltage induced jump at p = 0 in this regime
is not affected by backscattering and remains of the order
∼ e−∆/T eV/T . Once L � `0 such hole typically experiences
many collisions during its passage through the wire which
turn its motion in momentum space diffusive. For wires in
the inhomogeneous diffusive regime, `0 � L� `1, holes then
redistribute in a momentum range scaling with the length
of the wire as ∆p ∝ L1/3. Only upon entering the homo-
geneous diffusive regime, L � `1, this range saturates at a
momentum-scale set by temperature ∆p ∼

√
m∗T , implying

that the hole-distribution becomes a smooth function on this
scale.

Eq. (8) is of the same order of magnitude as each of the
terms in the right-hand side, we obtain

p0

m∗`1
∼ B

m∗T
∼ B

p2
0

. (11)

The above conditions are satisfied for p0 ∼
√
m∗T and

`1 ∼
√
m∗T 3/B. The two scales can be understood as

follows. The boundary conditions (9) for the hole dis-
tribution function are discontinuous at p = 0. In the
presence of scattering in the wire, B 6= 0, the discontinu-
ity smears. Such smearing is weak in short wires, such
that L � `1. In this case the typical momentum scale
of the smeared distribution is small compared to p0, and
grows with the length of the wire. In wires longer than
`1 the smearing reaches its final value p0 dictated by the
temperature of the system and mass of the holes, but not
the scattering rate, see also Fig. 3. We start the detailed
analysis of the Kramers equation (8) with boundary con-
ditions (9) with the study of the inhomogeneous diffusive
regime L� `1.

IV. INHOMOGENEOUS DIFFUSIVE REGIME

To quantify the above qualitative considerations let us
return to Kramers equation (8) and restrict to short wires
`0 � L� `1 in the diffusive regime and small momenta,
specified momentarily. We then observe that in this inho-
mogeneous diffusive regime the Fokker-Planck operator is
dominated by the second derivative ‘smearing’-operator,
and thus a simplified analysis applies where drift is ne-
glected,

p

m∗
∂xgp,x =

B

2
∂2
pgp,x . (12)

Indeed, if the discontinuity of the hole distribution occurs
on a scale ∆p �

√
m∗T in momentum space one may

estimate ∂pg ∼ g/∆p. Neglecting drift then amounts
to dropping contributions p∆p/m∗T � 1 much smaller
than unity for small momenta p ∼ ∆p of interest.21

It is convenient to define the length scale `1 =√
8m∗T 3/B and to introduce the dimensionless variables,

q =
p√

2m∗T
, y =

x

`1
, Λ =

L

2`1
, (13)

in terms of which Eq. (12) takes the form(
∂2
q − 2q∂y

)
gq,y = 0. (14)

Let us now insert the separation ansatz

gq,y =

∫ ∞
−∞

da b(a)eayϕa,q , (15)

where the functions ϕa,q satisfy the differential equation(
∂2
q − 2qa

)
ϕa(q) = 0. (16)

Then solutions of Eq. (14) in the linear response regime
assume the form

gq,y =

∫ ∞
0

da b(a)
(
eayϕa(q)− e−ayϕa(−q)

)
, (17)

where

ϕa(q) = (2a)−2/3Ai((2a)1/3q) (18)

and Ai(x) the Airy function. In obtaining Eq. (17) we
took advantage of the fact that in the linear response
regime the distribution in the center of the wire gq,0 is
antisymmetric in q. Finally, coefficients b(a) are fixed by
imposing the boundary conditions,

θ(q)gq,−Λ + θ(−q)gq,Λ = −e−∆/T eV

2T
sgn(q). (19)

For a detailed discussion on this procedure we refer to
Appendix B and move on to the physical implications of
our solution.
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Our result for the backscattering rate at `0 � L� `1
has the form

ṄR = −ζ 2eV

h

(
L

`1

)2/3

e−∆/T , (20)

where ζ is a numerical coefficient defined through an in-
tegral equation and numerically found to be ζ ≈ 1.25,
as discussed in Appendix B. The resulting power-law
dependence δG ∝ L2/3 in the wire length L is a conse-
quence of the scaling form of the Kramers equation and
can be understood as follows.6

In combination with Eq. (10) the power-law scaling

ṄR ∝ L2/3 implies that the discontinuity at p = 0 in the
distribution of right-moving excitations broadens with
the distance x from the left lead as ∂pgp,x|p↘0 ∼ g/∆p ∼
x−1/3. This scaling (and correspondingly for distribu-
tion of left-moving excitations with distance from the
right lead) reflects the diffusive nature of the backscat-
tering processes. Excitations entering e.g. from the right
lead with momentum ∆p, move to the left, gradually de-
crease their velocity in collisions, and eventually return
to the right lead. In order to lose momentum of order
∆p an excitation has to experience sufficiently many col-
lisions in the wire, which requires a time t determined
from the standard diffusion condition (∆p)2 ∼ Bt. Prop-
agating through the wire at a typical velocity ∆p/m∗

until the turning point, the excitation thus moves a dis-
tance (∆p/m∗)t ∼ x from the lead. Combining these
two observations, one obtains ∆p ∼ (Bm∗x)1/3, and thus

ṄR ∝
∫
dx(g/∆p) ∝ L2/3.

Finally, let us address the crossover from the inhomo-
geneous diffusive to the quasi-ballistic regime. The latter
is characterized by a length of the wire shorter than the
average length scale on which a hole at the bottom of
the band scatters off low-energy excitations. This regime
recently has been studied by Lunde et al.10 for weakly
interacting electrons within a perturbative treatment of
the Boltzmann equation. This approach builds on the
observation that, as the typical highly excited hole par-
ticipates in at most one collision, backscattering occurs
via a single collision and smearing of the hole distribu-
tion near p = 0 can be neglected. Of course, in this
regime the picture of diffusive dynamics in momentum
space underlying the Fokker Planck approximation does
not apply.

To elaborate this point let us recall that the Fokker-
Planck approximation relies on a gradient expansion of
the collision integral. The latter applies if the typical
momentum exchange q ∼ T/v in a collision is small
compared to the momentum scale ∆p ∼ (Bm∗x)1/3 on
which the distribution varies. Applying this criterion, we
find that the inhomogeneous diffusive regime is limited to
length scales larger than `0 ∼ T 3/(v3Bm∗). Notice that
`0 ∼ `1(T/m∗v2)3/2 and at low temperatures T � m∗v2

the result (20) for the inhomogeneous diffusive regime
thus applies within a broad region. At the crossover
L ∼ `0 the characteristic scale (L/`1)2/3 ∼ T/(m∗v2),

and the backscattering rate

ṄR ∼ −eV
h

T

m∗v2
e−∆/T (21)

is thus independent of B.
For weak interactions `1 has been calculated from a

microscopic theory. It was shown to be related to the
typical time scale for a three-particle collision τeee as
`1 ∼ (µ/T )1/2vF τeee.

6 Building on this result we find
that at weak interactions the limit of the inhomogeneous
diffusive regime is set by `0 ∼ (T/pF )τeee. Notice that
T/pF is the velocity of a hole which can backscatter in
a single three-particle collision with typical momentum
exchange q ∼ T/vF . We thus observe that in wires of
length L . `0 such hole will typically suffer at most one
collision when traversing the wire, i.e. L ∼ `0 also defines
the limit below which the quasi-ballistic regime of Lunde
et al.10 applies. We thus expect that for L . `0 the
perturbative calculation of Lunde et al. holds. Indeed,
their result ṄR ∼ − eVh

T
µ
L
`0
e−µ/T at L ∼ `0 matches

Eq. (21). The linear scaling ṄR ∝ L here simply reflects
the fact that in the quasi-ballistic regime the probability
of backscattering linearly increases with the time spent in
the wire. As this linear dependence does not rely on the
assumption of weak interactions, one can use Eq. (21) to
extend the result by Lunde et al. to arbitrary interaction
strength,

ṄR ∼ −eV
h

T

m∗v2

L

`0
e−∆/T . (22)

Precise determination of the numerical prefactor in
Eq. (22) would require a more careful treatment.

V. CROSSOVER TO HOMOGENEOUS
DIFFUSIVE REGIME

We next discuss how the result for the inhomogeneous
diffusive regime `0 � L� `1 crosses over into the homo-
geneous diffusive regime `1 � L � `eq. To this end we
need to address the full inhomogeneous Fokker-Planck
equation (8) subject to the boundary conditions (9).

Following the procedure of the previous section we de-
compose the hole-distribution gp,x into a spatially homo-
geneous and an inhomogeneous part

gp,x = g0
p + δgp,x, (23)

where the homogeneous part is readily found as6

g0
p = eεp/T

[
1− eV√

2πm∗T 3

∫ p

0

dp′ e−εp′/T
]
e−∆/T .

(24)

The homogeneous distribution (24) gives a contribution
to the backscattering rate (10) that scales linearly with
the length of the wire and dominates at L� `1.
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To find the inhomogeneous solution we return to the
dimensionless variables q and y in Eq. (13) and start out
from the ansatz

δgq,y = ea(y−q)h(q). (25)

This leads us to the differential equation for h

∂2
qh− 2(q + a)∂qh+ 2

(
−1 +

a2

2

)
h = 0, (26)

which for the special values of the parameter, an =
±
√

2(n+ 1) and n = 0, 1, ... is solved by Hermite poly-
nomials with shifted arguments Hn(q± an). Using again
that in the linear response regime δgq,y=0 is antisym-
metric in q and noting that Hn(q) = (−1)nHn(−q), the
general solution to (8) reads

δgq,y =

∞∑
n=0

bn
(
eanyψn(q)− e−anyψn(−q)

)
, (27)

where

ψn(q) =
1√
Nn

e−anqHn(q + an), (28)

and we introduced the normalization constant Nn =√
πan2nn!e2(n+1). Expansion coefficients bn are found

from matching ansatz (27) to the boundary conditions,

θ(q)gq,−Λ + θ(−q)gq,Λ = −eV
2T

eq
2−∆/T (sgn(q)− erf(q)),

(29)

and details of this calculation can be found in Ap-
pendix C. Accounting then for homogeneous and inho-
mogeneous contributions to the distribution function the
backscattering rate reads

ṄR = −2eV

h

(
L√
π`1

+ It (11 +OX)
−1
XI

)
e−∆/T ,

(30)

where we introduced vector I and matrices X, O, respec-
tively, with coefficients

Im = −ψ′m(0)/am, (31)

Xmn = δmn
(
1− e−2anΛ

)
/2, (32)

Omn =

{
cmm +

∫∞
0
dp2 e−p

2−a2mψ2
m(p), m = n

2
a2m−a2n

(
a2
mcmn − a2

ncnm
)
, m 6= n

(33)

and cmn = Imψn(0).
In the inhomogeneous diffusive regime `0 � L �

`1 main contributions to Eq. (30) originate from co-
efficients with large index n � `1/L. This allows
to approximate Hermite polynomials in the eigenfunc-
tions (28) by Airy functions according to23 Hn(z) '

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

numerical solution

inhomogeneous diffusive

long wires

FIG. 4: Length dependence of the interaction-induced cor-
rection to the conductance Eq. (1), found from the backscat-
tering rate of quantum wires `0 � L � `eq. Solid line
shows the result obtained from numerically solving Eqs. (30)-
(33). Asymptotic results for wires much shorter and much
longer than `1, Eqs. (20) and (34) respectively, are indicated
by dashed and dash-dotted lines. The characteristic scaling
δG ∝ L2/3 in the inhomogeneous diffusive regime holds up to
L . 0.4`1, and then crosses over to the result for the homoge-
neous diffusive regime with its linear length dependence and
universal off-set ξ ' 0.275.

√
2π(2n)nn1/6Ai

(√
2n1/6(x−

√
2n)
)
e−

3
2n+
√

2nz. Reas-
suringly, upon this substitution one recovers Eq. (20).

In the opposite limit L � `1 one may approximate
2X ' 11 and thus finds the backscattering rate

ṄR = −2eV

h

(
L√
π`1

+ ξ

)
e−∆/T , (34)

with an universal offset numerically calculated as ξ '
0.275.

To address the crossover regime at arbitrary ratios
L/`1 we numerically evaluated (30). The resulting
backscattering rate leads to a finite temperature correc-
tion to the conductance (1) shown in Fig. 4. We observe

that the characteristic power-law ṄR ∝ L2/3 of the inho-
mogeneous diffusive regime extends up to lengths of the
wire L . 0.4`1. Once the wire length exceeds L & 0.8`1,
the correction follows the linear length dependence of the
homogeneous diffusive regime with the universal off-set
ξ ' 0.275. These features hold for weak as well as strong
interaction, and the peculiar power law dependence of δG
on the wire length is, therefore, characteristic to short
clean quantum wires `0 � L� `eq.

VI. SUMMARY AND DISCUSSION

We have studied the interaction-induced backscatter-
ing rate ṄR in a voltage-biased clean quantum wire, in
which conservation laws suppress relaxation. Our cal-
culations apply for wires in a broad range of lengths
`0 � L� `eq ∝ e∆/T , which are short in the sense that
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equilibration has not fully established, but long enough
to guarantee diffusive motion in momentum space due to
interaction-induced collisions. In these wires, a finite rate
ṄR arises due to the backscattering of mobile holes at the
band bottom performing the random motion of a Brow-
nian particle in momentum space while scattering from
excitations at the Fermi level. Reminiscent to the first
passage problem the dynamics of the hole is described by
an inhomogeneous Fokker-Planck equation.

From solutions of the latter we have derived the wire
length dependence of the interaction-induced correction
to the conductance (1), and found a power law scaling
δG ∝ L2/3 as a characteristic feature of these wires. We
have identified the length scale `0 which separates the
diffusive from the quasi-ballistic regime. The latter has
previously been studied by Lunde et al.10 in the limit
of weak interactions. We confirmed that for weakly in-
teracting electrons backscattering rates in both regimes
match at the crossover scale L ∼ `0, and were able to
generalize the results by Lunde et al. to arbitrary inter-
action strengths.

Our results hold for weakly as well as strongly interact-
ing electrons. They depend on the interaction strength
via the bandwidth of excitations ∆, which sets the ac-
tivation energy e−∆/T , and effective mass m∗ and diffu-
sion constant B, which both define the relevant length
scale of the problem, `1. The activation behavior e−∆/T

dominates the temperature dependence of the backscat-
tering rate and corresponding correction to the conduc-
tance. An additional temperature dependence enters via
the diffusion constant defining the pre-exponential fac-
tor. The diffusion constant has been studied for spin-
polarized electrons at arbitrary interactions6,7,9,20 where
a temperature dependence B ∼ T 5 was found. While
a generalization accounting for spin degree of freedom
and applicable at arbitrary interaction strength is still an
open problem, the strongly interacting limit of a Wigner
crystal has been addressed recently.19 There, a scaling
B ∼ T 3 was found, and a similar result holds at arbi-
trary interaction strength.24
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Appendix A: Orthogonality relations

The inhomogeneous solution to the FPE (8) is ex-
panded in functions ψn(±q) which are eigenfunctions of
the differential operator

D =
1

q
∂q

(
1

2
∂q − q

)
, (A1)

i.e. Dψm(sq) = samψm(sq), with s = ±, and are or-
thogonal with respect to a weight function w(q) to be
determined in the following way. From the eigenvalue
problem it follows that

ψn(sq)Dψm(s′q)− ψm(s′q)Dψn(sq)

= (s′am − san)ψn(sq)ψm(s′q), s, s′ = ±. (A2)

Multiplying both sides with a, yet to be determined, func-
tion w(q), integrating over the entire momentum range
and imposing an orthogonality condition∫ ∞

−∞
dq w(q)ψn(sq)ψm(s′q) = −sδss′δn,m, (A3)

we find the weight function to be determined by the dif-
ferential equation

− 1

2q
∂qw(q) + w(q)

(
1

2q2
− 1

)
= 0, (A4)

resulting in w(q) = qe−q
2

.

In the inhomogeneous diffusive regime the differential
operator of interest reads

D =
1

2q
∂2
q , (A5)

and following the same steps as above one arrives at the
orthogonality relation for Airy-functions∫ ∞

−∞
dq qAi(αq)Ai(βq) = − 1

3α
δ(α− β). (A6)

Appendix B: Details on the inhomogeneous diffusive
regime

We give details on the derivation of the expansion co-
efficients defining the hole distribution function in (15)
and the backscattering rate in the inhomogeneous diffu-
sive regime.

Coefficients b(a) are found from matching (17) to the
boundary condition

θ(q)gq,−Λ + θ(−q)gq,Λ = −e−∆/T eV

2T
sgn(q), (B1)
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Inserting the explicit form of the general solution gq,y
and expressing ex = coshx+ sinhx one finds∫ ∞

0

da
b(a)

(2a)2/3

[
eaΛ Ai((2a)1/3q)− e−aΛ Ai(−(2a)1/3q)

−2Θ(q) sinh(aΛ)
(

Ai((2a)1/3q) + Ai(−(2a)1/3q)
)]

= −e−∆/T eV

2T
sgn(q). (B2)

Coefficients b(a) can then be extracted using the or-
thogonality relation for Airy-functions (A6), i.e. by

multiplying left and right hand side of (B2) with
‘qAi

(
(2a0)1/3q

)
’ where a0 > 0 and integrating over all q.

For the right hand side of (B2) we may further use that

∫ ∞
−∞

dq |q|Ai
(

(2a0)1/3q
)

= −21/3a
−2/3
0 Ai′(0) (B3)

where we used the defining differential equation for
Airy functions, to e.g. calculate α3

∫∞
0
dq qAi(αq) =∫∞

0
dq ∂2

q Ai(αq) = −αAi′(0). We then find

b(a0)ea0Λ

(16a0)1/3
+

∫ ∞
0

da
b(a)

(2a)2/3
sinh(aΛ)F(a, a0) = −21/3 Ai′(0)

a
2/3
0

eV

2T
e−∆/T , (B4)

where

F(a, a0) = 2

∫ ∞
0

dq qAi((2a0)1/3q)
(

Ai
(

(2a)1/3q
)

+ Ai
(
−(2a)1/3q

))
. (B5)

The function F can be further calculated with help of
the identity

[2a− s2a0]

∫ ∞
0

dq qAi
(

(2a)1/3q
)

Ai
(
s(2a0)1/3q

)
= −

[
(2a)1/3 − s(2a0)1/3

]
Ai′(0) Ai(0), (B6)

which again results from using the defining differential
equation for the Airy function to express qAi(αq) =
α−3∂2

q Ai(αq), and gives

F(a, a0) = −Ai′(0) Ai(0)
(2a)4/3 − (2a0)4/3

a2 − a2
0

. (B7)

We thus find from orthogonal projection the integral
equation

β(a0Λ) +
a

2/3
0√
3π

∫ ∞
0

da

a
β(aΛ)

(
1− e−aΛ

) a4/3
0 − a4/3

a2
0 − a2

= 1,

(B8)

where we introduced

b(a) = −22/3Ai′(0)

a1/3

eV

T
e−∆/T e−aΛβ(2aΛ), (B9)

and employed that Ai′(0) Ai(0) = −
(
2
√

3π
)−1

. Rescal-
ing a and a0 by the factor 1/Λ one arrives at the expres-
sion stated in the main text.

Finally, the backscattering rate expressed in dimen-
sionless variables

ṄR =
2T

h

∫ Λ

−Λ

dy (∂qgq,y) |q=0 (B10)

is readily calculated as

ṄR = 28/3 Ai′(0)
T

h

∫ ∞
0

da

a4/3
b(a) sinh(aΛ), (B11)

or expressed in terms of β(a) (see Eq. (B9))

ṄR = −
(
2 Ai′(0)

)2 2eV

h
e−∆/T

∫ ∞
0

da

a5/3
β(aΛ)

(
1− e−aΛ

)
.

(B12)

We may now scale Λ out of the integral and find the
result Eq. (20) stated in the main text, with a numeri-

cal constant ζ = (4/3)2/3

Γ2(1/3)

∫∞
0
daβ(a)

a5/3
(1− e−a), where the

latter involves a solution of the integral equation,

β(a0) + γa
2/3
0

∫ ∞
0

da

a

(
1− e−a

) a4/3 − a4/3
0

a2 − a2
0

β(a) = 1,

(B13)

and γ = 1/
√

3π. Solving (B13) numerically we find
ζ ' 1.25.

Appendix C: Details on the crossover regime

We give details on the derivation of the expansion co-
efficients defining the hole distribution function and the
backscattering rate in the crossover regime.

Coefficients bn entering the general solution (27) are
derived from the boundary conditions discussed in the
main text in a similar way as discussed in the previous
section. Employing the orthogonality relation (A3) for
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the general eigenfunctions and proceeding analogously
as in the inhomogeneous diffusive regime we arrive at
the following equation, generalizing (B8) to the crossover
regime,

βn +
1

2

∞∑
m=0

Onm
(
1− e−2anΛ

)
βm = In. (C1)

Here we introduced (similar to (B9))

bn =
eV

2T
e−∆/T e−anΛβn, (C2)

and vector and matrix elements Im and Omn, respec-
tively, are defined as

In =

∫ ∞
−∞

dq qψm(q) (sgn(q)− erf(q)) , (C3)

Omn = 2

∫ ∞
0

dq qe−q
2

ψm(q) (ψn(q) + ψn(−q)) . (C4)

The above integrals can be evaluated using eigenvalue
equations below (A1). We may express vector elements
e.g. as

Im =
1

am

∫ ∞
−∞

dqLψm(sq) (sgn(q)− erf(q)) , (C5)

with L = qD and D from Eq. (A1), and upon integration
by parts (notice that boundary terms vanish) find

Im = − 1

am

[
(∂qψm(q)− 2qψm(q)) |q=0

−
∫ ∞
−∞

dq√
π
∂q

(
e−q

2

ψm(q)
) ]
, (C6)

as stated in the main text.

In a similar way we calculate integrals defining matrix
elements Omn starting out from

∫ ∞
0

dq qe−q
2

ψm(q)ψn(sq) =
1

am

∫ ∞
0

dq e−q
2

Lψm(q)ψn(sq).

(C7)

Upon partial integration and further algebraic manipu-
lations we arrive at

2

∫ ∞
0

dq qe−q
2

ψm(q)ψn(sq)

=
1

am − san
(sψm(0)ψ′n(0)− ψn(0)ψ′m(0)) , (C8)

which applies for all m, n (m 6= n) if s = − (s = +), and
leads to the result stated in the main text.

Finally, the backscattering rate is found from the gen-
eral expression,

ṄR =
8T

h

∑
n

bn
an
ψ′n(0) sinh(anΛ), (C9)

upon introducing In = ψ′(0)/an and inserting the formal
solution to Eq. (C1),

βn =
∑
m

(
(1 +OX)−1

)
nm

Im, (C10)

with βn defined in Eq. (C2).
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