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We study theoretically the performance of electrically pumped self-organized quantum dots as
a gain material in the mid-IR range at room temperature. We analyze an AlGaAs/InGaAs based
structure composed of dots-in-a-well sandwiched between two quantum wells. We numerically an-
alyze a comprehensive model by combining a many-particle approach for electronic dynamics with
a realistic modeling of the electronic states in the whole structure. We investigate the gain both
for quasi-equilibrium conditions and current injection. Comparing different structures we find that
steady-state gain can only be realized by an efficient extraction process, which prevents an accu-
mulation of electrons in continuum states, that make the available scattering pathways through
the quantum dot active region too fast to sustain inversion. The tradeoff between different ex-
traction/injection pathways is discussed. Comparing the modal gain to a standard quantum-well
structure as used in quantum cascade lasers, our calculations predict reduced threshold current
densities of the quantum dot structure for comparable modal gain. Such a comparable modal gain
can, however, only be achieved for an inhomogeneous broadening of a quantum-dot ensemble that
is close to the lower limit achievable today using self-organized growth.

I. INTRODUCTION

Much research on light emitters in the mid-infrared
range has been focused on quantum cascade lasers
(QCL),1–10 which are complex structures consisting of
hundreds of coupled quantum wells (QWs). QCLs can
produce a high output power and operate up to and above
room temperature.11–16 QWs usually emit light only in-
plane due to the transverse magnetic (TM) polarization
of the intersubband transition. To achieve emission per-
pendicular to the surface from intersubband transitions
one needs to fabricate wavelength specific surface output
couplers.17 Mid-infrared lasers emit in a frequency range
close to thermal energies, so that there may be consid-
erable thermal energy losses. The development of more
efficient emitters is therefore an important problem.3,8

The use of nanostructures with a three dimensional con-
finement leads to discrete level energies and thus limits
the phase space for the interaction with phonons, which
makes nonradiative recombinations much less likely.18–20

For instance, a magnetic field leads to an increased effi-
ciency of QCLs due to the occurrence of quantized elec-
tronic Landau levels.21,22 Also a quantum-dash cascade
structure was proposed.23

Another possibility is to use self-assembled quantum
dots (QDs).24 Experimental results have demonstrated
nonradiative relaxation times that are orders of magni-
tude longer than in QW structures.25–27 There have been
studies of midinfrared photodetectors using QDs,28,29

and optimization issues have been addressed.30 In ad-
dition the room temperature ultraweak absorption of a
single buried semiconductor QD was measured.31 Also
type-II InAsSb/InAs QDs for midinfrared applications
have been investigated 32 and midinfrared photolumines-
cence of epitaxial PbTe/CdTe QDs has been studied.33

QD intersubband transitions are particularly promis-
ing for mid-infrared wavelengths.34 These transitions al-
low light emission normal to the growth direction. Addi-
tionally, they are a basic requirement for the realization
of a QCL consisting of QDs. Steps in this direction in-
clude the demonstration of midinfrared electrolumines-
cence at low temperatures,35–37 and a theoretical pro-
posal of TE-polarized optical gain through a ruby-type
three level scheme.38 While QD midinfrared emission of
devices using additional interband transitions has also
been proposed,39 such a scheme would be only feasible
for weak cavity fields.

Recently, progress in room temperature midinfrared
electroluminescence from QDs was made.40,41 An essen-
tial part of the proposed structure in Ref. 41 is electron
tunneling between QW and QD states. The properties
of related tunneling processes between localized and con-
tinuum states in self-organized QD structures have been
separately investigated.42,43

The present paper presents a theoretical model for a
structure similar to Ref. 41. We assume a heterostruc-
ture consisting of a thin active layer of QDs embedded
in a QW (a so-called DWELL structure), which is, in
turn sandwiched between two QWs. We refer to this
as a QW-QD-QW heterostructure. Because QW-QD-
QW heterostructures include a dots-in-a-well (DWELL)
structure, not only electron tunneling between QW and
QD states but also typical effects of density-dependent
carrier dynamics for DWELL heterostructures are of im-
portance.44 Using electronic eigenstates for the whole
structure as input, we solve the dynamical equations for
the electronic level occupations and for the important co-
herences in the system under investigation. In doing so
we distinguish between intra-QD, intra-QW and QD-QW
electron scattering and calculate the underlying electron-
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phonon and electron-electron scattering processes micro-
scopically following a many-particle approach that in-
cludes, in particular, the effects of the electron-phonon
interactions on the QD states45. Using different models
for the excitation process, we determine the achievable
inversion (gain) in the active medium. Based on the nu-
merical results, we discuss possible optimizations of the
design of AlGaAs/InGaAs QW-QD-QW structures as ac-
tive material for midinfrared lasers. To the best of our
knowledge, a microscopic theoretical investigation and
optimization for the capability of those devices for mid-
infrared laser applications is still missing.
In the present paper we focus on some physical prop-

erties and parameter dependencies associated with the
gain achievable in QDs by current injection. This does
not solve all the numerous technical challenges of a QD
laser device but may contribute some design criteria for
future devices. Furthermore, we present a comparison
between QD-QCL and QW-QCL devices. We focus on
the active material and do not include collector regions
as in QD-QCLs. However, the results of the analysis
done are transferable to periodic structures (such as a
QD-QCL), if small carrier losses in the collector region
are neglected.
This paper is organized as follows. In Sec. II we de-

scribe two QW-QD-QW structures that represent pos-
sible designs for a gain material in the infrared, and
calculate the electronic band lineup and wave functions.
There is a brief review of the semiconductor Bloch equa-
tions and their scattering contributions that we use to
describe the structures under consideration in Sec. III.
In Sec. IVA we investigate the conditions for which in-
version between the ground and degenerate excited states
in the QDs can be achieved, assuming fixed carrier den-
sities in the QWs. The small signal gain is determined
from the population inversion. In Sec. IVB we incor-
porate carrier injection (extraction) into the model and
compare the different structures. In Sec. IVC, we present
numerical results for stronger fields and identify a range
of parameters for which gain in the midinfrared at room
temperature is feasible. Additionally, the tradeoff be-
tween the different injection (extraction) pathways and
the consequences of leakage are discussed in Sec. IVD.
Finally, in Sec. V, we compare a standard QW-QCL de-
sign from Ref. 6 to our QD-QCL alternative to illustrate
the possible potential of QD-QCLs.

II. ELECTRONIC STRUCTURE OF A
QW-QD-QW SYSTEM

We describe here a QW-QD-QW system with a QD
layer (DWELL structure) designed to emit in the midin-
frared and potentially suitable as intersubband-laser gain
medium. Fig. 1 shows a structure designed to rely on
electron-phonon scattering for creating inversion in the
QDs.
For the structure “A” in Fig. 1 we assume a cw field
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FIG. 1. Confinement potential in growth direction (black),
QW wave functions (blue) and optically active states (red) for
structure A, which is optimized for wave-function overlap, see
text. Carrier injection and extraction processes are indicated
by arrows (orange).
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FIG. 2. Confinement potential in growth direction (black),
QW wave functions (blue) and optically active states (red)
for structure B, which includes a barrier between source QW
and top QW. Carrier injection and extraction processes are
indicated by arrows (orange). Note the additional carrier ex-
traction from the top QW states compared to Fig. 1

.

resonant with the transition between the lowest electronic
level |0〉 of the QD and the excited level |1〉, |2〉, which are
degenerate. If a quasi-equilibrium Fermi-Dirac distribu-
tion is maintained in the DWELL structure, a population
inversion for the optically active states in the QD is not
possible in steady-state, so that it is necessary to extract
carriers out of the lowest electronic level of the DWELL
structure. This is achieved by an additional “drain” QW
with electronic band edge ED that is offset roughly by
a LO phonon energy from the lowest electronic level E0
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in the QD, i.e., E0 − ED = ~ωLO + ǫ, where ǫ > 0 is
smaller than a few meV. We keep ǫ in the calculation
because a perfect lineup of the structure is not necessary.
Since the wave-functions of the QD and drain QW states
do not overlap appreciably, the scattering process is slow
compared to a similar scattering process between the ex-
tended states and localized states in the DWELL struc-
ture. We refer to the extended states in the DWELL
structure as “top” QW even though they are not pure
plane waves, but have been orthogonalized to the local-
ized QD levels. In particular, electron-electron scattering
between QD and top QW states for a significant occupa-
tion of the top QW is extremely efficient. If the source
for carriers is the top QW, the relaxation from the QD
state |0〉 to the states of the drain QW will be not effi-
cient enough to extract electrons from level |0〉, and thus
keep the transition |0〉 ↔ |1〉 inverted. Carrier injection
is therefore done in our structure from a second QW, re-
ferred to as “source” QW with a electronic band edge ES

offset by an LO phonon energy from the excited levels |1〉
and |2〉, i.e., ES − E1,2 = ~ωLO − δ, where δ > 0 is also
smaller than a few meV. We further assume in the follow-
ing an energy difference E1,2 − E0 ≫ ~ωLO, which leads
to a so-called phonon bottleneck effect because transi-
tions between the discrete electron states |0〉 ↔ |1〉, |2〉
are inhibited.18,20 To facilitate steady-state population
inversion for the optical active states electron-electron
scattering processes that are assisted by transitions in the
top QW should be suppressed as much as possible. This
is achieved by the energy difference EW − E1,2 ≫ ~ωLO

between the excited QD levels and the band edge EW of
the top QW. With such a band lineup the carrier-density
of the top QW and the electron-electron scattering con-
tribution from this density is kept as small as possible.

With the band lineup described so far, it remains to
optimize the injection and removal of carriers for the op-
eration as a light emitter. To this end, the source and the
drain QW wave functions need to have significant over-
lap with the QD wave functions, but the layers cannot
be too close to each other to avoid electrical breakdown
between the source- and drain-QW.

As a variation of the structure “design” we will also
consider carrier removal from the extended states in the
top QW in addition to the removal process through the
QD states. Removal of carriers is provided through sub-
bands of the surrounding heterostructure. In the struc-
tures analyzed here, the composition and shape of the
electronic structure leads to a top QW with an admix-
ture of the first excited subband of the drain QW, which
realizes an efficient overlap of the drain QW and top QW

with the surrounding heterostructure. A small width of
the source- and drain-QW helps to increase the overlap
further. However, in our investigation we do not include
the design of the surrounding heterostructure, which is
indicated by the broken lines at the left and right side of
the band lineups in Figs. 1 and 2.

We now present in some details the geometry and ma-
terial parameters used for the calculation of the electronic

Band edge of . . . Symbol Energy (meV)

top QW EW +12

source QW ES −55

drain QW ED −230

QD state Symbol Energy (meV)

|1〉, |2〉 E1,2 −85

|0〉 E0 −190

TABLE I. Compilation of the line up of states for the com-
bined QW-QD-QW system measured against the bottom of
the top QW potential.

structures shown in Fig. 1, which incorporates the design
principles discussed so far. We assume an ensemble of
In0.75Ga0.25As QDs on a wetting layer with a thickness
of 1 nm embedded in the GaAs top QW. The geometry of
the QDs is a truncated pyramid with {101} facets. The
QDs have a base of 12× 12 nm and height of 3 nm. For
an overlap-optimized structure (see Fig. 1) the GaAs top
QW has a width of 10 nm and the bottom of the wet-
ting layer has a distance of 3 nm to the source QW. The
In0.12Ga0.88As source QW and the In0.38Ga0.62As drain
QW have both a width of 5 nm. The whole system is
embedded in an Al0.1Ga0.9As barrier.

The electronic structure is calculated by k · p theory46

as described in Appendix A. For computational rea-
sons, we treat the calculation of the three-dimensional
QD states separately from the calculation of the one-
dimensional envelope of the QWs, and orthogonalize the
three-dimensional QW states to describe the whole sys-
tem. For the QD we obtain a ground and two degenerate
excited states. For the source-, the top- and the drain-
QW only one confined subband exists, respectively. The
excited drain-QW subband is mixed with the top QW
confined subband as discussed above. For the combined
system the line up of states are compiled in Table I. The
transition energy between the optical active states of the
QD is E1,2 −E0 = 105 meV. This corresponds to a mid-
infrared wavelength of 11.8µm.

For comparison, structure “B”, shown in Fig. 2 is
introduced, which is less aggressively optimized for
wave-function overlap and incorporates some safeguards
against electrical breakdown and current leakage. To this
end the distance between source- and drain-QW is in-
creased, and an Al0.1Ga0.9As barrier between the source
QW and the top QW is introduced. In addition, the bar-
rier between source QW and top QW allows both QWs
to be addressed separately by an injection and extraction
processes. In particular, in structure B carriers can be
extracted from the drain QW and the top QW, as indi-
cated in Figs. 2 and 3. The barrier has a width of 2 nm
and the total distance between source and drain QW is
14 nm. The wetting layer is 5 nm above the source QW.
To obtain comparable energies, we corrected the compo-
sition of the source QW to In0.13Ga0.87As for the numeri-
cal calculation. All other parameters remain unchanged,
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FIG. 3. Schematic picture of the carrier dynamics in the QW-
QD-QW system. Indicated are: (i) injection/extraction pro-
cess (horizontal orange arrows), (ii) transitions dipole-coupled
to the optical field (red vertical arrow), (iii) scattering pro-
cesses in the DWELL structure (dashed thin arrows,) and (iv)
scattering processes between source/drain QWs and the QD
(thin arrows).

including the carrier injection process. Note, however,
that for structure A we assume carrier extraction from
the drain QW only. In the following, we thus compare the
performance of structures with optimized wave-function
overlap (structure A) and optimized carrier extraction
(structure B).

III. SEMICONDUCTOR BLOCH EQUATIONS

The dynamics of the polarizations and carrier distri-
butions at the single-particle level are calculated in the
framework of the semiconductor Bloch equations for the
reduced single-particle density matrix. We denote in the
following electron levels in the QD with α. For the op-
tical active states of interest one obtains the following
equations of motion for the “intra(electron-)band” po-
larizations pαα′

∂

∂t
pαα′ = − (iωα′α + γd) pαα′ − iΩα′α (nα′ − nα) (1)

where γd is a decay rate for the polarization. For the time
evolution of the electron populations nα one obtains

∂

∂t
nα = i

∑

α′ 6=α

(Ωαα′ pαα′ − Ωα′α pα′α) + Sα (2)

The coherent contributions of the above equations con-
taining the transition frequencies ωα′α and Rabi frequen-
cies Ωαα′ = ~

−1µαα′E (t) where E (t) is the electric field
at the position of the QD.
The term Sα describes the scattering contributions in

the dynamical equations for the electron distributions
and contains the influence of electron-electron Coulomb
Scc
α and electron-phonon Scp

α scattering. Their theoreti-
cal treatment is contained in the following section.
In the semiconductor Bloch equations (1) and (2) also

Hartree-Fock energy renormalizations arise, which can
reach a few meV for highly populated QD states. How-
ever, energy shifts of only a few meV do not affect the

scattering behavior significantly. Moreover, the Hartree-
Fock energy renormalization has the same effect on the
steady-state result of the population inversion as a slight
change of the material composition. An optimization
of the electronic structure including Hartree-Fock en-
ergy renormalizations would require inverse quantum-
engineering as described in Ref. 9, which is beyond the
scope of the present paper. We therefore neglect renor-
malization due to Coulomb interaction. For the calcu-
lation with an optical field in Sec. IVC, we are mainly
interested in the qualitative dependence on the optical
field intensity, which is treated as a parameter in our
calculation. Thus we also neglect Hartree-Fock contribu-
tions that result in and of the Rabi energy, which would
have to be included in a more comprehensive calculation
where the dynamics of the optical field is also included.

A. Scattering contributions

The scattering contribution Sα includes both electron-
electron and electron-phonon scattering. Our treatment
is described in more detail in Appendix B, where the
explicit expressions are given. Here we only summarize
our approach.
While electrons interact with longitudinal acoustic

(LA) and longitudinal optical (LO) phonons, scattering
effects due to acoustic phonons in QDs are estimated to
be very inefficient,47 as long as level spacing of the QDs
is much larger as the typical energy range of the acoustic
phonons coupled to the QDs, i.e., below a few meV in
InGaAs QDs or QD molecules.48,49

Scattering processes involving QD states connect dis-
crete levels so that the influence of level broadening is
much more pronounced than for scattering between con-
tinuum states in QWs. Thus, we follow Ref. 50 and intro-
duce an effective quasi-particle broadening for the scat-
tering contributions. By using an effective quasi-particle
broadening we work with polarons, i.e., quasi-particles
that include the effect of the coupling to phonons, instead
of the “naked” QD electronic levels. We have determined
this broadening from single-pole approximations to the
zero-density QD polaronic spectral functions, see also in
Ref. 50, in the style of Ref. 51 and 52 and neglected the
Coulomb-interaction contribution to the effective quasi-
particle broadening. This is a valid approximation, if the
continuum states, i.e., especially the top QW, are not
appreciably populated by carriers, which is necessary if
gain, i.e., inversion, for the optically active transition is
desired, see Sec. IVA.
A constant level broadening around Γ = 0.5meV, i.e.,

Γ ≈ ~×0.75 ps−1, was calculated for typical InAs QDs.53

Here, we assume the level broadening of a typical InAs
QD, because a precise calculation of the level broadening
of the QD in our QW-QD-QW structure is too demand-
ing with respect to computing time. The QD under in-
vestigation has rather a large level spacing. That is why
the stated value for the broadening tends to result to
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an overestimation. Because a small broadening reduces
the electron-phonon relaxation from the excited to the
ground state of the QD, the gain is reduced by an over-
estimation of the broadening. Thus, to be on the safe side
its better to slightly overestimate rather than to under-
estimate the broadening of the QD states. All in all, the
precise value of Γ does not affect the statements of our
theoretical analysis, but it is important to get its order
of magnitude right.
With the considerations above it turns out that the re-

laxation or scattering for the carrier distributions cannot
easily be computed using Fermi’s Golden Rule arguments
because there is no straightforward energy conservation
for transitions between polarons. Thus, the calculated
constant level broadening Γ referring to the effect of the
electron-phonon interaction on the polaronic spectrum
in the form of complex renormalized energies of a single-
particle QD state λ has to be incorporated into the ex-
plicit scattering expressions by

ǫ̃λ = ǫλ +∆ǫλ − iΓλ (3)

where ∆ǫ is a negligible energy shift (HF correction and
a small correlation contribution). The broadening Γλ of
the level λ is entirely due to correlations. This incor-
poration is done by following Ref. 50 for the derivation
of the electron-phonon and electron-electron scattering.
In contrast to Ref. 50 all coherences are neglected. This
is especially in the case of a small signal gain a valid
approximation. We also assume that only conduction
band states are involved in the scattering process, be-
cause only electrons in the conduction band are injected
and extracted from the system under investigation. The
explicit formula expressions for the electron-phonon and
electron-electron scattering is given in Appendix B.

B. Model for carrier injection (extraction)

We next include a simplified model for current injec-
tion in the structure described above. We assume that
the current injects carriers into the left side of the struc-
ture, i.e., the source QW, and removes them from the
right side, i.e., drain or top QW. For an effective injection
(extraction) of carriers from a QW, energetically close
and local nearby subbands have to be provided from the
surrounding heterostructure.
For the inclusion of the process, we extend the Bloch

equations for the source QW, according to Ref. 54, by a
carrier injection term of the form

dnk

dt

∣∣∣∣
inject

= ΛFk(1− nk) (4)

where the Pauli blocking factor (1 − nk) prevents the
pump from injecting carriers in occupied states. Further,
Λ denotes an injection rate and Fk is a Fermi-Dirac pump
distribution.

The pump distribution model in the form (4) attempts
to capture in a simple form the details of the injec-
tion process. It is based on the assumption that by
the time the injected carriers reach the source QW they
have thermalized by collisions and therefore their k de-
pendence can be described by a quasi-equilibrium pump
distribution Fk(N

F , TF ) with the characteristic carrier
density NF and the characteristic temperature TF as
parameters, which are kept constant. This distribu-
tion is weighted by an injection rate Λ. The tempera-
ture TF entering Fk is taken to be the lattice tempera-
ture. The pump distribution Fk should not be confused
with a Fermi-Dirac distribution in the QW. Note that
we use the injection rate Λ as the independent param-
eter and calculate the steady-state current density via
J = e 1

A

∑
k(dnk/dt)|inject where A is the normalization

area of the quantum well. This expression for the cur-
rent will be used to compare to similar calculations for
quantum well structures in Section V below.
To model the extraction of carriers by transport of car-

riers from the drain or top QW to the right side of the
structure, we extend the Bloch equations for the QWs by
the simple rate equation

dnk

dt

∣∣∣
extract

= −ΛFknk (5)

where nk is the occupation of the QW state k.
With regard to the injection model we should also

briefly discuss changes introduced to the band lineup in a
biased structure. For realistic fields of several 10 kV/cm
along the growth axis one expects an energy shift of a few
meV between nearby QW and QD states. In agreement
with Ref. 55 we neglect these small energy corrections
for the thin QW-QD-QW heterostructure under investi-
gation. For a potential drop of more than about 15 meV
over the active region, the energy difference between the
source QW band bottom and the excited QD level be-
comes too large for efficient carrier injection. In this case
the design of the “cold” structure needs to be changed
such that the bias-induced shift leads to a level lineup
close to the one described in Figs. 1 and 2. In particular,
for a field of 36 kV/cm as chosen in Sec. V the “cold”
structure needs to be changed to a source-QW compo-
sition of In0.19Ga0.81As and a drain-QW composition of
In0.33Ga0.67As to obtain approximately the same level
lineup as described above.

IV. NUMERICAL RESULTS

A. Inversion (gain) for fixed QW carrier-densities

In this section we investigate under which conditions
regarding the carrier densities of the QWs an inversion
between the ground and degenerate excited states in the
QDs is possible. Therefore we investigate the behavior
of the population inversion in the QDs for fixed quasi-
equilibrium distributions in the QWs. Because the car-
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rier densities in the QWs are kept fixed, no injection (re-
moval) processes are included.
In the numerical calculation we start with given QW

carrier densities and an initially empty QD system. Im-
portantly, electron-phonon and electron-electron scatter-
ing described by Eqs. (B1) and (B2) leads to QD-QW
electron scattering as well as intra-QD scattering pro-
cesses (see scattering processes (iii) and (iv) depicted
in Fig. 3). The carrier distributions are evolved until
a steady-state is reached.
For a weak optical field in resonance with the transi-

tion between the lowest and excited states of the QD the
steady-state distributions remain unchanged. The inten-
sity gain for such a weak optical fields is given by

G = 2
ω

c0ε0nb

ND

hRg

µ2

~γd
N (6)

where ~ω = 105meV is the transition energy, nb = 3.4
(GaAs) the background refractive index of the host ma-
terial, Nd = 5× 1010 cm−2 the QD density, hRg ≈ 15 nm
the heights of the active region, µ = 2.5enm the dipole
moment, ~γd = 1meV the polarization dephasing and N
the inversion of the optically active states. The intersub-
band dipole moment µ = 2.5enm is five times larger than
the interband dipole moment for the transition between
the electron and hole ground state, which already has
an appreciable magnitude. Thus, for the same inversion
N , the gain on the intersubband transition is larger than
that on an interband transition in the QD. The choice
of the polarization dephasing of ~γd = 1.0 meV is mo-
tivated by the restrictions that it has to be higher than
intersubband dephasing for the case of unpopulated QD
scattering states and a small carrier density in the QWs
(~γd < 0.1 meV),50 but lower than an interband dephas-
ing with an appreciable population in the QD scattering
states (~γd up to 10 meV).56 We will plot the small sig-
nal gain in addition to the inversion between the optically
active states in the following.
Figure 4 and Fig. 5 shows the population inversion and

gain for the QD transition in structure A as a function of
carrier densities in the top and source QWs. The drain
QW is assumed to be empty, which is a “best case” as-
sumption for carrier extraction from the active region. In
Fig. 4 the lattice temperature is 150K. For an empty top
QW and a negligible carrier density in the source QW
the gain is obviously zero. Up to a source-QW density
of 20× 1010 cm−2 the gain rises steeply, levels off in the
range between 20 × 1010 cm−2 to 40 × 1010 cm−2, and
reaches saturation over 40 × 1010 cm−2. An increasing
carrier density in the top QW for a fixed carrier density
in the source QW leads to a rapid decrease in the gain.
For a carrier density of approximately 2× 1010 cm−2 no
gain remains, and for higher densities in the top QW only
absorption exists.
Figure 5 depicts the results of a calculation analogous

to Fig. 4, but for a lattice temperature of 300K. The qual-
itative analysis remains the same, but the gradient of the
gain is lower for increasing source-QW and top-QW car-
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QW. The lattice temperature is 150K.
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FIG. 5. Same as Fig. 4 for lattice temperature 300K.

rier densities. In particular, the gain reaches saturation
for higher carrier densities of the source QW.

We now repeat these calculations for structure B. Fig. 6
and Fig. 7 show the results for lattice temperatures of
150K and 300K, respectively. The overall dependence
of the gain on the source-QW and top-QW densities for
structure B is similar to that of structure A. However, the
saturated gain is clearly smaller and the dependence of
the gain on the densities in the source QW and top QW
is more pronounced. In particular, absorption occurs
already for top-QW carrier densities below 1010 cm−2,
whereas for structure A there is still gain in this top-QW
density range.
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FIG. 6. Population inversion and gain for the QD transitions
in structure B versus carrier densities in the top and source
QW. The lattice temperature is 150 K.
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FIG. 7. Same as Fig. 6 for lattice temperature of 300K.

B. Inversion (gain) with carrier injection

The above numerical results show that a carrier popu-
lation in the top QW, i.e., the QD scattering states, has
a detrimental effect on the gain. Further, it is shown in
the present section that an accumulation of carriers in
the top QW precludes a steady-state inversion (gain) in
structures A and B, if one includes a model for carrier in-
jection. To reach a steady-state gain one therefore has to
counteract the piling up of population in the top QW. We
propose to achieve this by removing carriers from these
states directly as described in Sec. II, and analyze the
dynamics with the additional carrier extraction in some
detail. We will do these calculations for structure B be-
cause in that structure source and top QW states are
separated by a barrier so that source and top QW can
be better addressed separately by an injection/extraction
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FIG. 8. Population inversion and gain for the QD transitions
versus injection rate for structure A (gray lines) and struc-
ture B (black lines). The lattice temperature is 150 K (solid
line) and 300K (dashed line).

process. For comparison we will also analyze the behavior
of structure A with carrier injection, but we will always
assume only extraction from the drain QW for structure
A.
The basic dynamical equations are Eqs. (B1) and (B2)

for electron-phonon and electron-electron scattering, but
now including carrier injection terms (4) and (5). In
particular, the processes (i), (iii) and (iv) depicted in
Fig. 3 are now considered. The pump distribution Fk of
the injection (extraction) process depends on the partic-
ular device in which the QW-QD-QW structure is em-
bedded. Unless otherwise specified, we assume NF =
5 × 1010 cm−2 and lattice temperatures of TF = 300K
and TF = 150K, respectively. Note that in addition to
intra-QD electron scattering processes and QD-QW elec-
tron scattering processes, also intra-QW electron scatter-
ing processes occur. All the following numerical results
are again computed starting from an initially empty QW
and QD system and evolve the carrier distribution until
a steady-state is reached.
We first investigate whether a steady-state inversion,

i.e., gain, can be achieved for structure A or B. Figure 8
plots the population inversion and gain for the QD tran-
sition versus the injection rate for structure A and B.
For structure A the inversion rises with increasing injec-
tion rates but saturates at negative values for a lattice
temperatures of 300K and for 150K. The inversion for a
lattice temperature of 150K exceeds that for 300K at all
injection rates. This can be expected from the increased
efficiency of electron-phonon relaxation between the QD
states at higher temperatures, which works against an
inversion on the QD intersubband transition. However,
the difference becomes smaller with increasing injection
rate. For structure B the inversion also rises with increas-
ing injection rate and reach a saturation value, which is
positive: For injection rates above 1.2 ps−1 a saturation
value of the inversion around 0.2 is reached.
For a more detailed analysis of these results, in Fig. 9
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FIG. 9. Population inversion and gain for the QD transition
versus time for structure A. The full calculation including
electron-electron and electron phonon scattering (black lines)
is compared with the result including only electron-phonon
scattering (gray lines). The lattice temperature is 150K (solid
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0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4

In
v
e

rs
io

n
 

 
 

 

Time (ns) 

G
a

in
 (1

0
3 c

m
-3)

FIG. 10. Same as Fig. 9 for structure B.

and Fig. 10 we look at the time dependence of the popu-
lation inversion for a fixed injection rate of Λ = 0.5 ps−1

for structure A and B, respectively. A calculation includ-
ing both electron-phonon and electron-electron scatter-
ing (“ep+ee”) is compared to a calculation including only
electron-phonon scattering (“ep”). Both calculations are
done for lattice temperatures of 150K and 300K.
Fig. 9 plots the population inversion for the QD transi-

tion versus time for structure A. As long as the top-QW
states are essentially empty, the ep+ee and the ep re-
sults are very similar. After a few tens of picoseconds the
top-QW states are significantly populated, and electron-
electron scattering becomes more efficient for the dy-
namics. As already discussed in Sec. IVA top-QW as-
sisted QD electron relaxation becomes more important.
Further, source-QW assisted QD electron capture and
source-QW assisted QD electron relaxation contribute
to different results for the inversion. In addition, the
electron-electron scattering leads to a faster and more ho-

-0.3

-0.2

-0.1

0

0.1

0.2

-3

-2

-1

0

1

2

0 0.5 1 1.5

In
v
e

rs
io

n
 

 
 

 

Injection rate (ps-1)  

G
a

in
 (1

0
3 c

m
-3)

FIG. 11. Population inversion and gain for the QD transi-
tions versus injection rate for structure B. The carrier density
refering the pump distribution is NF = 6× 1010 cm−2 (solid
line), NF = 5×1010 cm−2 (dashes line), NF = 4×1010 cm−2

(dot-dashed line) and N
F = 3×1010 cm−2 (dotted line). The

lattice temperature is 150K.

mogeneous redistribution of carriers in the QWs. Taken
together, very different electronic distributions (with dif-
ferent electron densities) are reached after a few ns. The
net effect is that the achievable inversionN is negative for
the ep+ee and positive for the ep calculation in steady-
state.

Figure 10 shows the same plot for structure B. The
ep calculation for structure B is similar to that of struc-
ture A shown in Fig. 9, with structure A leading to higher
gain (inversion). The important difference is between the
“full”, namely, ep+ee, calculations. Here, the initial dy-
namics over a few tens of ps is similar to that of structure
A, but much different when the carrier density rises and
the influence of electron-electron scattering becomes pro-
nounced. Since the extraction from drain and top QW

states limits the carrier density in the drain and top QW,
the inversion N remains positive for all times and leads
to a positive gain in steady state. As already mentioned
in Sec. IVA above, structure A performs better for fixed
carrier densities in the source QW. But if a carrier injec-
tion model is included, only in structure B (with carrier
extraction from the top-QW states) steady-state gain can
be realized. We will therefore focus on structure B in the
following.

We also investigate how the carrier density of the pump
distribution NF affects the results. As already men-
tioned, we treat the pump distribution as a parameter.
Fig. 11 shows the population inversion and gain for the
QD transitions versus injection rate for structure B for
different carrier densities NF and a lattice temperature
of 150K. More precisely, we choose NF = 6×1010 cm−2,
NF = 5 × 1010 cm−2, NF = 4 × 1010 cm−2 and
NF = 3 × 1010 cm−2 for a comparison. For larger NF ,
lower injection rates are necessary to achieve similar gain
values. However, apart from that, the NF has no deci-
sive influence on the gain “dynamics”. Thus the variation
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FIG. 12. Population inversion and gain for the QD states
versus field intensity for the structure B. Lattice temperatures
are 150 K (solid line) and 300 K (dashed line).

of injection rate allows one to determine the important
characteristics of the QW-QD-QW active region.

C. Strong-signal effects

In this section we go beyond small-signal gain results
by including an externally controlled optical field. The
optical field may be the field in an optical amplifier or in a
laser cavity. We run a dynamical calculation for the den-
sities and the optical polarizations based on the semicon-
ductor Bloch equations, i.e., (1) and (2). Again electron-
phonon and electron-electron scattering is included for
the whole system under investigation, in particular, the
processes (i)-(iv) depicted in Fig. 3 contribute. We are
interested in the dependence of the steady-state inversion
N , or equivalently the gain G, see Eq. (6), on the optical
field intensity, and we analyze exclusively structure B.
The inversion and gain achievable with structure B ver-

sus field intensity for a lattice temperature of 300K and
150K are depicted in Fig. 12. We assumed a fixed in-
jection rate of 0.5 ps−1 with NF = 5 × 1010 cm−2 for
the pump distribution. The weak field result is recov-
ered for small field intensities below 10−4 MW/cm

2
, as

it should be. For increasing field intensity the inversion
and the gain decrease, because the optical field leads to
a stimulated recombination of carriers and reduces the
inversion. For field intensities between 10−4 MW/cm

2

and 10−1 MW/cm
2
the inversion, i.e. gain, is still pos-

itive, but decreases rapidly. For field intensities above
10−1 MW/cm

2
no significant inversion or gain is ob-

served. While for weak field intensities the lower lat-
tice temperatures has the higher gain, this difference
is strongly reduced with increasing intensity. Above
10−2MW/cm−2 the gain curves for the two tempera-
tures are almost indistinguishable, with the gain in the
high temperature case being even slightly higher. This
can be explained as follows: For small field intensities a

lower lattice temperature leads to a higher carrier den-
sity at the band edge of the source QW, and thus to a
higher steady-state population of the excited QD states
and consequently a higher inversion. For higher field in-
tensities, the scattering between the band edge of the
source QW and the excited QD states needs to be more
efficient to sustain to the same inversion, so that now the
scattering efficiency also plays a more important role, in
addition to the population of the QW states. The scat-
tering efficiency is higher for higher lattice temperatures,
because electron-phonon scattering is more efficient due
to polaronic state broadening effects. This leads to very
similar gain for higher field intensities for different lattice
temperatures.
These results with a fixed optical field intensity can

be used as a figure of merit for the performance of the
QW-QD-QW structure as a laser gain material: If the
cavity losses of a particular laser structure are known,
this determines the saturated gain in steady-state. The
extracted values are for the saturated gain, i.e., the gain
of the active region and not the modal gain for a specific
device, see Sec. V. However, from the results of Fig. 12
an estimate of the intensity of the optical field in the
cavity is possible, for instance, for an injection rate of
0.5 ps−1.

D. Dependence on nonuniform injection
(extraction) rates

So far we have assumed equal injection (extraction)
rates for all three QWs. In this section we investigate
the dependence of the gain for nonuniform injection (ex-
traction) rates for structure B. Therefore we distinguish
between the injection into the source QW, Λs, the QW
extraction from the drain QW, Λd, and the extraction
from the top QW, Λt. As analyzed in Sec. IVB, with in-
creasing injection the gain reaches a positive saturation
value. At the onset of saturation, i.e. for injection (ex-
traction) rates of Λs = Λd = Λt = 1.0 ps−1, the inversion
is approximately 0.18 as shown in Fig. 8. In the following
we vary the different injection (extraction) rates around
this configuration.
We start by changing Λs and Λd together and keep

Λt = 1.0 ps−1 constant. The numerical calculation is
done as already described in Sec. IVB and the carrier
distributions are evolved until a steady-state is reached.
The result is shown in Fig. 13 for a lattice temperature of
150K and 300K. The inversion curve rises with increas-
ing injection (extraction) rates and goes into saturation
around 0.1 ps−1, which is below the values found for equal
rates. Thus, it is possible to reduce the injection (extrac-
tion) rate into the source and drain QW, if the extraction
rate of the top QW is kept constant at 1 ps−1. In partic-
ular, we obtain positive gain for all injection (extraction)
rates.
In the next step we vary Λt and keep Λs = Λd =

1.0 ps−1 constant. The result is also depicted in Fig. 13
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tions versus injection rate into the source and equal extraction
rate from the drain QW respectively (solid line) and extrac-
tion rate from the top QW (dashed line). The lattice temper-
ature is 150 K (black) and 300 K (gray).
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FIG. 14. Population inversion (and gain) for the QD transi-
tions versus injection rate into the source QW (solid line) and
extraction rate from the drain QW (dashed line). The lattice
temperature is 300 K.

for a lattice temperature of 150K and 300K. Gain satura-
tion is reached around 1.0 ps−1, which was already found
in Sec. IVB. In particular, transparency is reached at
similar rates in the two cases. This suggests that the
qualitative behavior in figure 8 is dominated by the ex-
traction rate of the top QW.
Finally we vary the ratio between Λs and Λd, while

keeping Λt constant. The results are depicted in Fig. 14
for a lattice temperature of 300K. For 150K the results
are qualitatively similar. If only Λs is varied, the satu-
ration is reached around 0.1 ps−1 and the gain remains
positive for all injection rates. If only Λd is changed,
the inversion is more sensitive to this change (note the
logarithmic plot), but still reaches comparable values al-

ready around an extraction rate of 0.1 ps−1. Only for a
constant Λs = 1.0 ps−1 and a very low extraction rate
the gain can be negative, because the carriers are not
extracted sufficiently fast from the drain QW. Note that
the gain remains positive for all other combinations of
these two rates. To sum up, the dependence of the gain
on Λs and Λd is similar, and starting from an equal in-
jection (extraction) rate Λ = 1.0 ps−1 the gain is robust
against a reduction of Λs or Λd.
For a QCL design it might be important to know the

ratio between top and drain QW carrier extraction. A
calculation of this ratio in the framework of our model
shows that leakage through top QW extraction gener-
ally stays around five percent. To avoid a reduction of
differential quantum efficiency in a QD based QCL the
collector region of the QCL (see section V) should sup-
port the relaxation of the extracted top QW carriers into
the following source QW.

V. COMPARISON BETWEEN A QD- AND
QW-QCL

In our investigation of AlGaAs/InGaAs QW-QD-QW
structures as active material for midinfrared lasers, the
design of the surrounding heterostructures (e.g. collector
region) has not been taken into account, viz., we do not
investigate a device model of a QD-QCL. However, the
results of the analysis done are transferable to a periodic
structure (like a QD-QCL). For that purpose a collector
region between the drain QW and the source QW has
to be added. In this region the carriers from the top
and drain QW are collected and injected into the subse-
quent source QW. We assume that all carriers extracted
from the precedent top and drain QWs are injected into
the subsequent source QW, i.e. carrier losses in the col-
lector region are neglected. Under this assumption the
steady-state current density J through the QD-QCL de-
vice can be determined as described in Sec. III B. In the
following we compare our results to those of a QW-QCL
investigated in Ref. 6. Therefore we choose an analogous
confinement factor of Γcon = 0.42 and a similar device pe-
riodicity of 50 nm, which corresponds to a field around
36 kV/cm for our structure. The small-signal modal gain
GM is given by

GM = Γcon2
ω

c0ε0nb

ΓinhND

LP

µ2

~γd
N (7)

where LP = 50 nm is the periodicity length of the struc-
ture. The other parameters are the same as in Sec. IVA,
see Eq. (6)). Here, we have also included an inhomo-
geneous broadening Γinh of the QD ensemble. While
the polarization dephasing determines the homogeneous
broadening, the inhomogeneous broadening acts as an
effective reduction of the density ND of QDs that are
resonant with the optical field.
The carrier distributions for variable uniform injection

rates are evolved until a steady-state is reached and the
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FIG. 15. Modal gain versus current density for 150 K (black
dots) and 300 K (gray dots) without inhomogeneous broad-
ening.

steady-state injection current density into the source QW
and the steady-state modal gain (calculated from the in-
version N) is determined. In Fig. 15 the modal gain
versus current density for different injection rates is plot-
ted for a lattice temperature of 150 K and 300 K with-
out inhomogeneous broadening. Qualitatively, a higher
current density leads to a higher modal gain. For a
lattice temperature of 300 K, a higher current density
is needed to obtain the same modal gain. In partic-
ular, for a lattice temperature of 150 K and an injec-
tion rate of Λ = 1.0 ps−1, a steady-state current density
of J = 180A cm−2 and an inversion close to satura-
tion of N= 0.17 is reached. For a lattice temperature
of 300 K the same inversion is reached for an injection
rate of Λ = 1 ps−1 and a steady-state current density of
J = 220A cm−2.

In Fig. 16 the modal gain versus current density for dif-
ferent injection rates is plotted for lattice temperatures
of 150 K and 300 K. The inhomogeneous broadening is
included via a Gaussian profile with FWHM of 10 meV,
15 meV, 25 meV and 50 meV. The total loss line α is cho-
sen in agreement with Ref. 6 as α = 30 cm−1. It is a sum-
mation of the mirror and waveguide losses. An inhomo-
geneous broadening with a FWHM smaller than 25 meV
is necessary to overcome the total losses α. For an in-
homogeneous broadening with FWHM between 10 meV
and 25 meV and a lattice temperature of 150 K a thresh-
old current density around J = 140A cm−2 and for a
lattice temperature of 300 K a threshold current density
around J = 200A cm−2 is needed. In comparison to the
results obtained for a QW-QCL structure investigated in
Ref. 6 (their Fig. 14), which are displayed in the inset of
Fig. 16, the threshold current density is approximately
50 times lower in our QD-QCL structure. However, a
comparable gain can be only achieved for an inhomoge-
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FIG. 16. Modal gain versus current density for 150 K (black)
and 300 K (gray). The FWHM of the inhomogeneous broad-
ening is 10 meV (dots), 15 meV (rectangles), 25 meV (dia-
monds), 50 meV (triangles). The black line is the total loss
line. Inset: Comparison of modal gain versus current density
between the QD model of this paper and a QW-QCL from
Ref. 6. For the QD model, we replot the data for 150 K (black
line) and 300 K (gray line) with a broadening of 15 meV. For
the QW-QCL the data for 200 K (black rectangles) and 300 K
(gray rectangles) are taken from Fig. 14 of Ref. 6.

neous broadening of the QD ensemble that is close to
what is achievable by self-organized growth at present.
More recent experimental results for QW-QCL devices
reach threshold current densities of about 1 kA cm−2. In
particular, in Ref. 57 a threshold current density as low as
810Acm−2 has been measured for a device with a smaller
total loss and a larger confinement factor than assumed
in our calculation. A direct comparison to these more
recent experimental devices leads to threshold reduction
of roughly a factor of 5.

VI. CONCLUSION

In conclusion, we presented a microscopic calculation
for the gain arising from intersubband transitions in QDs
in the mid-infrared range. In order to provide a realis-
tic description of how inversion on an electronic inter-
subband transition in QDs can be achieved, we assumed
that a QD layer was sandwiched between a source and
a drain QW, and we modeled the carrier injection and
extraction into the QWs, respectively. We included a re-
alistic description of the QD electronic structure and a
microscopic treatment of electron-phonon and electron-
electron scattering. We analyzed two structures, which
differed mainly in a separation of the source QW from the
QD and top QW. It was found that substantial gain can
only be achieved if one allows for direct carrier extraction
from the scattering continuum of the QDs, which is only
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possible if the source QW is separated from the QD and
drain as well as the top QW. Only in this case the scat-
tering states above the QD do not become substantially
occupied by the injection. If the population of the scat-
tering states is too large, these electrons act as scatter-
ing partners for electrons in the localized QD states, and
lead to a more efficient relaxation towards the QD ground
state, thus decreasing the inversion in the QD. For the
optimized structure significant gain is found in the small
signal limit as well as beyond the small signal limit up to
0.1MW/cm

2
. For higher field intensities the gain of the

QD intersubband transition is depleted. The dependence
of the gain versus field intensity can be used as a figure
of merit for the performance as gain material in a laser.
In addition, the tradeoff between the different injection
(extraction) pathways was analyzed and potential leak-
age pathways were discussed. We found that the rates
are dominated by the extraction rate of the top QW and
the ratio between top and drain QW carrier extraction is
around five percent. Finally, we compared our QD-QCL
to a standard QW-QCL device as analyzed in Ref. 6 and
more recent experimental results.57 The threshold cur-
rent densities predicted for the QD-QCL structure are
reduced in comparison to QW-based designs, but a com-
parable modal gain for the QW- and QD-QCL structure
is possible only for an inhomogeneous broadening of the
QD ensemble that is close to what is achievable today.
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Appendix A: Calculation of the electronic structure
and the Coulomb- or carrier-phonon-scattering

matrix-elements

The electronic structure consisting of conduction-band
QW and QD states is calculated by k·p theory. We calcu-
lated the one-dimensional envelopes of the QWs ξbc (z)
and the three-dimensional QD states Ψbc

m (x, y, z) in a
single-band approximation using the software package in
Ref. 46. The values for material parameters of AlGaAs
and InGaAs compounds are taken from Ref. 58. This
approach cannot handle the whole system in one “box,”
which would yield localized and delocalized eigenfunc-
tions that are orthogonal to each other. Instead, we ex-
tend the one-dimensional envelopes of the QWs to three-
dimensional QW states

Ψbc
k,φ (x, y, z) = ξbc (z) ξk,φ (x, y) (A1)

assuming a parabolic conduction band with plane waves
ξk,φ (x, y) as in-plane functions and φ-independent energy

values for the QW states Ψbc
k,φ. To describe the combined

system we orthogonalize the QW states to the QD states
with

Ψ⊥,bc
k,φ (~r) =

1

Nk

Ψbc
k,φ(~r)

−
1

Nk

∑

m

Ψbc
m(~r)

∫
d3r′Ψbc∗

m (~r′)Ψbc
k,φ(~r

′)

(A2)

where N~k
is a normalization constant. The outcome of

this are localized and delocalized eigenfunctions that are
orthogonal to each other.59

For the following explanations its useful to simplify
the notation of the band index. Here, we investigate a
QD d of the ensemble with M e electron states embedded
in a QW structure consisting of a source-QW S, a top-
QW W and a drain-QW D. Especially, in a single-band
approximation for the conduction band c where all elec-
tron states are spin degenerate, every state in the QD

can be labeled by λ = (b,~k = m, s) where b = (d,c)
is a generalized band index, m ∈ {1, . . . ,M e} is a QD
state index and s ∈ {↑, ↓} is the spin index. States

in the QWs are labeled by λ = (b,~k = ~k‖, s) where
b ∈ {(S,c), (W,c), (D,c)} is a generalized band index for
the source-, top- and drain-QW. Thus we introduce the

notation λ1 with λ1 = (b1, ~k1, s1) for all states. With this

unified index λ1 = (b1, ~k1, s1) a simplified notation of the
carrier-phonon interaction matrix-elements Mλ2,λ1

and

the carrier-carrier interaction matrix-elementsWλ1λ2

λ3λ4
fol-

lows.
The electron-electron and electron-phonon scattering

contributions are gathered in appendix B. Here, we are
concerned with the computation of Mλ2,λ1

and Wλ1λ2

λ3λ4
.

The carrier-carrier interaction matrix-elements are cal-
culated using

Wλ1,λ3

λ2,λ4
=

1

V

∑

~q

w~qI
λ1

λ2
(~q)Iλ3

λ4
(−~q) (A3)

where

Iλ1

λ2
(~q) =

∫
d3~r Ψ⋆

λ1
(~r) ei~q~r Ψλ2

(~r) (A4)

Iλ1

λ2
(−~q) =

∫
d3~r Ψ⋆

λ1
(~r) e−i~q~r Ψλ2

(~r) (A5)

In the numerical implementation of the electron-electron

scattering, the Coulomb-matrix elements Wλ1,λ3

λ2,λ4
includ-

ing the integrals Iλ1

λ2
are part of an integral-kernel expres-

sion Iel(k1, k2, k3, k4), which is independent of the angle

φ of ~k‖. For the calculation of Iel, ~q has cylindrical coor-
dinates, because they are well suited for the evaluation
of our QW system with embedded QD states.
For QD-QD, QW-QD and QD-QW integrals Iλ1

λ2
(~q) are

calculated numerically because the wave-function over-
laps are finite in all three dimensions. QW-QW inte-
grals Iλ1

λ2
(~q) has to be calculated semi-analytically sim-

ilar to Ref. 60, because the integral components related
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to the in-plane functions resulting in δ-functions which

has to be included into Wλ1,λ3

λ2,λ4
or Iel as analytical expres-

sions. The Coulombmatrix Wλ1,λ3

λ2,λ4
has to be interpreted

by an distinction between different combinations of QW
and QD states. More precisely, we distinguish between
intra-QW scattering (4 QW states), QW-assisted QD
capture/emission (3 QW states), QW-assisted QD scat-
tering (2 QW states paired), pure QD-QW scattering (2
QW states unpaired), QD-assisted QD capture/emission
(3 QD states) and intra-QD scattering (4 QD states).

Finally, the Coulombmatrix Wλ1,λ3

λ2,λ4
is included into the

electron-electron scattering integral-kernel Iel where all

integrals over the φ’s, i.e. ~k‖ angles, are evaluated.

In the numerical implementation of the electron-
phonon scattering, the carrier-phonon interaction
matrix-elementsMλ2,λ1

are also part of an integral-kernel
expression Iph (k1, k2), which is independent of the an-

gle φ of ~k‖. Especially, the electron-phonon scattering
integral-kernel Iph contains the expression

∑

~q

|Mλ2,λ1
(~q)|

2
=

1

V

∑

~q

M2
LO

~q2
Iλ2

λ1
(~q) Iλ1

λ2
(−~q) (A6)

whereMLO is the prefactor of the Froehlich Hamiltonian.
We evaluated Iph analog to Iel, because the expressions in
Iph resulting from Equ. (A6) can be treated comparable
to the expressions in Iel resulting from Eq. (A3). For

the carrier-phonon interaction matrix-elements Mλ2,λ1

we can distinguish between intra-QW scattering (2 QW
states), phonon-assisted QD capture/emission (1 QW
state) and intra-QD scattering (2 QD states).

Appendix B: Scattering contributions

We calculate the electron densities nλ1
for the whole

system under investigation dynamically. Thus, electron-
phonon and electron-electron scattering terms includ-
ing both QW- and QD-states. For the analysis of the
scattering contributions we distinguish between intra-
QW electron scattering, intra-QD electron scattering and
QD-QW scattering processes, but summarize the ex-
plicit expressions with an unified index. More precisely,
we refer to intra-QW electron-electron and electron-
phonon scattering as intra-QW electron scattering pro-
cesses and to intra-QD electron-electron and electron-
phonon scattering as intra-QD electron scattering pro-
cesses. Further, we summarize QW-, QD-, or phonon-
assisted QD electron capture/emission, QW-assisted QD-
scattering and pure QD-QW scattering and refer to them
as QD-QW electron scattering processes. However, for
the explicit scattering contributions we use our unified

index λ1 = (b1, ~k1, s1) as introduced in appendix A.
A simplified notation of the carrier-phonon interaction
matrix-elements Mλ2,λ1

and the carrier-carrier interac-

tion matrix-elements Wλ1λ2

λ3λ4
follows.

The derivation of the scattering contributions is described in Ref. 50. In contrast to Ref. 50 all coherences are
neglected and we assume that only conduction band states are involved in the scattering process. With a generalized
notation nλ1

for the electron densities we obtain for scattering processes due to the carrier-phonon interaction in
Markov approximation

Scp
λ1

=
2π

~

∑

λ2


∑

~q

|Mλ2,λ1
(~q)|

2








[1− nλ1
(t)]nλ2

(t) (1 +N) ĝ
(
−ε̃λ2

+ ε̃∗λ1
+ ~ωLO

)

+ [1− nλ1
(t)]nλ2

(t) N ĝ
(
−ε̃λ2

+ ε̃∗λ1
− ~ωLO

)

−nλ1
(t) [1− nλ2

(t)]N ĝ
(
−ε̃λ2

+ ε̃∗λ1
+ ~ωLO

)

−nλ1
(t) [1− nλ2

(t)] (1 +N) ĝ
(
−ε̃λ2

+ ε̃∗λ1
− ~ωLO

)





(B1)

where g (z) = i
πz

and ε̃λ1
= ελ1

+∆ε− iΓ can be understood as complex single-particle energy with an energy shift
∆ε and a damping Γ, i.e., broadening in energy, reflecting a quasi-particle lifetime. This broadening is important for
the discrete levels of the QD and includes polaronic effects.
Further we evaluated an expression for scattering processes due to carrier-carrier interaction as described in Ref.

50. In contrast to Ref. 50 again all coherences are neglected and we assume that only conduction band states are
involved in the scattering process. We obtain for the carrier-carrier interaction in Markov approximation

Scc
λ1

=
2π

~

∑

λ2,λ3,λ4

Wλ1λ2

λ3λ4

(
W ∗,λ1λ2

λ3λ4
−W ∗,λ1λ4

λ3λ2

){
nλ1

(t) [1− nλ2
(t)]nλ3

(t) [1− nλ4
(t)]

− [1− nλ1
(t)]nλ2

(t) [1− nλ3
(t)]nλ4

(t)

}
ĝ
(
ε̃∗λ1

− ε̃λ2
+ ε̃∗λ3

− ε̃λ4

)

(B2)
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