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SmB6 has been predicted to be a strong topological Kondo insulator and experimentally it has
been confirmed that at low temperatures the electrical conductivity only takes place at the surfaces
of the crystal. We study the temperature and magnetic field dependence of the NMR Knight
shift and relaxation rate arising from the topological conduction states. For the clean surface the
Landau quantization of the surface states gives rise to highly degenerate discrete levels for which the
Knight shift is proportional to the magnetic field B and inversely proportional to the temperature
T . The relaxation rate, 1/T1, is not Korringa-like. For the more realistic case of a surface with
a low concentration of defects (dirty limit) the scattering of the electrons leads to a broadening
of the Landau levels and hence to a finite density of states. The mildly dirty surface case leads
to a T -independent Knight shift proportional to B and a Korringa-like 1/T1 at low T . The wave
functions of the surface states are expected to fall off exponentially with distance from the surface
giving rise to a superposition of relaxation times, i.e. a stretched exponential. It is questionable
that the experimental 11B Knight shift and relaxation rate arise from the surface states of the
TKI. An alternative explanation is that the bulk susceptibility and the 11B NMR properties are the
consequence of the in-gap bulk states originating from magnetic exciton bound states proposed by
Riseborough [Phys. Rev. B 68, 235213 (2003)].

PACS numbers: 71.27.+a, 74.50.+r, 72.15.Qm, 75.20.Hr

I. INTRODUCTION

Kondo insulators are stoichiometric compounds with
small-gap semiconducting properties.1,2 Most are non-
magnetic with a Van Vleck-like low-temperature suscep-
tibility and a low-T resistivity and electronic specific heat
following an exponential activation law consistent with a
gap in the density of states. Kondo insulators are not per-
fect semiconductors, because the gap is frequently only a
pseudogap and/or there are intrinsic in-gap states with
a large magnetic response.

SmB6 is a Kondo insulator with a small gap originat-
ing from the hybridization between a narrow 4f band and
broad conduction bands. At ambient pressure, SmB6 is a
homogeneously intermediate valence material of valence
∼2.7 with a ratio of the 4f6 to 4f55d configurations of
about 3:7.3,4 The indirect gap, determined from the re-
sistivity, is approximately 54 K.5 There is evidence for
intrinsic “in-gap” bound states from the T dependence of
the optical transmission and reflectivity through films,6,7

Raman scattering,8 neutron scattering experiments,9,10

low-T specific heat,11 susceptibility12 and NMR.13–15 In
earlier days the “in-gap” states have been attributed to
magnetic excitations (exciton-like bound states) due to
AF correlations.16 The “in-gap” states are very sensi-
tive to an external magnetic field.15 Remarkable is also
the saturation of the resistivity below 4K as the temper-
ature is reduced, indicating that at very low T SmB6

is not compatible with the picture of a semiconduc-
tor/insulator. The “in-gap” states in the susceptibility
emerge at a higher temperature (∼ 20 K) than the tem-
perature at which the low T resistivity saturates. The
gap of SmB6 is also extremely sensitive to pressure.5,17

Time-reversal invariant band insulators can be classi-

fied by the topological structure of their ground state
wave function.18–21 In these “topological insulators” a
strong spin-orbit interaction leads to a ground state
that is topologically distinct from vacuum and gives rise
to gapless surface excitations. Examples for quantum
spin Hall insulators are graphene and HgTe/CdTe quan-
tum well structures, and for 3D topological insulators
Bi1−xSbx, Bi2Se3 and Bi2Te3 (see Ref. 21). Dzero et

al.
22 showed that Kondo insulators can also be topologi-

cally classified. Kramers ions with 4f -states have a nat-
urally strong spin-orbit coupling and are states with odd
parity under inversion. Through the hybridization the
strong spin-orbit interaction is embedded as well into
the conduction band. SmB6 has a simple cubic struc-
ture and been postulated as a candidate for a strong
topological Kondo insulator (TKI)22–25 (see also Refs.
26–28). For Kamers doublet ions intermediate valence is
required for a strong TKI.22,23 According to Raman scat-
tering measurements,8 specific heat data,11 band struc-
ture calculations24 and the analogy to CeB6, the ground
state of bulk SmB6 is a Γ8 quartet, which further favors
a strong TKI.24,29 The symmetry for the surface states is
tetragonal, so that the surface ground state corresponds
to a doublet (two Kramers states built from the Γ8 quar-
tet). SmB6 is a stoichiometric insulator and samples of
high purity have been grown.

It has been proposed that the low T plateau in the
resistivity of SmB6 arises from the topological surface
states. This has been experimentally verified by Wolgast
et al.

30 who designed a novel contact configuration for a
thin film-like sample and were able to distinguish bulk-
dominated conduction from surface-dominated conduc-
tion. Below 4 K the bulk conductivity is frozen out and
only the surface conduction remains. This shows that
the low T plateau of the resistivity is due to surface con-
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duction with a fully insulating bulk. Further evidence
for surface conductivity has been reported in Refs. 31
and 32, where the electric conductivity and the Hall ef-
fect are proven thickness-independent, and magnetic and
non-magnetic doping results in contrasting behaviors.32

The effects of Kondo holes and non-magnetic impurities
on the TKI states has been investigated theoretically in
Ref. 33.

The topology of the Fermi surface of the surface states
has been mapped using torque magnetometry.34 The ob-
served Fermi surface suggests two pockets of 2D surface
states on the (101)-plane denoted with α and β, respec-
tively. The α-pocket displays the characteristic angular
dependence of a cylindrical 2D band, while the angu-
lar dependence of the β-pocket is flat. The masses are
light and the Dingle temperatures rather large.34 Fur-
thermore, extrapolating the Landau levels to the infinite
magnetic field limit leads to an intercept of -1/2 for both
pockets, which is characteristic of 2D electronic systems.
The surface electronic structure was also probed using
laser-based ARPES:35,36 At low T the low-lying states
form electron-like Fermi surface pockets enclosing the X
(possibly the α-pocket) and Γ (possibly the β-pocket)
points of the surface Brillouin zone and disappear above
15 K.35 Angular-dependent magnetoresistance measure-
ments reveal periodicities of 90o at 5 K and 180o at
low temperature37,38 and that the surface states are de-
pendent on the surface roughness.37 Weak antilocaliza-
tion and a linear magnetoresistance was observed in Ref.
39. Further ARPES and scanning tunneling microscopy
studies of the insulating gap of SmB6 and surface states
can be found in Refs. 40 and 41. The surface of SmB6

has also been studied via point-contact spectroscopy.42

The question of the exact topological nature of the
surface states of SmB6 is still open, in particular a def-
inite confirmation of the chirality of these states is still
missing.32 Furthermore, the question: Are the topologi-
cal surface states the magnetic “in-gap” states mentioned
above as observed in the susceptibility and the 11B NMR
relaxation?15 still needs an answer. It has been suggested
by Takimoto24 that since the magnetic field breaks the
time-reversal symmetry, the surface states are gapped
and the in-gap states are just the metallic surface states
of the topological insulator. In this paper we investigate
the possibility of a Korringa-like relaxation of the 11B nu-
clei arising from the topological surface states in SmB6.
This is directly related to the in-gap states.

In the temperature range of 20 ≤ T ≤ 100 K, the re-
laxation rate is field-independent and decreases down to
1/20 of that at 100 K with decreasing temperature, as a
consequence of the opening of the indirect semiconduc-
tor Kondo gap.15 The relaxation rate is then Korringa-
like with the additional temperature dependence of the
density of states. In this temperature range 1/T1 then
follows the electronic bulk properties. Below 20 K, how-
ever, 1/T1 acquires a marked field-dependence. With in-
creasing magnetic field the relaxation rate is suppressed
further leading to long relaxation times, which was at-

tributed to the suppression of the “in-gap” states.15

Hence, it is apparent that there are two different mech-
anisms, namely the standard Korringa relaxation for
T > 20 K and a relaxation with the in-gap states at lower
T . There are several open questions: Is this suppression
of the relaxation at low T due to the Landau quantiza-
tion of the topological surface states? Since the wave
functions of the surface states are expected to fall off ex-
ponentially with distance from the surface, the 11B nuclei
should have different T1 depending on their distance from
the surface. Hence, is the relaxation a superposition of
many exponentials, i.e. a “stretched” exponential? Are
there other states that do not contribute to the electrical
conductivity responsible for the NMR relaxation, such as
the magnetic excitons proposed by Riseborough?16

The remainder of the paper is organized as follows. In
Sect. II we define the model Hamiltonian interpolating
between the Dirac cone and a parabolic dispersion as a
function of the Fermi level. The energies of the Lan-
dau quantized states then changes with N from a

√
BN -

dependence to the standard B(N + 1/2)-dependence,
where N is the quantum number of the Landau level.
The latter is the dependence observed in the quantum
oscillations of the magnetization.34 In Sect. III we intro-
duce the exchange interaction Hamiltonian between the
Landau quantized surface conduction states and the nu-
clear spin states. The Knight shift and the relaxation
rate are calculated for both, a pure strong TKI and the
dirty limit, where nonmagnetic defects broaden the Lan-
dau levels without breaking the time-reversal symmetry.
Conclusions follow in Section IV.

II. MODEL

The band structure for SmB6 seems to indicate that
the surfaces have three Dirac cones, one at the Γ-point
and the other two at the X(Y )-points of the surface Bril-
louin zone.24 To simplify, we work with only one band
and address the superposition of more bands in the Con-
clusions section. We consider the following modified 2D
Dirac Hamiltonian

H0 = vF (σxpx + σypy) +
1

2m
σz(p

2
x + p2y) , (1)

where vF is the Fermi velocity, m is an effective mass and
σi represent the Pauli matrices. The first term in Eq. (1)
corresponds to a Dirac cone, while the second term repre-
sents a standard parabolic dispersion (Schrödinger limit).
In the absence of a magnetic field the wave functions are
plane waves, ψ(x, y, t) = u exp[i(kxx+kyy)− iEt], where
u is a spinor, and the energy is given by

E2 = (vF k)
2 + (k2/2m)2 , (2)

where k =
√

k2x + k2y. For small k the dispersion is then

linear, E = vF k, while for large k the second term dom-
inates and the dispersion is parabolic, E = k2/2m.
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The semiclassical cyclotron mass is defined as the
derivative of the cross section A of the Fermi surface with
respect to the energy

m∗ = (∂A/∂E)/(2π) =
E

v2F

(

1 +
E2

m2v4F

)−1/2

, (3)

which interpolates between the Dirac limit at low E,
m∗ = E/v2F and Schrödinger case, m∗ = m, for large
E. The Onsager quantization rules (Bohr-Sommerfeld
quantization) are obtained from AN = (2πe/c)B(N+γ),
where e is the electron charge and γ is a constant less
than 1/2, leading to EN = vF

√

(2e/c)BN in the Dirac
limit (γ → 0) and to EN = (e/mc)B(N + 1/2) in
the Schrödinger limit (γ = 1/2). The crossover energy
between the Dirac and Schrödinger regimes is approxi-
mately Ec = mv2F , which for m = 0.1me (me is the free
electron mass) and vF = 6 × 107 cm/s (from Ref. (34))
yields Ec = 0.2 eV.
The quantum mechanical solution in the presence of a

magnetic field is obtained using the minimal substitution
p → p + (e/c)A in Eq. (1). Choosing the asymmetric
Landau gauge, A = B(−y, 0), the wave function has the
form ψ(x, y, t) = u exp(ikxx−iEt), where we denote with
φ1(y) and φ2(y) the two components of the spinor u. Eq.
(1) then leads to two coupled differential equations for
φ1(y) and φ2(y)

43

vF

[

(kx − mωy)− ipy

]

φ2(y) +

1

2m

[

(kx −mωy)2 + p2y

]

φ1(y) = Eφ1(y) ,

vF

[

(kx − mωy) + ipy

]

φ1(y)−
1

2m

[

(kx −mωy)2 + p2y

]

φ2(y) = Eφ2(y) ,(4)

where ω = eB/mc. Denoting y0 = kx/mω and ȳ = y−y0
the solution of the coupled equations is

φ1(y) = ϕN−1(ȳ) , φ2(y) = ϕN (ȳ) ,
(

EN +
ω

2

)2

= ω2N2 + 2mωv2FN , (5)

where ϕN (y) is the normalized harmonic oscillator wave
function of frequency ω and quantum number N . The
expression for the energy contains the Dirac (ω is small)
and Schrödinger (neglecting the last term) cases as spe-
cial limits. Dividing the expression for the energy by B2

and taking the limit B → ∞ (extreme quantum limit, i.e.
N = 0) we obtain that E → −ω/2, which is in agreement
with the corresponding extrapolation of the quantum
oscillations in the torque magnetometry experiment.34

These levels were found to be equally spaced34 as ex-
pected for the Schrödinger limit. The position of the
Landau levels for a field of 10 T is shown in Fig. 1(a).
The Landau levels are highly degenerate. Using peri-

odic boundary conditions for a linear dimension L of the
sample we have kx = 2πnx/L, where nx is a positive in-
teger. The equilibrium position of the oscillators, y0, has
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FIG. 1: Density of states in arbitrary units as a function
of the Landau level positions according to Eq. (5) for the
parameters discussed in the text. (a) Delta functions in the
clean limit, (b) slightly broadened levels due to scattering off
defects, and (c) DOS in the dirty limit. In (b) and (c) the
sharp Landau levels were replaced by a Lorentzian lineshape,
i.e. a constant imaginary part of the selfenergy, although the
real selfenergy is energy dependent. Note that the defects
introduce a background DOS. The shifts of the peaks due to
real part of the selfenergy have been neglected here for clarity.

to lie inside the sample, so that 0 ≤ y0 = kxc/eB ≤ L.
Hence, nmax

x = L2eB/(2πc) is the degeneracy of the
Landau levels at a field B. Assuming L = 1 mm and
B = 10 T the degeneracy is 2.4 × 109. For the Dirac
limit, EN = vF

√

2eBN/c, assuming B = 10 T and

vF = 6×107 cm/s,34 we have EN ≈ 70
√
N meV, which is

approximately 1000
√
N K. This corresponds to a rather

large spacing between Landau levels. On the other hand,
for the Schrödinger limit we have EN = ω(N + 1/2) and
for m = 0.1me and B = 10 T this corresponds to a spac-
ing of 11.6 meV or 150 K.
The surface states penetrate the bulk of the sample

with their wave function falling off exponentially with the
distance from the surface, exp(−z/λ). The penetration
depth λ depends on the bulk properties of the system,
i.e. the magnitude of the indirect hybridization gap, ∆.
In the Dirac limit, we can estimate λ through vF /λ ≈ ∆,
which for vF = 6 × 107 cm/s and ∆ = 54 K, yields
λ ≈ 85 nm. In the Schrödinger limit, on the other hand,
1/(2mλ2) ≈ ∆ and for m = 0.1me we have λ ≈ 3 nm.
Due to the finite size of the sample edge states are

expected to appear. We have not considered the edge
states here because they are not relevant to the NMR
relaxation.

III. RESULTS

A. NMR Hamiltonian

A local probe, such as NMR, is a useful tool to study
the “in-gap” states of SmB6. The

11B nuclei carry a nu-
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clear total angular momentum I = 3/2. For a magnetic
field parallel to a crystallographic axis there are two in-
equivalent sites in the B6 octahedra, which are denoted
with B1 and B2 in Ref. 15. The quadrupolar splitting
at the two sites yields a superposition of the spectra, so
that to separate the lines it is convenient to measure the
|3/2〉 ↔ |1/2〉 NMR transition.
We define spin-1/2 operators for the space spanned by

the nuclear states |3/2〉 and |1/2〉,

S+ = |3/2〉〈1/2| , S− = |1/2〉〈3/2| ,

Sz = 1
2

(

|3/2〉〈3/2| − |1/2〉〈1/2|
)

. (6)

These operators satisfy the standard spin commutation
relations, [S±, Sz] = ∓S± and [S+, S−] = 2Sz. The
interaction of the nuclear spin with the topological sur-
face states is via a contact exchange, HJ = (J/2)[Szσz +
1
2
(S+σ− + S−σ+)]δ(r).
SmB6 is a cubic intermediate valent Kondo insulator

and, according to specific heat data11 and Raman scat-
tering measurements,8 the bulk ground wave function is a
Γ8 quartet. At the surface the symmetry is tetragonal so
that Γ8 is split into two Kramers doublets. The ground
doublet can be parametrized by a pseudospin 1/2 and
the two states are linear combinations of the true spin
components. The Dirac Hamiltonian locks the true spin
perpendicular to the momentum vector.21,33 We assume
that the exchange coupling of the nuclear spin is with the
true spin. If the full f -states are considered, the orbital
degree of freedom of the crystalline field Kramers dou-
blet has to be traced out, yielding renormalizations of
the expectation values of the Pauli matrices, which can
be absorbed into the exchange coupling defined below.33

We now express the total Hamiltonian, H = H0 +
HZ + HJ , where HZ is the Zeeman part, in terms of
the eigenstates of H0. The two spinor components (true
spin states) are denoted with a subindex 1 and 2. The
creation and annihilation operators for states with energy

EN are c†1,N−1,k, c1,N−1,k and c†2,N,k, c2,N,k, respectively.
Here N − 1 and N refers to the harmonic oscillator wave
function and k is the degeneracy index kx (we drop the
subindex x). The Hamiltonian has now the form

H0 =
∑

N,k

EN

[

c†1,N−1,kc1,N−1,k + c†2,N,kc2,N,k

]

,

HZ = −(he/2)
∑

N,k

[

c†1,N−1,kc1,N−1,k − c†2,N,kc2,N,k

]

,

HJ =
J

2

∑

N,k,N ′,k′

{

Sz
[

c†1,N−1,kc1,N ′−1,k′ψ∗
1,N−1,k

× ψ1,N ′−1,k′ − c†2,N,kc2,N ′,k′ψ∗
2,N,kψ2,N ′,k′

]

+ S+c†2,N,kc1,N ′−1,k′ψ∗
2,N,kψ1,N ′−1,k′

+ S−c†1,N−1,kc2,N ′,k′ψ∗
1,N−1,kψ2,N ′,k′

}

, (7)

where the normalized wave functions ψ are taken at x =
y = 0 (the resonating nucleus is at the origin) due to the

contact interaction, and he = geffµBB with geff being
the effective g-factor of the electrons.

B. Knight shift

The Knight shift is the shift of the resonance due to the
polarization of the conduction electrons. It renormalizes
the external magnetic field, h = γNµNB, to an effective
field h′ = h + δh′, where γN and µN are the nuclear
gyromagnetic factor and magneton, respectively. Here
δh′ is given by

δh′ = −J
∑

N,k,N ′,k′

[

〈c†1,N−1,kc1,N ′−1,k′〉ψ∗
1,N−1,k

× ψ1,N ′−1,k′ − 〈c†2,N,kc2,N ′,k′〉ψ∗
2,N,kψ2,N ′,k′

]

= −JL
2π

∑

N

[

f(EN − he/2)

∫

dk|ψ1,N−1,k|2

− f(EN + he/2)

∫

dk|ψ2,N,k|2
]

, (8)

where f(E) is the Fermi function. The harmonic oscilla-
tor wave functions are displaced by y0(k) from the origin.
We have then

∫

dk|ψ2,N,k|2 =
eB

Lc

∫

dy0|ψ2,N,k(y0)|2 =
eB

Lc
, (9)

and similarly for the other spinor component. To linear
order in the magnetic field we have then

δh′ ≈ JeBhe
2πTc

∑

N

f ′(EN ) , (10)

where f ′ is the derivative of the Fermi function. Hence,
in the clean limit, where there are sharp Landau levels,
the Knight shift is proportional to B and inversely pro-
portional to T . The factor B arises from the degeneracy
of the Landau levels, he from the Zeeman splitting of the
surface states and T−1 is the Curie susceptibility of the
Landau levels.

C. Relaxation rate in a clean strong TKI

Assuming a Lorentzian, the dissipative part of the
transversal dynamic spin susceptibility can be written
as44

χ
′′

T (ω) =
ω/T1

(ω − h′)2 + (1/T1)2
χT0 , (11)

where χT0 is the static transversal susceptibility and T1
is the relaxation time. Perturbatively, the relaxation rate
contributes to second order in the exchange J .
The transversal spin correlation function is given by

〈〈S+;S−〉〉ω. It is related to the susceptibility by
χT (ω) = −(γNµN )2〈〈S+;S−〉〉ω . Equations of motion
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for the imaginary part of this correlation function lead
to

(ω − h′)2〈〈S+;S−〉〉′′ω = 〈〈j+c ; j−c 〉〉′′ω , (12)

where j± is the spin current, given by44

j+ = [S+,HJ ] = J
∑

N,k,N ′,k′

{

Szc†1,N−1,kc2,N ′,k′ψ∗
1,N−1,kψ2,N ′,k′

− 1
2
S+

[

c†1,N−1,kc1,N ′−1,k′ψ∗
1,N−1,kψ1,N ′−1,k′

− c†2,N,kc2,N ′,k′ψ∗
2,N,kψ2,N ′,k′

]}

. (13)

The subindex c denotes the cumulant contraction
(Hartree-Fock factorization) that gives rise to the Knight
shift δh′ discussed in section III.B (Eq. (8)). Inserting
the spin current operator, the correlation function to sec-
ond order in J yields

〈〈j+c ; j−c 〉〉′′ω = J2
∑

N,k,N ′,k′,N̄,k̄,N̄ ′,k̄′

{

ψ∗
1,N−1,kψ2,N ′,k′ψ∗

2,N̄ ,k̄ψ1,N̄ ′−1,k̄′

×〈〈Szc†1,N−1,kc2,N ′,k′ ;Szc†
2,N̄ ,k̄

c1,N̄ ′−1,k̄′〉〉
′′

ω

+ 1
4
ψ∗
1,N−1,kψ1,N ′−1,k′ψ∗

1,N̄−1,k̄ψ1,N̄ ′−1,k̄′

×〈〈S+c†1,N−1,kc1,N ′−1,k′ ;S−c†
1,N̄−1,k̄

c1,N̄ ′−1,k̄′〉〉
′′

ω

+ 1
4
ψ∗
2,N,kψ2,N ′,k′ψ∗

2,N̄,k̄ψ2,N̄ ′,k̄′

×〈〈S+c†2,N,kc2,N ′,k′ ;S−c†
2,N̄ ,k̄

c2,N̄ ′,k̄′〉〉
′′

ω

}

. (14)

The correlation functions are now evaluated to zero-
order in J using H0 +HZ

〈〈j+c ; j−c 〉〉′′ω = −πJ
2

4

∑

N,N ′,k,k′

{

δ(EN − EN ′ + ω − he)

×|ψ1,N−1,k|2|ψ2,N ′,k′ |2(n3/2 + n1/2)

×[f(EN − he/2)− f(EN ′ + he/2)]

+2δ(EN − EN ′ + ω − h′)
[

|ψ1,N−1,k|2|ψ1,N ′−1,k′ |2

×
[

n3/2f(EN − he/2)(1− f(EN ′ − he/2))− n1/2

×f(EN ′ − he/2)(1− f(EN − he/2))
]

+ |ψ2,N,k|2

×|ψ2,N ′,k′ |2
[

n3/2f(EN + he/2)(1− f(EN ′ + he/2))

−n1/2f(EN ′ + he/2)(1− f(EN + he/2))
]

]}

, (15)

where n3/2 and n1/2 are the occupation numbers of the
nuclear spin states. The sums over k and k′ can be trans-
formed into integrals and using the orthonormality of the
wave functions, Eq. (9), we obtain

〈〈j+c ; j−c 〉〉′′ω = −πJ
2

4

(

eB

2πc

)2
∑

N,N ′

{

(n3/2 + n1/2)

×δ(EN − EN ′ + ω − he)[f(EN − he/2)

−f(EN ′ + he/2)] + δ(EN − EN ′ + ω − h′)
∑

σ=±1

[

n3/2

×f(EN + σhe/2)(1− f(EN ′ + σhe/2))

−n1/2f(EN ′ + σhe/2)(1− f(EN + σhe/2))
]}

. (16)

Through Eqs. (11) and (12) we have that to second
order in J (ω is to be taken at the resonance frequency
h′)

1

T1
= −(γNµN )2〈〈j+c ; j−c 〉〉′′ω=h′/(h′χT0) . (17)

Due to the delta functions, the expression (16) vanishes
unless EN −EN ′ +ω− he = 0 or EN −EN ′ +ω− h′ = 0
for some N and N ′.
In a normal metal the NMR relaxation rate is given

by the Korringa relaxation, i.e. it is proportional to T
and the square of the exchange coupling to the s-wave
conduction states (at the site of the NMR ion) times
their density of states. It follows that Eq. (17) does not
lead to a Korringa-like relaxation unless the conduction
states have a continuum energy spectrum. Hence, there
is no Korringa-like NMR relaxation with clean surface
states. Similarly, the electrical resistivity is only going
to be nonzero if there is a continuum energy spectrum.
This is not the case for a clean surface in a magnetic field,
where the energy states are sharp and discrete.
The delta functions in Eq. (16) are indicative of a

formation of a bound state of the nuclear spin with the
Landau level closest to the Fermi level. The spin degree of
freedom then resonates within this bound state without
being able to relax into a continuum.

D. Strong TKI with dirty surfaces

The surfaces of a realistic sample have a considerable
amount of defects. Defects can be magnetic impurities or
nonmagnetic scatterers. Magnetic impurities break the
time reversal symmetry and lift the topological protec-
tion of the surface states. We consider here nonmagnetic
defects, such as adsorbed nonmagnetic atoms, missing
Sm or B atoms, surface steps, etc. that do not break
the time reversal symmetry, but only the translational
invariance. As a consequence of the scattering off the de-
fects, the surface quasi-particles acquire a finite linewidth
and the Landau levels are no longer perfectly sharp. The
density of states has then an energy continuum.
The broadening of electron Landau levels in 2D due

to light disorder has been studied previously in the con-
text of the 2D electron gas45–47 using a selfconsistent
averaging over the positions of the defects. The method
is now known as the fully self-consistent Born approxi-
mation (FSBA) and has been extended to study the ef-
fect of impurity scattering on the magnetoresistance of
graphene.43,48 This extension involves a Dirac cone dis-
persion, similar to the present problem. The real part
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of the self-consistent approximation for the electron self-
energy yields a shift of the Landau level energy and the
imaginary part a linewidth of the state. The real part is
not of primary relevance for the present purposes and the
imaginary part is approximately constant over the energy
range he (≈ 1 meV) under consideration. The density of
states for a Landau level, which is a delta function in
the absence of defects, is now constant over the relevant
energy interval.
For each Landau level we introduce

∫

dǫδ(ǫ − EN ) =
1 and replace the δ-function by a broadened density of
states

∫

dǫρ(ǫ − EN ) in Eq. (8) for the Knight shift.
Assuming that ρ is constant over a small interval about
EN (of the order of he) we can carry out the ǫ integration.
Denoting with ρN the density of states at the Landau
level N , we arrive at

δh′ ≈ −JeBhe
2πc

∑

N

ρN . (18)

Hence, in the dirty limit the Knight shift is still propor-
tional to B, arising from the degeneracy of the Landau
levels, but no longer proportional to 1/T . The most rele-
vant term in Eq. (18) is for N∗, where N∗ is the Landau
level pinning the Fermi level.
For the relaxation rate we again insert

∫

dǫρ(ǫ − EN )
for each Landau level. The Zeeman splitting of the con-
duction states does not play a relevant role for this case
so that to simplify we consider he = 0. From Eq. (16) we
have then for the leading contribution to the spin-current
correlation function

〈〈j+c ; j−c 〉〉′′ω = −πJ
2

4

(

eB

2πc

)2
∑

N,N ′

∫

dǫρ(ǫ − EN )×
∫

dǫ′ρ(ǫ′ − EN ′)
{

δ(ω − ǫ′ + ǫ)(n3/2 + n1/2)×

[f(ǫ)− f(ǫ′)] + 2δ(ω − h′ − ǫ′ + ǫ)
[

n3/2f(ǫ)(1− f(ǫ′))

−n1/2f(ǫ
′)(1 − f(ǫ))

]}

. (19)

After integrating over ǫ′ we obtain

〈〈j+c ; j−c 〉〉′′ω = −πJ
2

4

(

eB

2πc

)2
∑

N,N ′

∫

dǫρ(ǫ− EN )×

{

ρ(ǫ− EN ′ + ω)(n3/2 + n1/2)[f(ǫ)− f(ǫ+ ω)]

+2ρ(ǫ− EN ′ + ω − h′)
[

n3/2f(ǫ)(1− f(ǫ+ ω − h′))

−n1/2f(ǫ+ ω − h′)(1− f(ǫ))
]}

. (20)

Assuming that ρ is constant over a small interval about
EN we can carry out the ǫ integration. Denoting again
with ρN the density of states at the Landau level N , we
arrive at

〈〈j+c ; j−c 〉〉′′ω = −πJ
2

4

(

eB

2πc

)2
∑

N,N ′

ρNρN ′

{

ω(n3/2 + n1/2) + 2n3/2(ω − h′)
exp((ω − h′)/T )

exp((ω − h′)/T )− 1

−2n1/2(ω − h′)
1

exp((ω − h′)/T )− 1

}

. (21)

The static transversal susceptibility for the free nuclear
spin is χT0 = (γNµN )2(n3/2 + n1/2)/h

′, so that

1

T1
= −(γNµN )2〈〈j+c ; j−c 〉〉′′ω=h′/(h′χT0)

=
π

4

(

eBJ

2πc

)2
∑

N,N ′

ρNρN ′

[

2T + h′
n3/2 + n1/2

n3/2 − n1/2

]

≈ πT

(

eBJ

2πc

)2
∑

N,N ′

ρNρN ′ , (22)

where we used that (n3/2 + n1/2)/(n3/2 − n1/2) =
coth(h′/2T ) ≈ 2T/h′, since h′ ≪ T . Hence, the relax-
ation rate for nuclei at the surface of a mildly dirty crystal
is Korringa-like. The relaxation rate grows linearly with
temperature and quadratically with the magnetic field.
There is an additional magnetic field dependence arising
from the density of states of the Landau levels. The dom-
inant term in Eq. (22) is for N = N ′ = N∗, where N∗ is
the Landau level pinning the Fermi level,

1

T1
≈ πT

(

eBJ

2πc
ρN∗

)2

. (23)

We are not presenting an explicit calculation of the
self-energy due to defect scattering using the FSBA. The
procedure would be analogous to the one described in
Ref. 48 for the case of graphene. It involves several
unknown parameters, such as the density of impurities
(assumed to randomly distributed) and the scattering
strength by the defects. In contrast the parameters of
the clean surface can be estimated from experiments and
first principle calculations. The density of states is ob-
tained numerically by solving coupled equations. Since
the dependence of the surface states on roughness32,37 is
still an open experimental issue and the input parameters
for the calculation are unknown, an explicit calculation
is not going to add much to the understanding of the
problem.
In Fig. 1(b) and 1(c) we show the density of states

with weak impurity scattering and in the dirty limit, re-
spectively. Here the imaginary part of the selfenergy was
assumed to be constant (Lorentzians) and the real part of
the selfenergy, responsible for the shifts of the positions
of the peaks, has been neglected.

IV. CONCLUSIONS

We have studied the NMR Korringa relaxation and
Knight shift of 11B nuclei in the topological Kondo insu-
lator SmB6. Experimental and theoretical evidence in-
dicates that the bulk is gapped at low T and only the
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surface states contribute to electrical conduction. The
observed Korringa relaxation is then expected to arise
from the surface conduction states. In a magnetic field
the clean 2D electron gas has a discrete energy spectrum
as a consequence of the Landau quantization. We have
shown that the Knight shift is proportional to B/T and
the relaxation rate is not Korringa-like in this scenario,
which contradicts the experimental evidence.15

If the surface has nonmagnetic defects, the scattering
of the conduction states off the defects gives rise to a
line width of the Landau levels. The density of states
then consists of peaks with finite width rather than delta
functions as for the clean surface. A small broadening (of
the order of 1 meV) is sufficient to yield a Korringa rate
proportional to the temperature. The proportionality
constant is field dependent, since the degeneracy of the
Landau levels is proportional to the field.

Since only electronic surface states participate in the
relaxation process of the 11B nuclei, this relaxation is
then expected to be weak. Since the wave function falls
off exponentially into the crystal, depending on their dis-
tance from the surface the 11B nuclei should have differ-
ent T1 with T1 becoming really large in the insulating
part of the crystal. Hence, one should expect then a
superposition of several relaxation times arising from the
different layers. This gives rise to a “stretched” exponen-
tial time dependence. Although there is some evidence
for a small stretching, the experimental data is consistent
with a single relaxation time.15

For the sake of simplicity in the present calculation
we considered only one Dirac core. Band structure
calculations24 (see also Ref. 49 for the electronically sim-
ilar compound PuB6) suggest that there are three Dirac
cones, one at the Γ-point and the other two at the X(Y )-
points of the surface Brillouin zone. The latter two are
symmetry-equivalent. The energies of the cone-vertices
are not protected and could shift with the sample prepa-
ration, e.g. with the disorder on the surface. The ex-
change Hamiltonian of the of the nuclear spin with the
conduction states, HJ , consists then of three terms of
the type described in Eq. (7) with different hyperfine
exchange couplings. The Knight shift and the relaxation
rate are then the superposition of the contributions of
the three bands. We conclude that there is no qualita-
tive change of the results if several bands are considered
in comparison to the single band results.

Furthermore, we have assumed that the surface elec-
trons do not interact with each other. Since the ki-
netic energy of the Dirac particles is relatively small,
interactions could play a relevant role at very low T .50

Experimentally ferromagnetic long-range order has been
found at temperatures far below the T -range of the NMR
measurements.51 Edge states originating from the finite
size of the sample have also been neglected.

In a standard NMR experiment in a metallic system
the Korringa product, defined as κ = [T1T (δh

′/B)2]−1

where δh′/B is the Knight-shift constant, is a constant.
This is not the case in SmB6, where below 10 K κ is

strongly enhanced and strongly magnetic field and tem-
perature dependent (see Fig. 4 in Ref. [15]).

FIG. 2: The contribution of the “in-gap” state to the suscep-
tibility (∆χ) (solid circles),12 the temperature dependence of
the 16 meV magnetic excitation intensities measured by in-
elastic neutron scattering IN (open squares),9 and the inten-
sity of the Raman transition IR (open triangles)8 compared
to electrical conductivity data (open small circles) from Ref.
52. While the surface states contributing to the conductivity
are active below 4 K, the “in-gap” states are formed at much
higher T . (Figure adapted from Ref. 9).

While the low T resistivity of SmB6 saturates below 4
K, which is attributed to the topological surface states,
the onset of the in-gap states in the susceptibility12, in
inelastic neutron scattering9, the NMR Knight shift and
relaxation15 and Raman spectroscopy8 occurs at higher
T , of the order of 25 - 30 K. This is shown in Fig. 2.
This suggests the possibility of an alternate mechanism
to the surface states for the magnetic properties. The
intensity of the observed effects also appears to be too
large to be attributed solely to surface states. A model
to explain the in-gap bound states in Kondo insulators
has been proposed by Kasuya using a localized Kondo
model.53 The lowest excitation state is an s-wave exciton,
leading to predictions consistent with neutron scattering
results. Along similar lines Riseborough16 proposed that
the mixed valence nature of the system gives rise to an-
tiferromagnetic correlations leading to in-gap magnetic
excitations, analogous to antiparamagnons in a metal.54

These magnetic exciton-like states exist in the bulk but
do not contribute to the electrical conductivity, since an
electron and a hole are bound in a pair and the bound
state has charge zero. Hence, the electrical conductivity
is a property of the surface states. The in-gap bound
states, however, have their own temperature and field
dependence, which should reflect in the magnetic sus-
ceptibility and NMR properties. In particular, at low T
the relaxation rate displays a broad peak that moves to
higher temperatures with increasing field, that could be
the signature of such a bound state (see Fig. 3). The in-
tensity of the peak dramatically decreases with magnetic
field, possibly due to the quenching of the antiferromag-
netic correlations. A very recent calculation of the in-gap
collective mode spectrum of SmB6 can be found in Ref.
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55.

FIG. 3: (Color online) Low temperature spin lattice relax-
ation rates as a function of T for different magnetic fields
(adapted from Ref. 15). The solid lines are fits to a simple
model for “in-gap” states15 and can be considered as guides
to the eye. The data shows peaks or shoulders as a function
of T and dashed curve interpolates between these maxima.

It would be of interest to carry out the NMR measure-
ments on samples of different thickness. A measured re-
laxation rate that is independent of the sample thickness
would be convincing evidence for a Korringa relaxation
into surface states and exclude a magnetic exciton mech-
anism. Low temperature (T = 1.6 K and 3.8 K) X-band
Electron Spin Resonance (ESR) of Sm in SmB6 shows
evidence for several transitions,56 which have been inter-
preted as arising from the Γ8 quadruplet of Sm3+ defects
and Γ6-states in the crystal. Earlier measurements of Gd
impurities in SmB6 have been presented in Ref. 57. Due
to the intermediate valence of SmB6 the Sm ions in the

bulk are not expected to resonate. In the light of TKIs
it would be desirable to repeat these measurements on
cleaner samples and higher frequencies than X-band to
see if the cyclotron resonances of the electron gas can be
observed.
In summary, there are numerous problems with the

interpretation of the NMR data. (1) Magnetic data sug-
gest the existence of two energy scales, one associated
with the topological surface states and the other with
the formation of bulk in-gap states, possibly exciton-like
bound states. (2) If the NMR relaxation is due to the
topological surface states the contribution of the differ-
ent surface layers would give a different T1 depending
on the distance from the surface. This would give rise
to a strongly “stretched” exponential time dependence.
Although there is evidence for some stretching the ex-
periments are consistent with a single relaxation time.
In addition the intensity of the resonance line would be
faint since only 11B nuclei at the surface would be able to
resonate. (3) Under optimal conditions the sensitivity of
an NMR experiment requires the detection of 1015 spins.
The number of surface 11B atoms in a 2× 2× 1 mm3 sin-
gle crystal is roughly 1015, i.e. barely within the limits
of detection. (4) At low T the relaxation rate displays a
broad peak that moves to higher temperatures with in-
creasing field as shown in Fig. 3 by the dashed line. This
peak could be the signature of the excitonic bound state
in the relaxation rate. Although none of the above find-
ings is conclusive, they are evidence suggesting different
mechanisms for the electric transport and the magnetic
properties.
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