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We employ ab initio simulations based on density functional theory (DFT) to calculate the elec-
tronic transport coefficients (electrical conductivity, thermal conductivity, and thermopower) of
molybdenum over a broad range of thermodynamic states. By comparing to available experimental
data, we show that DFT is able to describe the desired transport properties of this refractory metal
with high accuracy. Most noteworthy, both the positive sign and the quantitative values of the ther-
mopower of solid molybdenum are reproduced very well. We calculate the electrical and thermal
conductivity in the solid and the fluid phase between 1000 K and 20 000 K and a wide span in
density and develop empirical fit formulae for direct use in practical applications, such as magneto-
hydrodynamics simulations. The influence of thermal expansion in conductivity measurements at
constant pressure is also discussed in some detail.

PACS numbers: 31.15.A-, 72.15.Jf, 52.25.Fi

I. INTRODUCTION

Refractory metals like molybdenum are technologi-
cally important materials because of their high me-
chanical strength, high melting point, supreme resis-
tance to heat and corrosion, as well as good electrical
conductivity.1 Molybdenum is commonly used in high-
strength steels as well as superalloys for applications in
extreme environments like turbine blades in jet engines
and for components in gas turbines. A new applica-
tion for molybdenum, involving even more extreme con-
ditions in pressure and temperature, is as a drive mate-
rial in pulsed-power experiments aiming to measure high-
pressure yield strenghts of sample materials under shear
stress (MAPS).2 Understanding the physical processes
involved as well as designing and optimizing the experi-
ments rely on the use of magneto-hydrodynamic (MHD)
simulations. The MHD simulations, in turn, rely on us-
ing accurate material models like equation of state (EOS)
in general and thermoelectric transport coefficients in
particular. Errors in the electrical conductivity model
can lead, for example, to incorrect joule heating in the
simulations, driving the simulations away from the cor-
rect thermodynamic state as the simulation evolves in
time. There is therefore a need to have an accurate model
for the thermoelectric properties of molybdenum over a
broad range of conditions, including the transition from
solid state behavior to dense plasma, the warm dense
matter region, a part of the phase diagram which is chal-
lenging to describe.

Molybdenum is a bcc metal and, like many of the
transition metals, it has a complex electronic structure.
Three examples of effects due to the involved electronic
structure are the positive signs of the thermopower3 and
Hall coefficient4 near ambient conditions and the anoma-
lous self-diffusion behavior at high temperature below
the melting point.5 The electrical conductivity, σ, in

solid molybdenum is accurately known up to the melt-
ing point6 at ambient pressure. It was also measured
in the liquid phase7–10 and in plasma states11 using ex-
ploding wire experiments. The thermal conductivity, λ,
of solid molybdenum was probed experimentally up to
melting.12–18 In the liquid it is typically approximated
from the electrical conductivity using the Wiedemann-
Franz law.19

In this paper, we present results from extensive
ab initio calculations for the thermoelectric transport
coefficients of molybdenum that are based on finite-
temperature density functional theory (FT-DFT).20–22

Within this framework the electronic transport coeffi-
cients are derived with expressions obtained from Lin-
ear Response Theory (LRT).23 Although σ and λ are
the quantities of primary practical importance, we also
examine the thermopower α in some detail. This quan-
tity does not depend directly on the concentration of free
charge carriers (here best described as conduction elec-
trons) and is very sensitive to the electronic structure. By
reproducing the experimental thermopower in the solid,
in addition to the conductivities in various phases, we en-
sure that our calculated results are of very high fidelity.
Transport properties often change significantly when

phase boundaries are crossed. It is therefore important to
know the location of the melt boundary. Explicit calcula-
tions of the melt boundary are not performed here, how-
ever, because of the extensive previous experimental24–28

and theoretical29–35 work regarding the phase diagram of
molybdenum. All thermodynamic conditions of interest
here (1000 K to 20 000 K and up to 2 Mbar) are either
in the fluid or in the bcc solid, and we thus calculate the
transport properties for these two phases.
Following this introduction is a section on the theo-

retical methods used, a section presenting results and
extensive comparisons with available experimental data,
and finally a summary and discussion. We expect the
results in the article to be used to model molybdenum
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under high pressure and high temperature and to serve
as an example on how one can approach systematic mod-
eling of thermoelectric transport properties of materials
with challenging electronic structure.

II. THEORY AND SIMULATION DETAILS

Our theoretical approach to calculate the electronic
transport coefficients relies on performing FT-DFT
molecular dynamics (MD) simulations in the Born-
Oppenheimer approximation to obtain thermophysical
properties like internal energy and pressure and an en-
semble of ionic configurations at each thermodynamic
state. Subsequently, static FT-DFT calculations are
done for each of the ionic configurations to evaluate the
LRT expressions for thermoelectrical properties. This
has become a well established procedure for electronic
transport calculations over the last ten years. It has been
successfully applied for various materials, mostly with fo-
cus on the electrical conductivity.23,36–41 In this paper,
in addition to conductivity, we also calculate the thermal
transport properties, thus making full use of the theoret-
ical approach. The Vienna ab initio simulation package
(VASP) 5.3.2,42–46 which is a plane-wave pseudopotential
code, is used for both the MD simulations and transport
calculations.
The calculation of the thermoelectric transport coeffi-

cients is based on the following expressions for the On-
sager coefficients derived within LRT:23

L mn(ω) =
2π(−e)4−m−n

3Ωω

∑

kνµ

|〈kν|v̂|kµ〉|2(fkν − fkµ)

×

(

Ekµ + Ekν

2
− he

)m+n−2

δ(Ekµ − Ekν − ~ω) , (1)

where ω is the frequency, Ω the volume of the simula-
tion box, e the elementary charge, he the enthalpy per
electron, Ekµ and fkµ are the eigenvalue and Fermi occu-
pation number of the Bloch state |kµ〉, and 〈kν|v̂|kµ〉 are
matrix elements with the velocity operator.47 A Gaussian
function is used to slightly broaden the delta function to
a finite width as necessary.
The static electrical conductivity is directly given

by the coefficient L11(ω), also known as the Kubo-
Greenwood formula,48,49 in the limit of zero frequency:

σ = lim
ω→0

L11(ω). (2)

Second, the thermal conductivity is calculated via the
relation:

λ = lim
ω→0

1

T

(

L22(ω)−
L2
12(ω)

L11(ω)

)

. (3)

The thermopower is defined as

α = lim
ω→0

L12(ω)

TL11(ω)
. (4)

The zero-frequency limits are taken by making linear fits
to the results from the above expressions in a narrow fre-
quency interval, excluding the abrupt and unphysical de-
crase to zero in the Lmn(ω = 0) which occurs due to the
finite number of particles in the calculations. The width
of this interval is selected as narrow as possible, and it
is usually different for each of the individual transport
coefficients (2), (3), and (4) because of their different
frequency behaviors. It also depends on density, temper-
ature, and particle number and thus the procedure needs
to be performed manually for each particular calculation.

The most important aspect of DFT calculations is
the choice of exchange-correlation functional. For Mo,
the AM05 exchange-correlation functional50,51 gives very
good equilibrium density and bulk modulus5 and was
therefore used in all calculations above 4 g/cm3. For
expanded states, we used the PBE functional52 instead
since PBE gives good atomization energies, a property
that is important in the region around the critical point.
Furthermore, calculations for expanded states converge
significantly better with PBE than with AM05.53 We ver-
ified that AM05 and PBE yield identical results for the
thermoelectric transport properties in test calculations of
several states above 4 g/cm3.

Of particular importance is the fidelity of the pseu-
dopotentials employed to reduce the number of electrons
carried self-consistently in the FT-DFT calculations.54

We exclusively use the GW-labeled 14 electron projector-
augmented wave (PAW) pseudopotential55,56 in all LRT
calculations (with 300 eV cutoff energy) and in all MD
simulations of the fluid (with 800 eV cutoff energy). In
a recent technical report,57 it was shown that various
other molybdenum pseudopotentials for VASP produce
slightly less accurate results for the lattice constant and
electronic density of states, even in ground-state calcu-
lations. During the construction of the GW-labeled set
of pseudopotentials, special care was taken with the pro-
jectors for the (at zero temperature) unoccupied Kohn-
Sham states.56 These states become relevant when they
are partially occupied at high temperatures54 or when
involved in calculating transition matrix elements.

The high accuracy of the 14 electron potential notwith-
standing, the 6 electron PAW potential (with 400 eV cut-
off energy) was used in the MD simulations to create the
ensemble of ionic configurations of the solid, where the
thermal occupation of excited states is still small. In test
calculations we checked that using either of the two PAW
potentials in these MD simulations did not influence the
electronic transport coefficients. Importantly, the subse-
quent LRT calculations of thermoelectric properties were
all done using the 14 electron GW-labeled PAW poten-
tial.

Achieving sound numerical convergence is a fundamen-
tal aspect in FT-DFT.58 Depending on the phase of the
system, i.e., fluid or solid, different numerical parameters
were used. The relevant settings, especially the particle
number and the k-point grids, were extensively conver-
gence tested.
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All MD simulations were made in the canonical ensem-
ble (NVT) using a Nosé thermostat59 and the Baldereschi
k-point.60 Following equilibration, each thermodynamic
state was run for 3000 to 20 000 time steps of length of 1
to 4 fs, depending on temperature using a velocity-verlet
time integration algorithm.

In the fluid phase, excellent convergence of all trans-
port coefficients could be achieved with 54 atoms at or
above 5 g/cm3 and with 24 atoms at lower densities. The
respective LRT calculations (using 25-40 ionic configura-
tions from each MD) were done with a standard 2×2×2
Monkhorst-Pack grid.61 Table I contains two represen-
tative examples of convergence tests made for the fluid
phase.

Calculating converged thermoelectric transport coef-
ficients for the solid is much more demanding than for
the fluid, especially at low temperatures. The long mean
free path of the electrons requires both larger simula-
tion boxes (with more particles) as well as denser k-point
meshes due to the high symmetry of the ionic configura-
tions. We illustrate this with two examples in Table I.
Increasing the particle number and k-point grids does not
necessarily lead to a uniform convergence of the trans-
port coefficients and outliers may occur. Furthermore,
full convergence of σ, λ, and α can be achieved with dif-
ferent simulation parameters for each of them, whereas
α usually involves the lowest and λ the highest numer-
ical effort. For instance, at 1000 K one can calculate a
well-converged thermopower with 128 atoms, while the
electrical conductivity requires at least 250 atoms. The
thermal conductivity can be determined barely within a
few percent at 1000 K, but this improves rapidly at higher
temperature. Our second example at 2500 K shows that
the higher thermal disorder in the lattice leads to a much
better convergence for all transport coefficients.

As a consequence, we made extensive sets of calcula-
tions with 54, 128, and 250 atoms using different k-point
sets for each considered density and temperature below
3000 K. All final results for the transport coefficients in
the solid phase were taken from the MD simulations with
250 atoms. An irreducible wedge of the 4 × 4 × 4 k-
point grid was used in the respective LRT calculations.
This generally produced very well converged results for
all transport coefficients. The occasional tendency to-
ward an underestimation of the thermal conductivity at
1000 K did not affect the quality of the fit function de-
rived from the complete set of results, Eq. (8).

To conclude on the methodology for calculating ther-
moelectric properties, we did not calculate the contribu-
tion of the phonons to the thermal conductivity of the
solid. The reason is that the Wiedemann-Franz law is
fulfilled within a few percent at room temperature,1,6 see
subsection III C. Therefore the ionic contribution is likely
to be very small and it further decreases, usually with
1/T behavior at elevated temperatures above the Debye
temperature.62 The phonon contribution to the thermal
conductivity therefore does not need to be taken into ac-
count at the high temperatures that is the focus of the

present work.

III. RESULTS

Here we present the results for the thermoelectric
transport properties and compare with available experi-
ments. We note that the FT-DFT-MD simulations also
yield the equation of state as a byproduct, with which
we can estimate the critical density of molybdenum to be
near 3 g/cm3 and the critical temperature near 11 000 K.
This result is close to earlier estimations from theory and
experiment.63–65 Our main data set ranges across a reg-
ular grid from 2 to 13 g/cm3 and from 1000 to 20 000 K,
excluding the thermodynamically unstable region in the
subcritical fluid.
In some cases the finite number of atoms in our MD

boxes allowed us to simulate both a liquid and solid phase
at identical density and temperature. Having such an
overlap of results is very helpful for our purposes. It sig-
nificantly reduces the need to extrapolate the fit formulae
when approaching the melting line.

A. Electrical conductivity

We display several isochores of the electrical conduc-
tivity in Fig. 1. In both the liquid and solid phases the
electrical conductivity increases roughly linearly with the
density. The temperature dependence, however, is drasti-
cally different between the liquid and solid phase. While
the conductivity decreases strongly with the tempera-
ture in the solid, it is almost independent of temperature
in the liquid up to about 10 000 K. This is a relatively
common behavior for a metallic system6,66 and is a con-
sequence of the drastic change in the electronic and ionic
structure at melting. At higher temperatures the electri-
cal conductivity shows a linear temperature dependence.
It decreases if the density is sufficiently high but increases
at lower densities, which is a well-known property of ex-
panded metallic liquids and plasmas. This inversion of
the temperature behavior occurs near 4 g/cm3.
The following simple expression was found to lead to an

excellent fit for the electrical conductivities in the solid,
σs. It reads:

Tσs = a0 + a1̺+ a2T + a3 lnT (5)

The coefficients ai are given in Table II. Before per-
forming the least-squares fit, we combined our calculated
conductivity results set, which does not include any data
below 1000 K, with the accepted experimental data6 be-
tween 250 K and 1000 K. The fit formula is thus ap-
plicable from room temperature up to the melt line for
densities between 9 and 13 g/cm3. The volume expansion
has been taken into account when processing the exper-
imental data, see Appendix A for details. The resulting
fit curves are included in Fig. 1.
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TABLE I. Representative convergence tests for the calculated thermoelectric properties with respect to the number of atoms N
and the Monkhorst-Pack k-point meshes61 used in the LRT calculations. The thermodynamic states are located in the dense
and expanded fluid at 10 000 K and in the solid at 1000 K and 2500 K. The RW indicates that a reduced wedge of the k-point
grid is used, generated by projection of the full grid into the irreducible Brillouin zone of an ideal bcc lattice. Especially, the
RW 2 × 2 × 2 corresponds to the Baldereschi mean-value point.60

T (K) ̺ (g/cm3) N k points σ (MS/m) λ (W/Km) α (µV/K)

10 000 5 24 Γ 0.50 ± 0.02 85 ± 3 6 ± 4

10 000 5 24 2 × 2 × 2 0.47 ± 0.01 91 ± 1 4 ± 2

10 000 5 24 3 × 3 × 3 0.47 ± 0.01 90 ± 1 3 ± 2

10 000 5 54 Γ 0.46 ± 0.01 93 ± 2 3 ± 3

10 000 5 54 2 × 2 × 2 0.46 ± 0.01 90 ± 1 3 ± 2

10 000 13 54 Γ 1.53 ± 0.02 334 ± 6 17 ± 4

10 000 13 54 2 × 2 × 2 1.49 ± 0.01 343 ± 2 13 ± 2

10 000 13 54 3 × 3 × 3 1.48 ± 0.01 342 ± 2 14 ± 2

10 000 13 128 Γ 1.49 ± 0.01 343 ± 2 12 ± 3

10 000 13 128 2 × 2 × 2 1.50 ± 0.01 344 ± 2 14 ± 2

1000 10 54 RW 4 × 4 × 4 3.6 ± 0.4 68 ± 7 40 ± 10

1000 10 54 RW 6 × 6 × 6 3.2 ± 0.3 68 ± 5 14 ± 6

1000 10 54 RW 8 × 8 × 8 3.2 ± 0.3 72 ± 5 16 ± 5

1000 10 128 RW 2 × 2 × 2 4.6 ± 0.4 89 ± 6 4 ± 8

1000 10 128 RW 4 × 4 × 4 3.6 ± 0.2 83 ± 5 21 ± 6

1000 10 128 RW 6 × 6 × 6 3.5 ± 0.1 79 ± 4 16 ± 5

1000 10 128 RW 8 × 8 × 8 3.5 ± 0.1 83 ± 4 17 ± 5

1000 10 250 RW 2 × 2 × 2 4.3 ± 0.2 84 ± 5 8 ± 7

1000 10 250 RW 4 × 4 × 4 4.0 ± 0.1 91 ± 4 16 ± 6

1000 10 250 RW 6 × 6 × 6 4.0 ± 0.1 90 ± 4 19 ± 5

1000 10 432 RW 2 × 2 × 2 4.0 ± 0.1 83 ± 5 50 ± 10

2500 13 54 RW 6 × 6 × 6 2.9 ± 0.2 176 ± 7 5 ± 5

2500 13 54 RW 8 × 8 × 8 2.9 ± 0.2 175 ± 6 5 ± 5

2500 13 128 RW 4 × 4 × 4 3.0 ± 0.1 171 ± 5 14 ± 5

2500 13 128 RW 6 × 6 × 6 2.9 ± 0.1 173 ± 5 12 ± 5

2500 13 250 RW 2 × 2 × 2 3.2 ± 0.2 172 ± 6 19 ± 6

2500 13 250 RW 4 × 4 × 4 3.0 ± 0.1 177 ± 4 14 ± 5

TABLE II. Coefficients for the electrical σs (second row) and
thermal conductivity λs (third row) of solid molybdenum. All
units are chosen in a way that entering temperatures in K and
densities in g/cm3 leads to results in MS/m for σs or W/Km
for λs, respectively.

Tσs λs

a0 1514 96.8

a1 1204 30.4

a2 0.796 0.0237

a3 -1506 -47.7

Finding a closed fit formula for the electrical conduc-
tivity in the fluid phase is difficult. For simplicity, we
split the expression into a temperature-independent part
valid in the subcritical liquid and a part with linear tem-
perature dependence for higher temperatures. All values
in the liquid up to 8000 K can be fitted very accurately

with the simple formula:

σf1 = b0 + b1̺ (6)

The remaining results (between 10 000 K and 20 000 K)
were used to parametrize the expression:

σf2 = b0 + b1̺+ b2̺
2 + b3T + b4̺T + b5̺

2T (7)

It is very easy to make a steady connection between the
above formulae. The coefficients bi for the Equations (6)
and (7) are collected in Table III. Fig. 1 shows how the
resulting fit curves match the ab inito results.
A comparison of our conductivities with experiments

is shown in Fig. 2, which displays the electrical resistivity
R = 1/σ. For the solid we find very good agreement with
the values recommended by Desai et al.

6 and with the
data from Hixson & Winkler.9 The thermal expansion of
the solid has been taken into account, see Appendix A.
The electrical resistivity of liquid molybdenum has

been measured in exploding wire experiments.7–10 The
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FIG. 1. (Color online) Isochores of the electrical conductivity
of molybdenum. For the fluid phase the calculated values are
shown as circles, whereas squares of identical color indicate
results in the solid phase. The solid lines are results of Eq.
(5). The dashed lines correspond to a steady connection of
the Equations (6) and (7) for the fluid phase, respectively.

TABLE III. Coefficients for the electrical conductivities σf1

(second row) and σf2 (third row) of fluid molybdenum. All
units are chosen in a way that entering temperatures in K and
densities in g/cm3 leads to results in MS/m.

σf1 σf2

b0 -0.074 -0.383

b1 0.121 0.195

b2 - −3.09 × 10−3

b3 - 2.14 × 10−5

b4 - −6.39 × 10−6

b5 - 2.83 × 10−7

agreement of our conductivities σf1 with these experi-
ments is excellent, as can be seen from Fig. 2. We em-
phasize that the increase in the resistivity with tempera-
ture is caused only by the reduction in the density of the
liquid. Our calculations show that the temperature has
no noticeable effect on the electrical conductivity of the
liquid below 8000 K when the density is kept constant,
see Fig. 1.

The electrical conductivity of more widely expanded
and hotter plasma states has also been measured.11 How-
ever, there is only a partial overlap in the thermodynamic
parameters between our results and those experiments.
Furthermore, since the temperature of the molybdenum
plasma could not be measured, the change in the inter-
nal energy was reported instead. The experimental un-
certainties aside, we observe good agreement also with
these experimental data when determining the respec-
tive temperatures with our calculated caloric equation of
state.

0 1000 2000 3000 4000 5000 6000
T [K]

0

0.5

1

1.5

2

R
 [µ

Ω
m
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This work
Seydel et. al. (1980)
Desai et al. (1984)
Pottlacher et al. (1991)
Hixson & Winkler (1992)
Hüpf et al. (2008)

FIG. 2. (Color online) Electrical resistivity of molybdenum
from Eq. (5) and (6) in comparison with experiments.6–10 The
resistivity increases abruptly at the melt boundary (2900 K).
The experiments were performed at ambient pressure. The
volume expansion for the solid was calculated as described in
the Appendix A. The expansion data from Hüpf et al.10 was
used for the liquid.

B. Thermal conductivity

Our calculated thermal conductivities are shown in
Fig. 3. The increase with the density is similar to what
is observed also for the electrical conductivity in both
the fluid and the solid phase. The temperature depen-
dence in the fluid is strong and substantially nonlinear.
In the solid its influence is much weaker and more diffi-
cult to resolve, especially between 1000 K and 3000 K,
due to the statistical fluctuations in our results. For tem-
peratures above about 3000 K the thermal conductivity
undoubtedly rises with the temperature.
It is experimentally known1,14 that the thermal con-

ductivity decreases with the temperature below 1000 K,
the lowest temperature for which we have produced re-
sults. By combining our calculated results with the ex-
perimental thermal conductivities below 1000 K,14 we are
able to give a very reasonable analytical fit for the ther-
mal conductivity of solid molybdenum. Keeping in mind
that the thermal conductivity naturally has a linear in-
trinsic temperature dependence, we choose a functional
form that is analogous to Eq. (5):

λs = a0 + a1̺+ a2T + a3 lnT (8)

The respective coefficients ai are given in Table II as
well. The fit curves are displayed in Fig. 3. The shallow
minimum in the thermal conductivity is located close to
2000 K.
Experiments at ambient pressure12–17 showed that the

thermal conductivity decreases with the temperature up
to the melting temperature. This decrease is pronounced
below 1000 K14 but weakens at higher temperature. We
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FIG. 3. (Color online) Isochores of the thermal conductivity
of molybdenum. For the fluid phase the calculated values are
shown as circles, whereas squares of identical color indicate
values in the solid phase. The solid lines are results of Eq. (8).
The dashed lines correspond to Eq. (9) for the fluid phase,
respectively.
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FIG. 4. (Color online) Comparison of our results for the ther-
mal conductivity of solid molybdenum from Eq. (8) with ex-
perimental data.12–17 The values of Mikol and Hoch & Nitti
were extracted from the paper of Jones & Hopkins.17 The
experiments were performed at ambient pressure. The re-
spective volume expansion was calculated as described in the
Appendix A.

compare our fit, Eq. (8), with these experiments in Fig. 4,
taking into account the thermal expansion in the exper-
iments (see Appendix A). Given the variation between
all the sets of different experiments, we can infer that
the theoretical results are of high fidelity. This is espe-
cially true for the slope at high temperature, which is
determined by the interplay between the nonlinearities
in expansion and thermal conductivity itself.
It is particularly worth noting that the effect of thermal

expansion leads to a qualitatively different temperature

TABLE IV. Coefficients for the thermal conductivity λf of
fluid molybdenum. All units are chosen in a way that entering
temperatures in K and densities in g/cm3 leads to results in
W/Km.

c0 -7.021

c1 1.208

c2 0.7929

c3 -22780

c4 21070

c5 -2926

c6 1.241

c7 -0.1914

c8 -0.05672

dependence. For example, the minimum in the thermal
conductivity near 2000 K at constant density does not
exist at all when the pressure is held constant instead.
For the fluid phase the thermal conductivities are fit

to the following expression:

lnλf = c0 + c1 ln ̺+ c2̺+
c3
T

+ c4
ln ̺

T
+ c5

̺

T
+ c6 lnT + c7 ln ̺ lnT + c8̺ lnT (9)

This functional form is a good compromise between sim-
plicity and numerical accuracy. The nine coefficients ci
are given in Table IV and the resulting curves are in-
cluded in Fig. 3.
We are not aware of experimental measurements of

thermal conductivities for fluid molybdenum. If such
experiments are achieved in the future, it will be very
interesting to compare them to our predictions.

C. Lorenz number

Having calculated both the electrical and thermal con-
ductivity, it is insightful to examine the Lorenz number,

L =
e2λ

k2BTσ
. (10)

In regions of high electron degeneracy this quantity takes
the constant value of L = π2/3, which is known as the
Wiedemann-Franz law.19 To explore how well this rela-
tion actually holds, we plot the Lorenz number calcu-
lated by our fit formulae, Eq. (5) and (8) for the solid
and Eq. (6), (7) and (9) for the fluid in Fig. 5.
The left panel of Fig. 5 shows the very systematic be-

havior of the isochores of the Lorenz number in the solid
phase. Starting with slightly higher values than π2/3 at
room temperature, it decreases to a density-dependent
minimum value and then rises again. The maximum de-
viation from the Wiedemann-Franz law does not exceed
10% by very much in the entire region of interest.
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FIG. 5. (Color online) Left panel: Isochores of the Lorenz
number in the solid phase. Right panel: Isotherms of the
Lorenz number in the liquid phase. The dashed line indicates
the Wiedemann-Franz law in both panels.

In the fluid phase, the Lorenz number shows a much
more nonlinear behavior, which is shown in the right
panel of Fig. 5 along several isotherms. The deviations
from the Wiedemann-Franz law are particularly strong
at high temperatures, which is expected due to a de-
creasing electron degeneracy. There is also a particularly
strong trend of a steeply rising Lorenz number toward low
densities. Such behavior was already observed in earlier
calculations for hydrogen,23 where a strong increase up
to one order of magnitude was observed in the partially
denenerate, expanded plasma.
We find that, although the Wiedemann-Franz law is

approximately valid for solid and liquid molybdenum,
it is not to be relied upon in the low-density or high-
temperature fluid regimes.

D. Thermopower

The thermopower is, like the Lorenz number, a very
sensitive quantity, strongly influenced by the electronic
structure. For electronic conductors it usually has a neg-
ative sign although exceptions are not uncommon, espe-
cially among the transition metals.3 This is also the case
for molybdenum.
We display our calculated values for the thermopower

in Fig. 6. For densities between 8 and 13 g/cm3 the ther-
mopower takes a small and relatively constant value of
about +15 µV/K. This number is the same for both the
solid and the liquid so that, in contrast to the electri-
cal and thermal conductivity, the thermopower has no
noticeable discontinuity at the melting line. In the hot
fluid the thermopower decreases with temperature and
volume to reach large negative values.
Since the thermopower of fluid molybdenum is only of
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FIG. 6. (Color online) Isochores of the thermopower of molyb-
denum. For the fluid phase the calculated values are shown
as circles, whereas squares of identical color indicate results
in the solid phase.

minor importance for practical applications, we did not
attempt to write analytical expressions with optimized
parameters for it.
Experimental data for the thermopower of molybde-

num are very scarce and only avaliable for the solid up
to a fairly low temperature of about 700 K.3 Our main set
of results for the transport coefficients begins at 1000 K
because of the significant numerical challenges in going to
lower temperatures. Achieving a converged limit (ω → 0)
in the evaluation of the expressions shown in section II
becomes very demanding for low-temperature metallic
solids. The mathematical structure of Eq. (4), however,
which is a quotient of two Onsager coefficients, helps to
compensate these difficulties somewhat. Table I shows
that the thermopower indeed converges much easier with
the particle number than the conductivities do in the
solid phase. With two additional sets of calculations, in
which we used 200 ionic configurations each, we were able
to calculate a well-converged thermopower for 500 K and
750 K at the experimental density. Our theoretical re-
sults are compared to the experiment3 in Fig. 7, with
very good agreement. As noted above, we predict that
the thermopower levels off and remains at a value close
to 15 µV/K for higher temperatures.

E. Behavior at higher temperatures

We now present an outlook on how the behavior of the
electronic transport coefficients calculated in the previous
sections changes at even higher temperature, i.e., up to
50 000 K. Fig. 8 shows the electrical and thermal conduc-
tivity, Lorenz number, and thermopower for the 10 g/cm3

isochore, which roughly corresponds to the normal solid
density of molybdenum.
We see that the linear decrease in the electrical conduc-
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FIG. 8. (Color online) Transport properties of fluid molybde-
num at 10 g/cm3 and high temperatures.

tivity between 10 000 K and 30 000 K becomes weaker at
higher temperature. The thermal conductivity shows a
significant upwards bend at the same temperature. This
is a characteristic sign for ionization of additional bound
electrons. The Lorenz number, which decreases below
30 000 K, has a minimum there and starts rising again.
One would not expect it to reach the Spitzer limit67

at 50 000 K because the electron system remains par-
tially degenerate there. The thermopower decreases and
changes sign also near 30 000 K and takes standard neg-
ative values. This may indicate a significant decrease in
the correlations within the electron system.
The nonlinear temperature behavior of the thermoelec-

tric transport coefficients can be expected to continue
up to much higher temperatures due to the high atomic
number and, thus, possible ionization processes. Cal-
culating the transport properties of dense molybdenum

plasma for a wider parameter range is beyond the scope of
this work. However, the results given here are certainly
useful for developing, testing, or parametrizing plasma
transport theories, e.g., like from Refs. 68–71 in the warm
dense matter regime.

IV. SUMMARY AND DISCUSSION

We have shown that the thermoelectric transport prop-
erties of molybdenum, a refractory metal with complex
electronic structure, can be calculated with high accu-
racy with density functional theory methods. Very good
agreement with experiments of solid and liquid molybde-
num is achieved for the electrical conductivity, thermal
conductivity, and the thermopower. The significant in-
fluence of the density change due to thermal expansion in
experiments performed at constant pressure is discussed
in detail. We furthermore develop fit formulae that al-
low easy application of our conductivity results, valid
from room temperature up to 20 000 K and a density
range between 2 g/cm3 and 13 g/cm3. The findings are of
significant importance for many practical applications of
molybdenum in states of warm dense matter, especially
in designing and optimizing high energy-density physics
experiments, for example MAPS.2 Furthermore, our ac-
curate set of results can be used in the development of
wide-range models for plasma transport properties that
require a high fidelity also in condensed phases.
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Appendix A: Thermal expansion of the solid

The independent thermodynamic quantities in our FT-
DFT-MD simulations are the density and the tempera-
ture. However, experimental measurements of transport
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properties in the solid are usually done at constant pres-
sure. For direct comparisons between our theoretical and
the experimental values, it is necessary to consider the
thermal expansion, which becomes particularly impor-
tant at high temperature.

The change in density at constant pressure can be ex-
pressed by72

̺(T ) = ̺0 exp [−3I(T )] , (A1)

where

I(T ) =

T
∫

T0

dT ′(4.64× 10−6 + 6.71× 10−10T ′ (A2)

+ 1.24× 10−12T ′2 − 6.43× 10−16T ′3

+ 2.36× 10−19T ′4).

The latter expression (temperatures to be entered in
K) is a fit to experimental thermal expansivity data of
molybdenum displayed in the paper of Lu et al.

72 and is
valid from room temperature up to the melting line for
ambient pressure. Whenever we process or make com-
parisons to experimental data in the solid phase, we em-
ploy the above expressions with a reference density of
̺0 = 10.228 g/cm3 at T0 = 298 K.73 At the melting
point (2900 K)74 the density has reduced by about 7%.
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