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(Dated: September 23, 2014)

We show that the Rashba spin-orbit interaction in d electron solids, which originates from the
broken inversion symmetry at surfaces or interfaces, is strongly dependent on the orbital characters
of the bands involved. This is studied by developing a tight-binding model in the presence of a
uniform perpendicular electric field and spin-orbit coupling. We argue that for valence electrons,
the spin-orbit coupling strength scales only as the square of the atomic number. The electric field
distorts the d orbitals through admixture of p and f states and also introduces new inter-site overlap
parameters. Expressions for Rashba coefficients for the bands are obtained in both weak and strong
spin-orbit interaction limits and are shown to be orbital dependent. The results are compared with
first-principles calculations for model systems, showing good agreement. Our study demonstrates
the orbital dependent gate control of the Rashba effect for the purposes of oxide electronics.

PACS numbers: 73.20.-r, 71.10.-w, 31.15.A-

I. INTRODUCTION

The recent discovery of the Rashba effect1 in the two-
dimensional electron gas (2DEG) systems such as per-
ovskite surfaces and interfaces has led to the possibility
of tuning its properties by external electric fields.2 The
study of the Rashba effect in 2DEGs is of interest not
just from a fundamental point of view, but also due to
potential applications in spintronics devices.3 In contrast
to their semiconductor counterparts, the perovskites are
characterized by the presence of high-Z elements and d
electrons with strong spin-orbit interaction.

For 2D electrons confined to the xy plane and sub-
jected to an electric field along ẑ, the Rashba splitting
is commonly described by the Bychkov-Rashba Hamilto-
nian,4

HR = αR(~σ × ~k) · ẑ = αR(kyσx − kxσy), (1)

where ~k = (kx, ky, 0) is the electron crystal momentum,
~σ = (σx, σy, σz) are the Pauli matrices and αR is the
Rashba coefficient. The Rashba effect originates from
a combination of the inversion symmetry breaking and
spin-orbit interaction and has predominant contribution
from the nuclear regions in the solid.5,6 It has been ob-
served in numerous condensed matter systems including
metal surfaces,7,8 topologial insulators,9,10 interfaces of
perovskite oxides2,11–13 etc.

On the theoretical side, tight-binding (TB) based
model Hamiltonian approaches14,15 have been success-
ful in understanding the Rashba effect in solids. The
basic idea is to incorporate the effect of broken inver-
sion symmetry phenomenologically into atomic orbital
overlap parameters. For example, in the case of p or-
bitals on a plane, the coupling between in-plane px, py
orbitals and out of plane pz orbitals are zero. However,
if the symmetry is broken by an external field, it leads
to matrix elements between these orbitals14 and in con-
junction with spin-orbit interaction will result in effective
couplings between spin-up and spin-down bands.

These ideas have been used to study Rashba effect in
several systems of current interest such as graphene16–18

and polar complex oxides.6,19–21 In the case of graphene,
which is a sp-band system, model studies showed that
in addition to the intersite coupling terms similar to the
one proposed earlier, there also exist onsite terms that
play an important role.18 They arise from electric-field-
induced couplings with orbitals that satisfy the selections
rules ∆l = ±1 and ∆m = 0 at the same site as these
atomic wave functions are no longer orthogonal in the
presence of external electric field.

At the complex oxides interfaces of LaAlO3/SrTiO3

and surfaces of KTaO3, a 2DEG with transition metal (Ti
or Ta) d orbital character develops. These systems have
strong spin-orbit interaction and the structural inversion
symmetry is broken at the interfaces/surfaces making
them good candidates for exhibiting a strong Rashba
effect. In the case of the LaAlO3/SrTiO3 interface, it
was shown that the magnitude of the splitting can be
tuned by an applied gate voltage.2 Tight-binding mod-
els19,21 for the t2g states on a cubic lattice were found to
agree well with first principles calculations based on the
density-functional theory (DFT). It has also been sug-
gested that the polar distortions of the metal ion oxy-
gen bonds also play an important role in Rashba split-
ting.20 From density functional calculations of KTaO3,
we showed earlier that the 2DEG can be manipulated by
the electric field to go in and out of the surface offering a
method to tailor the magnitude of the Rashba splitting.6

In this paper, we present detailed theoretical models
to understand the dependence of Rashba coefficient on
the orbital character and spin-orbit (SO) coupling of the
atomic states in the material. We obtain expressions for
αR in the weak and strong SO interaction limits. First
principles calculations are performed on model systems
containing single atomic layer of Ti or Ta on a square
lattice, to make connection with the TB model.

This paper is organized as follows. In the next section,
we discuss the orbital dependence of spin-orbit coupling
strength, which is a crucial ingredient in Rashba effect in
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solids. In Sec. III, we construct the tight-binding Hamil-
tonian for d orbitals under a uniform electrostatic po-
tential and discuss the origin of various contributions.
Derivation of effective Hamitonians for individual bands
is discussed in Sec. IV. Finally, the results from the tight-
binding model are compared with first-principles calcu-
lations in Sec. V.

II. VARIATION OF SPIN-ORBIT COUPLING
WITH ATOMIC NUMBER

It is well known that the spin-orbit interaction strength
λ increases rapidly with the atomic number Z. However,
there is some confusion in the literature regarding just
how rapid this increase is. We clarify this issue here and
emphasize that the spin-orbit interaction strength for the
outer electrons in the atom, i. e., the electrons that are
relevant to the properties in the solid state, increases only
as the Landau-Lifshitz scaling Z2, while it increases much
more rapidly within a certain series such as 3d, where
it scales as Z4 as suggested by the simple hydrogenic
result. The Landau-Lifshitz scaling argument24 is based
on an estimate of the penetration of the outer electrons,
rather than the electrons of a particular series, into the
nuclear region where the bulk of the spin-orbit interaction
originates.

The origin of the Z4 dependence is well known. The
spin-orbit interaction of an electron in a central field of
potential V (r) is given by the expression

HSO(r) =
r−1

2m2c2
∂V (r)

∂r
~L · ~S = λ(r)~L · ~S, (2)

and if we evaluate its expectation value using the
Coulomb potential V (r) = −Ze2/r and the hydrogenic
wave functions Rnl(r) with energy E0

nl, we get the well-
known result for the perturbative correction due to the
spin-orbit interaction, viz.,22

Enl = E0
nl + λnl × 2−1[j(j + 1)− l(l + 1)− 3/4], (3)

where j and l are total and orbital angular momentum
quantum numbers with

λnl =

∫ ∞
0

R2
nlλ(r)d3r =

α2Z4

n3l(l + 1/2)(l + 1)
Ryd., (4)

which increases as Z4, α being the fine structure con-
stant. To see how well this is obeyed in the actual atoms,
we have taken the spin-orbit interaction strength λnl, cal-
culated by Herman and Skillman23 using the Hartree-
Fock method with the Slater exchange, and have plotted
these in Fig. 1 along with the hydrogenic expression Eq.
4 for the 3d series. As seen from the Figure, even though
the Z4 power dependence is not too bad for large Z for
a particular series, the magnitude of λnl is nevertheless
severely overestimated by Eq. 4. This is not surprising
because the hydrogenic result neglected the screening of
the nuclear potential by the innermost core electrons.

However, in the solid, the outer electrons are the rele-
vant electrons, whose quantum numbers nl change with
Z. If one considers the outermost electrons for the
atoms without worrying about nl, then Landau and Lif-
shitz have argued that the spin-orbit interaction strength
should scale more like Z2, viz.,

λ = Aα2Z2 Ryd., (5)

where A is of the order of one. We find that if we con-
sider the outer electrons in the atom (shown by dots and
the shaded area in Fig. 1), then λnl does roughly fol-
low this Z2 dependence with A ≈ 0.1 as illustrated in
Fig. 1. Note that the Z2 dependence describes the rough
overall systematic variation of the spin-orbit interaction
strength and not the non-systematic change from element
to element. Thus the strength of the relevant spin-orbit
interaction, viz., that for the outer electrons, does not
increase nearly as fast as Z4 as sometimes thought in the
literature based on the hydrogenic expression Eq. 4. The
spin-orbit interaction strengths for the atoms considered
in this paper are listed in Table I.
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FIG. 1. (Color online) Dependence of the spin-orbit coupling
strength λnl for atoms as a function of the atomic number
Z. The calculated results of Herman and Skillman23 using
the Hartree-Fock method (colored lines) are compared to the
hydrogenic Z4 dependence, which is computed from Eq. 4
for the 3d series (upper dashed line). For the outermost elec-
trons (indicated by the circles and the shaded area), which are
the relevant electrons in the solid, the quantum numbers nl
change with Z and the spin-orbit interaction increases much
more slowly, following roughly the Landau-Lifshitz Z2 scaling
(lower dashed line, calculated from Eq. 5 with A = 0.10).

III. TIGHT-BINDING MODEL

To describe the Rashba spin-orbit interaction, the
model Hamiltonian should have three terms: a band
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TABLE I. Spin-orbit coupling strength (in eV) for the out-
ermost electrons in the atoms considered in this work as ob-
tained from the Hydrogenic expression (λHyd, Eq. 4), the
Landau-Lifshitz scaling (λLL, Eq. 5), and from the Hartree-
Fock calculations of Herman and Skillman (λHF). The last
column λsolid lists the calculated values for the solid from the
present DFT calculations. The atomic values differ from λsolid

because of admixture of other orbitals and the delocalized na-
ture of the outermost electrons in the solid as compared to
the atom.

Element Z λHyd λLL λHF λsolid

Ti 3d 22 0.42 0.035 0.023 0.02
Ta 5d 73 11 0.39 0.30 0.18

structure term HK , a spin-orbit term HSO, and the
electric-field induced inversion symmetry breaking term
HE ,

H = HK +HSO +HE. (6)

To model the 2DEG at the perovskite structures, we
would like to use a linear combination of atomic d orbitals
as basis functions denoted by |φα~R〉, where α is the com-

bined orbital and spin index and ~R is the lattice vector,
which points to atoms on a square lattice as shown in
Fig. 2. Note that, in actual systems the d orbitals are
interconnected through oxygen p states. Since SOI in
oxygen is quite small, we can incorporate their effect as
an effective d− d coupling.

z

E

V

unitcell

FIG. 2. (Color online) The model contains a square lattice
with an applied electric field along the ẑ direction (right).
First principles calculations in Sec. V are carried out on a
unitcell with ∼ 10 Å vacuum and a sawtooth potential (left).

The electrostatic potential HE breaks the spherical
symmetry around the atoms and distorts the atomic or-
bitals. But it is much weaker than the nuclear potential,
hence, we can treat HE as a perturbation and write

H = H0 + ζHE, (7)

where H0 = HK +HSO and ζ is a dimensionless param-
eter (ζ = 1). With |φ1

α~R
〉 as the first order corrections to

the atomic orbitals, we can write the matrix elements of

H as,

〈φα~0 + ζφ1
α~0
|H0 + ζHE|φβ ~R + ζφ1

β ~R
〉

= 〈φα~0|HK|φβ ~R〉+ 〈φα~0|HSO|φβ ~R〉+ ζ〈φα~0|HE|φβ ~R〉
ζ[〈φα~0|H0|φ1β ~R〉+ 〈φ1

α~0
|H0|φβ ~R〉] +O(ζ2)

= TK + TSO + TE + T1 (8)

where TK, TSO and TE are matrix elements with the un-
perturbed orbitals and T1 are the matrix elements intro-
duced by the perturbation. We ignore terms quadratic
in ζ. Note that we have taken into account the fact that
not only does the changed Hamiltonian modify the hop-
ping integral between the original basis orbitals, but in
addition the basis orbitals themselves become modified
via the admixture of other atomic orbitals at the same
site, viz., the p and the f orbitals. In other words, the
Hilbert space axes become modified as well. We discuss
the individual terms in detail below.

A. Kinetic energy terms TK

The periodic nature of the lattice helps us construct
the matrix elements 〈φα~0|HK|φβ ~R〉 in the reciprocal space

by writing the atomic orbitals as a Bloch sum,

|χα~k〉 =
1√
N

∑
~R

ei
~k·~R|φα~R〉. (9)

So that,

TK(~k) = εαδαβ +
∑
〈~R〉

ei
~k·~RTK(~R). (10)

The sum runs over the nearest neighbor lattice sites

except the central site, ~R = 0, which produces the first
term with εα being the onsite energies. For the atomic
orbitals in the order φα ≡ {dz2 , dx2−y2 , dxy, dxz, dyz}, the

T̂K matrix can be written down with the help of Slater-
Koster tables,25,26

T̂K =


h1 h12 0 0 0
h∗12 h2 0 0 0
0 0 h3 0 0
0 0 0 h4 0
0 0 0 0 h5

 , (11)

where,

h1 = ε1 + (Vσ/2 + 3Vδ/2)(cos kxa+ cos kya)

h2 = ε2 + (3Vσ/2 + Vδ/2)(cos kxa+ cos kya)

h12 = (
√

3Vδ/2−
√

3Vσ/2)(cos kxa− cos kya)

h3 = ε3 + 2Vπ(cos kxa+ cos kya)

h4 = ε4 + 2(Vπ cos kxa+ Vδ cos kya)

h5 = ε5 + 2(Vπ cos kya+ Vδ cos kxa), (12)

Vσ, Vπ, and Vδ are the Slater-Koster parameters for dd
overlap, εi are the onsite energies and a is the nearest
neighbor distance.
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B. Spin-orbit terms TSO

From Eq. 2 we can construct matrix elements of SOI
for d states,

T̂SO =
iλ

2


0 0 0 −

√
3σy

√
3σx

0 0 −2σz σy σx
0 2σz 0 −σx σy√
3σy −σy σx 0 −σz

−
√

3σx −σx −σy σz 0

 (13)

where, σx, σy, σz are the 2 × 2 Pauli spin matrices. SOI
has only onsite terms and no k-dependence. To under-
stand the effect of λ on Rashba splitting, we consider
two limits: 1) weak SOI, with λ � V where V is the
electron hopping parameter. In the first-principles cal-
culations (Sec. V), this case is simulated using 3d ion Ti
with Z = 22. 2) Strong SOI, with λ� V which is simu-
lated by the 5d element Ta with Z = 73. The values of λ
obtained for these two cases using the methods discussed
above are summarized in Table I.

C. Perturbative terms T1

To evaluate the matrix elements T1, we first write down
the expression for the first order correction from pertur-
bation theory:

|φ1
α~R
〉 =

∑
β 6=α

〈φβ ~R|HE|φα~R〉
εα − εβ

|φβ ~R〉, (14)

where the index α runs over the five d orbitals, of inter-
est here, and β runs over all other atomic orbitals at the
same site. The perturbation HE may originate from an
external electric field or proximity of an atom to a sur-
face, which also breaks the inversion symmetry. In the
simplest form, it can be written in terms of the effective
electric field η

HE = ηz, (15)

which may be different from the applied electric field due
to electronic and ionic screening.6

Now, we can write φα~R = Rα(|~r − ~R|)Ỹα(θ, φ) and

z = (4π/3)1/2 rY10. The cubic harmonics Ỹα can be
expressed in terms of the spherical harmonics Ylm, so
the matrix elements in Eq. 14 boils down to a product
of an integral over r and an angular integral over the
product of three spherical harmonics. The angular part
of the integral can be solved with the help of the Gaunt
coefficients Clm,l′m′,l′′m′′ defined as,27,28

Clm,l′m′,l′′m′′ =

∫
Ylm(θ, φ)Y∗l′m′(θ, φ)Yl′′m′′(θ, φ) dΩ

=

(
2l′′ + 1

4π

)1/2

cl
′′
(l′m′; lm), (16)

The coefficients cl
′′
(l′m′; lm) vanish unless m′′ = m′−

m and l′′ = |l − l′|, |l − l′|+ 2, . . . , (l + l′).22 The second
condition couples the d orbitals only to the p and the
f orbitals (∆l = ±1) and the first condition requires
∆m = m′′ −m′ = 0.

Following the above procedure to evaluate Eq. 14, we
find that the first-order correction to the d orbitals con-
tains just a few terms, viz.,

|d1z2〉 =
2ηp√

15
|pz〉+

3ηf√
35
|fz3〉

|d1x2−y2〉 =
ηf√

7
|fzx2−zy2〉

|d1xy〉 =
ηf√

7
|fxyz〉

|d1xz〉 =
ηp√

5
|px〉+

2
√

2ηf√
35
|fxz2〉

|d1yz〉 =
ηp√

5
|py〉+

2
√

2ηf√
35
|fyz2〉, (17)

where

ηβ =
η

εd − εβ

∫
drRβ(r)rRd(r),

which is a dimensionless parameter that depends on the
energy separation and radial spread of the orbitals. Fig. 3
shows the asymmetric dz2 orbital because of the admix-
ture with the other orbitals at the same site.

|dz2〉 |dz2〉+ ε|pz〉 |dz2〉+ ε|fz3〉

y

z

FIG. 3. Contour plot of 3dz2 orbital showing the effect of
the electric-field induced mixing with the pz and fz3 orbitals
with ε = 0.3. The colors differentiate the signs of the wave
function.

Thus, T1 includes p− d and d− f hopping parameters
due to the admixture of d orbitals with these orbitals.
The only contribution towards T1 comes from HK with
R 6= 0, since HSO does not couple different angular mo-
mentum and onsite terms of HK between different or-
bitals are zero. Evaluating all the matrix elements for
nearest neighbors, we get

T̂0 =


0 0 0 h14 h15
0 0 0 h24 h25
0 0 0 h34 h35
h∗14 h∗24 h∗24 0 0
h∗15 h∗25 h∗35 0 0

 , (18)



5

where

h14 = 2iγ1 sin kxa, h15 = 2iγ1 sin kya,

h24 = 2iγ2 sin kxa, h25 = −2iγ2 sin kya,

h34 = 2iγ3 sin kya, h35 = 2iγ3 sin kxa, (19)

the electric field dependent parameters γ1, γ2 and γ3 are

γ1 =ηp

[
Vpdσ

2
√

5
+

2Vpdπ√
15

]
+ ηf

[√
3Vdfσ

2
√

35
+

3
√

3Vdfπ

2
√

70

]

γ2 =−
√

3ηpVpdσ

2
√

5
− ηf

[
3Vdfσ

2
√

35
+

√
5Vdfπ

2
√

14

]

γ3 =− ηpVpdπ√
5
− ηfVdfπ√

70
, (20)

and Vpdσ (Vdfσ) and Vpdπ (Vdfπ) are σ and π hopping
between p (f) and d orbitals on neighboring sites. We
can make an approximate estimate of the parameters γ
by using the analytical expressions for p− d hopping,26

Vpd(σ/π) = npd(σ/π)
h̄2r

3/2
a

ma7/2
, (21)

where a is the nearest neighbor distance. For typical
values of p−d hopping parameters, npdσ = −3.14, ηpdπ =

1.36, h̄2/m = 7.62 eV·Å2, and ra = 1.08 Å. Variations
of the γ’s as a function of neighbor distance are shown
in Fig. 4. Close to the origin γ2 and γ3 diverge and
the empirical expressions for hopping given in Eq. 21 are
valid only for larger distances. Due to symmetry, the
two terms involving Vdpσ and Vdpπ in the expression for
γ1 cancel each other exactly.
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FIG. 4. (Color online) Electric field induced overlap param-
eters due to the perturbative term T1 as a function of the
nearest neighbor distance, calculated from Eqs. 20 and 21 us-
ing typical values for the parameters ηpdσ = −3.14, ηpdπ =
1.36, ra = 1.08 Å, ηp = 1, and ηf = 0.

D. Electrostatic potential terms TE

The matrix elements TE = 〈φα~0|ηz|φβ ~R〉, represents

coupling between d orbitals on different sites due to the

electrostatic potential. The integral is too complicated to
solve analytically, so we evaluate it numerically assuming
Hydrogenic functions with a screened nuclear charge Ze
for the radial part of the wavefunctions,

Rα(r) =

√(
2Ze
na0

)3
(n− l − 1)!

2n(n+ l)!
eρρlL2l+1

n−l−1(ρ), (22)

where ρ = (2Ze/na0)r, a0 is the Bohr radius, and L(ρ) is
the associated Laguerre polynomials. We find that there
are three non-zero coupling parameters, viz.,

γ′1 = η〈dz2 |z|dxz, ax̂〉 = η〈dz2 |z|dyz, aŷ〉,
γ′2 = η〈dx2−y2 |z|dxz, ax̂〉 = η〈dyz|z|dx2−y2 , aŷ〉, (23)

γ′3 = η〈dxy|z|dxz, aŷ〉 = η〈dxy|z|dyz, ax̂〉.

Here, the orbital on the left side of the inner product is
at the origin, while the one on the right is located on a
neighboring atom shifted by the lattice constant a along
the indicated direction.
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FIG. 5. (Color online) Electric field induced overlap parame-
ters due to the intersite contribution term TE obtained from
Eqs. 22 and 23 and numerical integration for 3d wave func-
tions with parameter values n = 3, l = 2, Ze = 4, and η = 1
eV/Å.

The coupling parameters, shown in Fig. 5, become neg-
ligible for distances beyond 5 Å. For a typical 3d element
like Ti, the covalent radius is about 1.5 Å, so d − d dis-
tances are∼ 3 Å. In this range, the strongest contribution
comes from γ′2 followed by γ′3 and γ′1, which is under-
standable since dx2−y2 and dxy have the largest spread
in the xy-plane. However, for shorter distances, γ′1 is the
largest, as the electric field has the strongest effect on dz2
since it lies along the z-axis. Fig. 5 shows that the rel-
ative magnitudes of the electric field induced couplings
between orbitals can be tuned by changing the lattice
spacing, and therefore also the Rashba effect with ap-
plied pressure. In the Bloch function basis, one can write
down TE explicitly in the matrix form just like Eq. 18,
and it is seen that it has exactly the same k-dependence
as T1, which is a consequence of the same symmetry in
both cases. However, they may have different forms for
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other systems. In the present case, we can use Eq. 18
as the full electric field contribution by redefining the
parameters as,

γi → γi + γ′i, (24)

Finally, collecting all the terms, viz., Eqs. 11, 13, 18,
and 24, the 10 × 10 TB Hamiltonian in the orbital-spin
space can be written as

H = (T̂K + T̂1)⊗ 1 + T̂SO, (25)

where 1 is the identity matrix in the spin-1/2 space.
After taking the five onsite energies εi to be zero
for simplicity, we have seven other TB parameters:
Vσ, Vπ, Vδ, λ, γ1, γ2, and γ3. They depend on specific sys-
tems and in Sec. V, we discuss typical values derived from
DFT calculations on Ti and Ta systems.

IV. EFFECTIVE HAMILTONIAN

By diagonalizing the full Hamiltonian in Eq. 25 at dif-
ferent k-points with appropriate parameter values we can
study the energy levels in the system. For the 2DEG in
perovskite materials, the important region in the recip-
rocal space is around the zone center. At Γ-point, the d
states are split into five doubly degenerate states by elec-
tron hopping and spin-orbit coupling. The levels are spin
degenerate when k = 0, since the effect of electric field is
zero. As long as the states are well separated, we can de-
scribe the effect of momentum dependent spin-splitting
around Γ-point for each band by a 2×2 Rashba Hamilto-
nian. The effect of the remaining 8-dimensional subspace
is folded via renormalization of the parameters. To illus-
trate this, we consider two limits of parameter values,
when spin-orbit is weak compared to electron coupling
and vice versa. The energy levels at Γ-point in both
cases are shown in Fig. 6.

Lattice SOI Lattice SOI

(a) (b)
Weak SOI Strong SOI

FIG. 6. Energy splitting for a square lattice at the Γ point in
the presence of (a) weak and (b) strong spin-orbit interaction
compared to the electron hopping parameters Vσ, Vπ.

A. Weak SOI (λ� V )

The energy levels at Γ-point, obtained from the full
tight-binding Hamiltonian is given in Fig. 6(a). Bond
formations split the states into four, where dxz and dyz
are degenerate due to symmetry. The symmetry is fur-
ther lifted by SOI. The character of the bands at these
energies are given below,

Γ′7 =

{
dx2−y2↑

dx2−y2↓
Γ′′7 =

{
1√
2
(dxz↓ − idyz↓)

1√
2
(dxz↑ + idyz↑)

Γ′′′7 =

{
dxy↑
dxy↓,

Γ′6 =

{
dz2↑
dz2↓

Γ′′6 =

{
1√
2
(dxz↓ + idyz↓)

1√
2
(dxz↑ − idyz↑).

(26)

The full Hamiltonian in Eq. 25 can be transformed
into the new basis set for weak SOI given in Eq. 26 by a
unitary transformation U†HU ,

HU =



Γ′7 Γ′6 Γ′′6 Γ′′7 Γ′′′7
3Vσ 0 0 0 0 0 λ√

2
0 −iλ 0

0 3Vσ 0 0 0 0 0 − λ√
2

0 iλ

0 0 Vσ 0 −
√

3
2λ k+γ1 0 −k−γ1 0 0

0 0 0 Vσ −k−γ1
√

3
2λ k+γ1 0 0 0

0 0 −
√

3
2λ −k+γ1 −λ2 0 0 0 0 0

0 0 k−γ1

√
3
2λ 0 −λ2 0 0 0 0

λ√
2

0 0 k−γ1 0 0 λ
2 0 iλ√

2
0

0 − λ√
2
−k+γ1 0 0 0 0 λ

2 0 iλ√
2

iλ 0 0 0 0 0 − iλ√
2

0 0 0

0 −iλ 0 0 0 0 0 − iλ√
2

0 0



, (27)

which is correct to O(k). Here, k+ ≡
√

2(ky + ikx), k− ≡
√

2(ky − ikx), and for simplicity, we have retained
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only the Vσ TB hopping term and γ1 electric field term
(taking γ2 = γ3 = 0. More complete expressions are
derived in Table II). Within each 2D subspace, the effect
of the remaining eight orbitals may be taken into account
via the Löwdin downfolding.29

The Löwdin downfolding works by partitioning the
Hamiltonian in the secular equation (H − EI)|ψ〉 = 0
into blocks

H =

(
h b
b† c

)
, (28)

where the two blocks are well separated in energy. The
effective Hamiltonian in the subspace h can be written
as,

h′ = h+ b(EI − c)−1b†, (29)

which, however, involves the eigenvalue E of the full
Hamiltonian and needs to be solved iteratively. In the
limit that the states in h and c are well separated and
the coupling b is small, we can substitute E by the eigen-
values of matrix h. Also, it can be shown that an iterative
solution of Eq. 29 produces Brillouin-Wigner perturba-
tion series, which to the lowest order yields,

h′ij = hij +
∑
k

bikb
∗
kj

E − ckk
(30)

If |bik| � |hii− ckk|, the eigenvalues E can be replaced
by the diagonal elements hii. Following this procedure,
the effective Hamiltonian within each 2D subspace can
be obtained. For example, for the Γ′′6 state we get,

HR =

(
ε αR(ky + ikx)

αR(ky − ikx) ε

)
, (31)

which can be written in the Rashba form HR = ε +
αR(kyσx − kxσy), with ε = −λ/2 and the Rashba coeffi-

cient αR = −2
√

3λγ1/Vσ from Eq. 27. Complete expres-
sions for all states are given in Table. II.

We see that both the spin-orbit coupling and the elec-
tric field are necessary to produce the Rashba term. Note
that σ represents not the real spin, but rather the spin-
orbital entangled pseudospin, which for the present ex-
ample of the Γ′′6 case as seen from Eq. 26 is:

| ↑〉 ≡ 1√
2
(dxz↓ + idyz↓),

| ↓〉 ≡ 1√
2
(dxz↑ − idyz↑), (32)

Finally, here we assumed that the field induced param-
eters are smaller than spin-orbit coupling, i.e., γi � λ.
However, if they are comparable, the off-diagonal ele-
ments in the subspace of Γ

′′

6 ,Γ
′′

7 becomes as strong as the
onsite terms and the downfolding method breaks down.
In such cases, one must either use degenerate pertur-
bation theory to change basis such that the off-diagonal
matrix elements vanish or work with the full 4×4 Hamil-
tonian in the combined subspace.6

B. Strong SOI (λ� V )

For the opposite limit, when spin-orbit is much
stronger, the energy levels are shown in Fig. 6 (b). The
angular momentum states j = 5/2 and 3/2 with ener-
gies λ and −3λ/2 split further due to the electron hop-
ping. The characters of the bands are approximately the
eigenfunctions of the spin-orbit Hamiltonian HSO, that
preserve the symmetry of the lattice,

Γ′7 =

{
1√
10

(2dx2−y2↑ − 2idxy↑ − dxz↓ + idyz↓)
1√
10

(2dx2−y2↓ + 2idxy↓ + dxz↑ + idyz↑)

Γ′′7 =

{
1√
15

(3idx2−y2↑ − 2dxy↑ + idxz↓ + dyz↓)
1√
15

(3idx2−y2↓ + 2dxy↓ − idxz↑ + dyz↑)

Γ′′′7 =

{
1√
3
(dxy↑ + idxz↓ + dyz↓)

1√
3
(−dxy↓ − idxz↑ + dyz↑)

Γ′6 =

{
1√
10

(2dz2↑ +
√

3dxz↓ +
√

3idyz↓)
1√
10

(2dz2↓ −
√

3dxz↑ +
√

3idyz↑)

Γ′′6 =

{
1√
5
(
√

3dz2↑ − dxz↓ − idyz↓)
1√
5
(
√

3dz2↓ + dxz↑ − idyz↑).
(33)

In this basis, the spin-orbit part of the Hamiltonian
is diagonal. But, since the basis set is spin mixed,
the electric field now has off-diagonal matrix elements
within each 2D subspace. This is unlike the weak SOI
case, where the basis set was spin pure (see Eq. 26),
and therefore the electric field did not contain an off-
diagonal terms within each 2D subspace. Taking the ex-
ample of the Γ′6 doublet, we find the 2 × 2 TB matrix
within this subspace has the same form as Eq. 31 with
ε = −3λ/2+(2Vσ+6Vπ)/5 and, again, the matrix has the

Rashba form with αR = −4
√

3γ1/5. The Löwdin down-
folding that takes into account the effects of the other
eight orbitals will produce higher order terms O(γ/λ)
or O(γ/V ), because of the energy denominator. These
terms are small compared to the leading terms listed in
Table II, because the electric field is assumed to be small
leading to γ → 0.

V. COMPARISON WITH DFT

To gage the accuracy of our model, we compare the re-
sults with that of first-principles calculations using DFT.
The simulation cell is as shown in Fig. 2. The weak
and strong SOI cases are simulated using Ti and Ta
atoms.The DFT calculations were carried out using the
Vienna ab-initio simulation package,30 within the projec-
tor augmented wave method. We used the local density
approximation including the spin-orbit interactions with
a plane wave energy cut-off of 350 eV and k-space sam-
pling on a 9×9×1 Monkhorst-Pack grid. We considered a
single layer of atoms (Ti or Ta) on a square lattice shown
in Fig. 2. The unit cell was 10 Å long along the c axis, so
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TABLE II. Energy and orbital-dependent Rashba coefficients in the weak and strong spin-orbit interaction limits. The Rashba
coefficients αR/a (in meVs) obtained from the TB expressions are compared with numerical results from the DFT and TB
calculations. For simplicity, Vδ is neglected as compared to Vσ and Vπ in the TB expressions. DFT calculations are for the
square lattice of Ti and Ta for cases of weak and strong SOI, respectively. The TB expressions given here are correct to the
lowest order; omitted terms are O(λ2) for the weak SOI case and O(γ/λ) or O(γ/V ) for the strong SOI case.

TB DFT
αR/a αR/a |αR/a| Orbital |αR/a|

Sym Energy at Γ (downfolding) (downfolding) (full H) character

Weak SOI
(λ� Vσ, Vπ)

Γ′7 3Vσ 2λγ2/(−3Vσ + 2Vπ) −0.62 0.73 x2-y2 0.69

Γ′6 Vσ 2
√

3λγ1/(Vσ − 2Vπ) −5.64 4.13 z2 4.13

Γ′′6 2Vπ − λ/2 −2
√

3λγ1/(Vσ − 2Vπ) 5.64 4.25 xz/yz 7.62
Γ′′7 2Vπ + λ/2 2λγ2/(3Vσ − 2Vπ) + λγ3/Vπ 0.93 1.02 xz/yz 1.00
Γ′′′7 4Vπ −λγ3/Vπ −0.57 0.30 xy 0.42

Strong SOI
(λ� Vσ, Vπ)

Γ′7 −3λ/2 + 6Vσ/5 + 2Vπ 4(γ2 − γ3)/5 13.60 9.78 x2-y2/xy 9.05

Γ′6 −3λ/2 + 2Vσ/5 + 6Vπ/5 −4
√

3γ1/5 −9.00 6.88 z2/xz/yz 6.23
Γ′′7 λ+ 9Vσ/5 + 4Vπ/3 −(4/5γ2 + 8/15γ3) −14.9 13.2 xy/x2-y2/xz/yz 10.33

Γ′′6 λ+ 3Vσ/5 + 4Vπ/5 4
√

3γ1/5 9.00 6.88 z2/xz/yz 11.80
Γ′′′7 λ+ 8Vπ/3 4γ3/3 1.33 3.50 xy/xz/yz 2.63

that the large vacuum layer avoids any interaction with
periodic images. The effect of electric field is added via
a saw-tooth like potential and using dipole corrections to
help the energy convergence.

TABLE III. Parameters used in the DFT and TB calculations
for the two cases, viz., weak and strong spin-orbit interaction.
The lattice constants in DFT are chosen such that the d bands
are well separated from the other bands and the TB param-
eters have been obtained by fitting to the DFT bands.

DFT TB fitting parameters

Weak SOI

Atom: Ti Vσ = −0.17 eV, Vπ = 0.07 eV,
a = b = 4 Å Vδ = −0.02 eV, λ = 0.02 eV,
c = 10 Å γ1 = 25 meV, γ2 = 10 meV,
E = 0.5 eV/Å γ3 = 2 meV

Strong SOI

Atom: Ta Vσ = −0.1 eV, Vπ = 0.05 eV,
a = b = 5Å Vδ = −0.01 eV, λ = 0.18 eV,
c = 10Å γ1 = 6.5 meV, γ2 = 18 meV
E = 0.5 eV/Å γ3 = 1 meV

The parameters used in the calculations are given in
Table III and the resulting band structures for the two
cases are shown in Fig. 7. The bands are plotted along
k|| which lie in the xy plane around the Γ point. The
TB parameters in Table. III are chosen such that there is
good agreement between the DFT and TB bands as seen
from Fig. 7. The Rashba coefficients are obtained from
the slope of the Rashba band splitting ∆R = 2αRk|| as
shown in Fig. 8(b). The results are shown in Table II.
The numerical values obtained from the TB expressions
more or less agree with the full calculations (TB or DFT);
there are some disagreements in the magnitudes however,
because the weak and strong SOI limits (λ→ 0 or∞) are
not fully satisfied in the realistic systems. Nevertheless,
it is clear that the Rashba coefficients are quite strongly

orbital dependent.

VI. SUMMARY

In summary, we studied the Rashba effect in the d elec-
tron systems and showed that the effect depends strongly
on the orbitals involved in a particular band. This was
illustrated by density-functional studies for selected sys-
tems in the limit of both weak and strong SOI. The
symmetry breaking electric field introduces new matrix
elements in two distinct ways, viz., via mixing of the
atomic orbitals on the same site and by introducing new
inter-site hopping terms within the tight-binding descrip-
tion, both of which we examined in studying the Rashba
effect. Using the tight-binding model, we derived the
expressions for the Rashba coefficients in both limits of
weak and strong SOI. The d electron systems offer a rich
system for manipulating the Rashba effect, not only be-
cause the magnitude of the effect can be strong owing to
the large atomic numbers Z, but also because the orbital
characters and the band energies are sensitive to external
forces such as strain, which can be used for tailoring the
effect for potential applications in oxide electronics.

This research was supported by the U.S. Department
of Energy, Office of Basic Energy Sciences, Division of
Materials Sciences and Engineering under Award No.DE-
FG02-00ER45818.
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FIG. 7. Comparison of the TB and DFT band structures for Ti and Ta, which show weak and strong SO coupling, respectively.
Symmetries of the wave functions at the Γ point are shown between the plots. A small orbital dependent on-site energy is
added to the TB Hamiltonian to better fit the DFT bands and the Fermi energy has been set to zero.
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