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We study bilayer fermionic cold atom systems with dipolar interactions, as well as a two-
component tunable pseudopotential (TCTP) model which keeps only the zeroth and first Haldane
pseudopotentials, at total Landau level filling factor 1/2. Our numerical results on the TCTP model
indicates that Haldane-Rezayi state describes the critical point between strong and weak d-wave
pairing quantum Hall phases. Further increasing the attractive zeroth pseudopotentials, the system
transits from the strong-pairing phase to a stripe phase, and then to a cluster phase (or phase sepa-
ration). The dipolar interaction can be mapped onto the TCTP model in the strong-pairing phase,
if high order pseudopotentials are ignored. Our numerical results show that this is indeed the case,
so the strong-pairing phase exists in the cold atom system.

I. INTRODUCTION

Owing to their extraordinary degree of control,
trapped cold atom gases can be used to realize ideal
models of many-body systems.1 With several proposed
schemes to simulate the effects of a magnetic field on
neutral particles, the possibility of realizing quantum
Hall states using cold atoms has been discussed theo-
retically and attempted experimentally.2 Due to the dif-
ference in the form of interactions, there can be fasci-
nating new quantum Hall physics in cold atom systems
as compared to their electron counterparts; for example
it was demonstrated that attractive interactions between
atoms can drive quantum phase transitions between in-
teger and fractional quantum Hall phases that are de-
scribed by topological field theories.3,4
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FIG. 1: Schematic illustration of bilayer atomic gas atoms and
their dipole-dipole interaction. (a) Atoms confined to two lay-
ers separated by distance d. The thick arrows represent their
dipole moments, polarized along the perpendicular direction.
(b) The inter- and intra-layer atomic potential due to the
dipole-dipole interaction, which is in units of µ0µ

2/4πd3 for
magnetic dipoles and p2/4πǫ0d

3 for electric dipoles. µ0 (ǫ0)
is the vacuum permeability (permittivity). µ (p) is the mag-
netic (electric) dipole moment. The inter-layer interaction is
attractive at short distances (r/d . 1) and repulsive at larger
distances (r/d & 1), while intra-layer interaction is always
repulsive.

Under certain circumstances, these atoms may carry
electric or magnetic dipole moments.5 In the present work

we study possible novel fractional quantum Hall (FQH)
phases stabilized by the dipolar interactions between the
atoms. The possibility of realizing quantum Hall phases
in cold atom systems with dipolar interactions has been
studied theoretically.6,7 One aspect of the dipolar inter-
action is that it is anisotropic, therefore it can be used
to realize anisotropic fractional quantum Hall states,7,8

a subject of current interest.9 Related to this anisotropy
is the fact that dipolar interactions can be either repul-
sive or attractive, depending on the orientation of the
dipoles. This allows for the possibility that the interac-
tion is attractive at certain distances, while repulsive at
other distances, which is not possible for the electron-
electron Coulomb interaction. Such mixed interactions
may allow for various types of paired quantum Hall states
in which constituent particles (atoms in the present case)
form pairs, which is the focus of the present work. The
specific system we consider here is a bilayer system of
dipolar atoms, with the dipole moment polarized per-
pendicular to the two-dimensional layers where the atoms
reside. In this case the inter-layer interaction is attrac-
tive at short distances (when the dipoles are on top of
each other), while at long distances the interaction is re-
pulsive because the dipole moments are perpendicular to
the inter-atom orientation; see Figure 1 for an illustra-
tion. Due to the rotation symmetry along the z-direction
in this case, the interactions are isotropic in the plane
and can be characterized by Haldane pseudopotentials.

A specific form of interaction of such “hollow core”
type is the Haldane-Rezayi (HR) model, with the HR
state being its exact ground state10. This model has
very interesting and unusual properties. However there
have been some issues as to whether the HR state repre-
sents a stable phase or a critical point. Motivated by this
and the possibility of realizing such “hollow core” type
of interactions with dipolar interactions, we perform de-
tailed numerical studies on a two-component (represent-
ing two layers) tunable pseudopotential (TCTP) model
which keeps only the zeroth and first Haldane pseudopo-
tentials, as well as the more realistic dipolar interaction
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model. Our results on the TCTP model support Read
and Green’s theoretical prediction11 that the Haldane-
Rezayi (HR) state describes the critical point between
strong- and weak-pairing phases. Further increasing the
attractive zeroth pseudopotential, the system transits
from the strong-pairing phase to a stripe phase, and then
to a cluster phase (or phase separation). If higher order
pseudopotentials are ignored, the dipolar interaction can
be mapped onto the TCTP model interactions in the
strong pairing phase. Our numerical results show that
the cold atom system is in the strong pairing phase as
the inter-layer distance increases from zero to a value
close to 2lB, where the magnetic length lB =

√

~c/eB.
The rest of the paper is organized as follows. In Sec.

II, we introduce the TCTP model and show how the
d-wave strong-pairing phase transits to a week-pairing
phase through the critical HR state. We will also present
the general phase diagram for the TCTP model. Sec.
III is devoted to the quantum Hall state realized with
dipolar interaction. Some conclusions and remarks are
offered in Sec. IV.

II. PHASE DIAGRAMS IN TWO-COMPONENT

TUNABLE PSEUDOPOTENTIAL MODEL

In this section, we propose a two-component tun-
able pseudopotential (TCTP) model to study the bilayer
fermionic cold atom system. In a rotating frame of refer-
ence, the Coriolis force plays the same role as the Lorentz
force on a charged particle in a uniform magnetic field.2

The Hamiltonian of the cold atoms can be written as

H =
1

2m

∑

i

Π
2
i +

∑

i<j

V (|ri − rj |), (1)

where Πi = −i~∇i − qA(ri)/c is the dynamical momen-
tum of the ith particle. The effective particle charge
q and effective vector potential A origin form the rota-
tion of frame of reference. V (|ri − rj |) is the two-body
rotationally invariant interaction. We will consider the
rapid rotation limit, in which all atoms are in the “low-
est Landau level”. In the TCTP model, we keep only the
low-order pseudopotentials V0 and V1 and set the other
high-order pseudopotentials to zero. Then the Hamilto-
nian 1 becomes

H =
N
∑

i<j

V0P0(Mij) +
N
∑

i<j

V1P1(Mij), (2)

where Pm(Mij) is the projection operator on states with
relative angular momentum Mij = m. The parameters
Vm are the energies of pairs of particles with relative an-
gular momentum m. For fermionic cold atoms, owing
to the Pauli exclusion principle, atoms in the same layer

cannot feel the zeroth pseudopotential V
(intra)
0 , so the

value of V
(intra)
0 will not influence the results (we set it

to zero). For the other three pseudopotentials V
(intra)
1 ,

V
(inter)
0 and V

(inter)
1 , we make V

(intra)
1 > 0 and the ra-

tios v0 = V
(inter)
0 /V

(intra)
1 , v1 = V

(inter)
1 /V

(intra)
1 are the

tuning parameters of the model. In the rest of this pa-
per, we would assume the atoms are polarized and not
consider the real spin freedom of the systems.
For our interest, we would put N particles in 2N or-

bitals (with filling factor 1/2) in the following numerical
calculation. At some values of (v0, v1), certain paired
quantum Hall states with the same filling factor are the
exact zero energy ground state. When v0 = 0, and v1 > 0
(hollow core interaction in Ref. 10), the unique zero en-
ergy ground state is the Haldane-Rezayi (HR) state10:

ψHR =det[
1

(z↑i − z↓j)2
]
∏

i<j

(z↑i − z↑j)
2
∏

i<j

(z↓i − z↓j)
2

×
∏

i,j

e
− 1

4l2
B

(
∑

i
|z↑i|

2+
∑

j
|z↓j|

2)
,

(3)

where zσi is the complex coordinate of the ith particle
with spin σ (σ =↑ or ↓, representing the two layers re-
spectively), and lB is the magnetic length. The deter-
minant factor above indicate that (composite) fermions
in opposite layers form d-wave pairs. When (v0 > 0,
v1 = 0), the 331 state:

ψ331 =
∏

i<j

(z↑i − z↑j)
3
∏

i<j

(z↓i − z↓j)
3
∏

i,j

(z↑i − z↓j)

× e
− 1

4l2
B

(
∑

i
|z↑i|

2+
∑

j
|z↓j|

2)
,

(4)

becomes the unique zero energy ground state. The 331
state is in the weak-pairing phase based on Read and
Green’s theory.11 In order to show the effect of different
pseudopotentials obviously, the above wave functions are
written in a rotational symmetric planar system. The
HR and 331 states obtained in this TCTP model would
be on torus, and have more complicated forms and extra
degeneracies13 compared to the ones on plane.
The following exact diagonalization calculation is car-

ried out in finite size systems with rectangular (mainly)
or hexagonal geometry subjected to periodic boundary
conditions,12 which has the topology of a torus. The
main reason for choosing this toroidal topology is that
the low-lying states’ degeneracy and quantum numbers
on the torus can be used to distinguish paired quantum
Hall phases and other symmetry-broken phases, as ex-
plained below. A further advantage is that on torus there
is no shift of flux quanta while in other geometries the
HR and 331 states have different shifts of flux quanta po-
tentially complicating the analysis in finite size systems.
When paired states of fermions with zero momentum

for the pair are formed on the torus at zero magnetic
field, the system can have either zero or one half of the
flux quantum φ0 = hc/e threading either of the “holes”
of the torus, such that k and −k are always allowed si-
multaneously. There are a total of four cases because
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the torus has two “holes” and each “hole” has two pos-
sible flux quantum values.11 If the gauge field is viewed
as part of the internal dynamics of the system, and even
particle number systems with pairing between opposite
spins are considered, the four cases would give us four
ground states for a single physical system (not includ-
ing the center of mass degeneracy in the analog quan-
tum Hall system; more on this later). For the corre-
sponding quantum Hall states, if one “hole” has zero
flux, the many-body momentum12 of the atom liquid in
the direction encircling this “hole” should also be zero;
if the “hole” has flux φ0/2, this momentum should be
k = (N/2)(2π/L), where N is the atom number and L is
the length in this direction. Therefore, the paired quan-
tum Hall ground states exist only in four sectors, which
are (kx = 0, ky = 0), (kx = (N/2)(2π/Lx), ky = 0),
(kx = 0, ky = (N/2)(2π/Ly)) and (kx = (N/2)(2π/Lx),
ky = (N/2)(2π/Ly)) (the choice of x− and y− direc-
tions depend on the different geometries of the lattice).
There is just a single ground state in each sector for a
generic paired quantum Hall state. Except for s-wave
pairing, the paired states are further divided into stron-
and weak-pairing phases,11 and the analysis above ap-
ply to both, with an additional twist at the critical point
separating them to be discussed below.
Our numerical calculations below closely follow Hal-

dane’s formulation on the torus,12 which factors out the
center of mass freedom and gives a direct correspondence
between its quantum numbers and those obtained from
the pairing analogy discussed above.

A. Phase diagram around v0 = 0 and with v1 > 0

When v0 = 0, and v1 > 0 (the HR model), the ground
state degeneracy is actually five (after factoring out the
center of mass degeneracy) on the torus,11,13 with two
of them (instead of one) at (kx = 0, ky = 0). This ad-
ditional degeneracy can be understood in the following
way. At the critical point separating weak- and strong-
pairing phases, the (single particle) state at (kx = 0,
ky = 0) in the BCS description of pairing has zero en-
ergy (in Read and Green’s theory11), and can be ei-
ther doubly-occupied or unoccupied by fermions, which
leads to a degeneracy of 2 in this sector. As a result
two of the degenerate states have (many-body) quan-
tum number (kx = 0, ky = 0), and the other three
have quantum numbers (kx = (N/2)(2π/Lx), ky = 0),
(kx = 0, ky = (N/2)(2π/Ly)) and (kx = (N/2)(2π/Lx),
ky = (N/2)(2π/Ly)). This is precisely the case for the
HR state, indicating its critical nature. As v0 increases
or decreases from zero, we observe that the exact de-
generacy of five is destroyed and the energy of one of
the members of the originally degenerate ground states
(with kx = 0, ky = 0) increases much faster than the
other four (Fig. 2), and join the continuum of the states
above the gap. This behavior leads to an obvious gap
between the four states’ energies and other energy lev-
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FIG. 2: (Color online) Energy levels of the two-component
tunable pseudopotential model as a function of v0 (v1 = 1)
in the 10-particle system with square geometry, near v0 = 0.
The degeneracy is 1 for the yellow and black levels, 2 for
the red level, 4 for the blue level, 5 for the green level and
8 for the purple level. The energy level with degeneracy 1
corresponds to the momentum sector (kx = 0, ky = 0) when
it is in yellow, and (kx = (N/2)(2π/Lx), ky = (N/2)(2π/Ly))
when it is in black. The momentum sectors corresponding to
the levels with degeneracy 2 are (kx = (N/2)(2π/Lx), ky = 0)
and (kx = 0, ky = (N/2)(2π/Ly)).

els. This means that in the neighborhood of v0 = 0
the ground state degeneracy of the system is four in the
thermodynamic limit, consistent with the system being
in a d-wave paired quantum Hall state.11 Using the BCS
mean field theory, Read and Green11 classify the paired
quantum Hall states into strong- and weak-pairing states
by their different topological properties. Our result in
Fig. 2 illustrates this process: as v0 increases from be-
ing negative to positive, the system undergoes a strong-
to weak-pairing phase transition. The HR state is the
critical state between strong- and weak-pairing phases,
which is consistent with the theory11 as well as a study
in the thin torus limit.14 The system is expected to be in
the strong-pairing phase for v0 < 0, because it has an at-
tractive zeroth pseudopotential, and in the weak-pairing
phase for v0 > 0, because all the pseudopotentials are
repulsive.

On the other hand, if the HR state represents a stable
phase, the five-fold ground state degeneracy should be
robust against small perturbations like a small change in
v0. This is inconsistent with our numerical results.

B. General phase diagram for the TCTP model

In the last subsection, it is shown that the HR state
transits to a strong-pairing phase when v0 starts to re-
duce to a negative value (v1 > 0). A natural question
that arises is what phases the system would be in if v0 fur-
ther decreases? As v0 further decreases, all the lowest en-
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FIG. 3: (Color online) Energy levels of the two-component
tunable pseudopotential model as a function of v0 (v1 = 1) in
the 10-particle system with square geometry, for bigger range
of v0. The degeneracy is 1 for the yellow and black levels, 2
for the red level, 4 for the blue level, 5 for the green level, 8 for
the purple level, 20 for the orange and 40 for the pink. The
degeneracies of 20 and 40 are not all exact in the finite size sys-
tem (these states’ energies are the same with precision 10−6

in the numerical calculation), while the other degeneracies in
this spectrum are exact and are guaranteed by the symmetries
of the square geometry. The energy level with degeneracy 1
corresponds to the momentum sector (kx = 0, ky = 0) when
it is in yellow, and (kx = (N/2)(2π/Lx), ky = (N/2)(2π/Ly))
when it is in black. The momentum sectors corresponding
to the levels with degeneracy 2 are (kx = (N/2)(2π/Lx),
ky = 0) and (kx = 0, ky = (N/2)(2π/Ly)). The ranges of
cluster, stripe, strong-pairing and weak-pairing (wp) phases
are identified by checking the quantum numbers of the low-
lying states.

ergy levels in the sectors with (kx = 0, ky 6= 0), (kx 6= 0,
ky = 0) or (kx = 0, ky = 0) (two groups of energy levels
in this sector) approach each other and generate a gap to
other higher energy levels, as shown at v0 = −6 in Fig.
3. As we change the system geometry from square to a
rectangle with aspect ratio α ≡ Lx/Ly 6= 1, the num-
ber of low energy states reduce to half the number in the
square geometry. Fig. 4 (a) shows the spectrum of the
system when v0 = −6.4, v1 = 1 and α = 0.6. We only
show the spectrum at kx = 0 in Fig. 4, since all the low
energy states belong to the kx = 0 sector. There are sev-
eral nearly degenerate low-energy states, separated by
a characteristic wave vector q∗ =(0, 2π/Ly) (i.e. (0,

0.434l−1
B )) for α = 0.6. As studied in Ref. 15, such

spectra tell us that the system is in a stripe phase with
the charge density wave order in the y direction. The
wavelength of the stripe is 2π/|q ∗ | = Ly. The driving
force of the stripe formation is the competition between
strong inter-layer attraction, which tends to cluster the
particles together, and intra-layer repulsion. Given that
our basis vectors are classified by their (many-particle)
momentum, the degeneracy is a sign of the spontaneous
breaking of translational symmetry. In the square geome-
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FIG. 4: The low energy spectra of a 10-particle system in
a rectangle with a two-component tunable pseudopotential
interaction (v0 = −6.4, v1 = 1), with aspect ratio α = (a) 0.6
and (b) 0.1. The momentum in the x direction is 0 in these
spectra. For aspect ratio (a) 0.6, the ten nearly degenerate
low-energy states are in all ky sectors when kx = 0; for aspect
ratio (b) 0.1, the two nearly degenerate low-energy states have
momenta (kx = 0, ky = 0) and (kx = 0, ky = 5(2π/Ly) (i.e.
0.886l−1

B )).

try there is no preferred direction (between x and y), and
the charge density waves in the x and y directions are de-
generate (this is the reason why the number of low energy
states doubles when α reaches 1). As the aspect ratio de-
creases from 1, we find at α = 0.6 the “degeneracy” of
the low energy states is the best. In the thermodynamic
limit, all the low energy states are exactly degenerate;
the better “degeneracy” at α = 0.6 tells us that the in-
trinsic wave vector of the charge density wave with the
interaction psuedo-potentials (v0 = −6.4, v1 = 1) is close
to q∗ =(0, 0.4l−1

B ). With other interactions (v0, v1) q
∗

could be determined in the same way, although it is not
attempted here, as it requires a considerable amount of
numerical calculation, and obtaining the intrinsic wave
vectors for different interactions is not our primary goal
in this paper. In real space this 10-fold degeneracy indi-
cates each stripe contains 10 atoms,15 namely all atoms
in this 10-atom system form a single stripe in this case.
As the aspect ratio is further reduced, a transition occurs
and we observe a state with two-fold degeneracy with a
one dimensional wavevector 5(2π/Ly) (i.e. 0.886l

−1
B ) for

this 10-particle system; see Fig. 4 (b). The degeneracy
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FIG. 5: The low energy spectra of an 8-particle system in
a rectangle with a two-component tunable pseudopotential
interaction (v0 = −6.4, v1 = 1), with aspect ratio (a) 0.5, (b)
0.3 and (c) 0.1. The momentum in the x direction is 4(2π/Lx)
(i.e. 3.545l−1

B and 4.576l−1
B ) (edges of the Brillouin zone) in

(a) and (b), and 0 (center of Brillouin zone) in (c). For aspect
ratio (a) 0.5, the eight nearly degenerate low-energy states
are in all ky sectors when kx = 4(2π/Lx) (i.e. 3.545l−1

B ); for
aspect ratio (b) 0.3, the four nearly degenerate low-energy
states have ky = −2(2π/Lx) (i.e. −0.686l−1

B ), 0, 2(2π/Lx)
(i.e. 0.686l−1

B ) and 4(2π/Lx) (i.e. 1.373l−1
B ); for aspect ratio

(c) 0.1, the two nearly degenerate low-energy states have ky =
0 and ky = 4(2π/Lx) (i.e. 0.793l−1

B ).

implies15 we have five ”stripes” each having two atoms,
or a single atom in each layer in the 10-particle system.16

This is because to the single-stripe state at such a small
aspect ratio would have a stripe width or wavevector that
is far from its intrinsic value, and energetically unfavor-
able; the 5-stripe state has the wavevector closer to the
intrinsic value and is energetically more favorable. Due to
the fact that 10 only has 2, 5 and 10 as its factors, and
layer-symmetry requires that each stripe must contain
an even number atoms, these are the only two possible
stripe states that can be realized in a 10-particle system.
For an 8-particle system, on the other hand, we expect
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FIG. 6: (Color online) Energy levels of the two-component
tunable pseudopotential model as a function of v0 (v1 = 1)
in the 10-particle system in a hexagonal geometry with the
two-component tunable pseudopotential interaction. The de-
generacy is 1 for the black level, 2 for the red level, 3 for the
blue level, 6 for the green level and 12 for the yellow level.
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FIG. 7: (Color online) Phase diagram of TCTP model.
The ranges of cluster, stripe, compressible liquid (c), strong-
pairing and weak-pairing (wp) phases are identified by the
spectra. Haldane-Rezayi state is represented by the magenta
line (v0 = 0, v1 > 0), and 331 state is represented by the cyan
line (v0 > 0, v1 = 0). The compressible liquid (c) phase found
in this (10-particle) finite size system may either be genuine,
or just a finite size effect, and shrinks to the boundary between
strong-pairing and stripe phases in thermal dynamic limit. As
the inter-layer distance d (in unit of magnetic length lB) in-
creases from 0, we project the dipolar interaction to its 0th,

1st pseudo-potentials V0,1 and plot [v0 = V inter
0 /V

(intra)
1 (d) ,

v1 = V inter
1 /V

(intra)
1 (d)] as the black curve.

to realize stripes with 8, 4, and 2 particles each, as the
aspect ratio changes; this is indeed what we see in Fig.
5. As aspect ratio reduces from 1, the “degeneracy” of
the 8-particle system transits from 8 to 4, and finally to
2, which correspond to the stripes with 8, 4, 2 particles
each.
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In fact, the number of particles in a stripe nS is equal to
the degeneracy D for this 1/2 filling factor. To show this
we note that in a single component system the stripe unit
cell contains nS +nAS orbitals, where nAS is the number
of holes (or anti-stripes). This number is clearly divisi-
ble by q, where ν = p/q is the filling factor. Since all the
stripe states that are related to one another by a uniform
shift of q orbitals are physically equivalent (and conserve
kx) , D must equal to the number of such distinct states,
which is equal to (nS + nAS)/q. Further noticing that
p/q = nS/(nS + nAS), and substituting for nAS , we ob-
tain D = nS/p. For the two component system the same
argument goes through if we asumme strong pairing (or-
bitals are either empty or doubly occupied) with nS , nAS

include both components and ν is the total filling factor.
Between the strong-pairing phase and stripe phase,

there is a range of v0 in Fig. 3 where the energy of a
single state with quantum number (kx = (N/2)(2π/Lx),
ky = (N/2)(2π/Ly)) has a “gap” to the other levels. To
check what happens between the strong-pairing phase
and stripe phase, we do the same calculation in a hexag-
onal geometry, as shown in Fig. 6. The results for the
hexagonal geometry show that between these two phases,
there also exists a range of v0 where the energy of a single
state has a “gap” to the other levels. But the quantum
number of this state is (kx = 0, ky = 0) instead of the cor-
ner of the Brillouin zone as in the case of square unit cell.
This inconsistency of quantum numbers in these two ge-
ometries tells us that there is no other quantum Hall state
between the strong-pairing phase and the stripe phase.
In this range of v0, either the system is in a compressible
phase, or it is just a finite size effect in our calculation,
which means there will be a phase transitions directly
between the strong-pairing and the stripe phase as v0
decreases.
As v0 further decreases from the stripe phase, the

ground state manifold contains one level for each of the
momentum sectors and generates a gap to other levels.
This is an indication that a maximum density cluster is
formed (a ”bubble” phase with a single bubble17,18 in
the system that includes all particles). The attractive
interaction is so strong that the particles tend to cluster
together to lower the energy.
The phase diagram in Fig. 7 shows how the phase

changes with different values of v0, v1 in the TCTP
model.

III. EXISTENCE OF STRONG-PAIRING

QUANTUM HALL PHASE WITH DIPOLAR

INTERACTIONS

We consider a system of N fermionic atoms with
dipole-dipole interactions, where the direction of all
dipole moments is along the z-axis (perpendicular to the
particles’ plane). The dipolar interaction energy is

V (r) = Cd
1− 3 cos2 θ

(r2 + d2)3/2
, (5)

where Cd = µ0µ
2/4πl3B for magnetic dipoles and

p2/4πǫ0l
3
B for electric dipoles. µ0 (ǫ0) is the vacuum per-

meability (permittivity). µ (p) is the magnetic (electric)
dipole moment. θ is the angle between the dipole di-
rection and inter-particle separation R, d is the distance
between two layers, r is the projection of R on the plane
and r = |r|. As shown in Fig. 1(a). The length quantities
r, R and d are all in unit of lB.
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FIG. 8: (Color online) The strengths of the first few projected
pseudo-potentials of dipolar interaction as a function of layer-
distance d. The pseudo-potentials are in units of µ0µ

2/4πl3B
for magnetic dipoles and p2/4πǫ0l

3
B for electric dipoles.

The wave function (on the disk) for a pair of particles
in a state of relative angular momentum m is

φm(z) =
1√
2π

√

1

22m+1m!
(z/lB)

me−|z|2/8l2B , (6)

where z = zi−zj is the relative coordinate of two particles
i and j and the magnetic length lB =

√

~c/eB. We use
φm(z) to sandwich the dipolar interaction Eq. 5 to obtain
the pseudo-potential

Vm = 〈φm|V (r)|φm〉 . (7)

The first few projected pseudo-potentials Vm are plot-
ted as a function of the inter-layer distance d in Fig. 8.
When d = 0, Vm is actually intra-layer pseudo-potential

V
(intra)
m . We notice that the first two inter-layer pseudo-

potentials dominate the higher order ones when d is less
than 0.5. This is encouraging in that some insight into
the generic cold atom system can be gained from the
TCTP model discussed in Sec. II. We further project
the dipolar interactions onto the parameter space (v0,
v1) in the TCTP model in Fig. 7. As the inter-layer
distance d/lB increases from 0, the dipolar interaction
is projected onto a region of the TCTP model’s phase
diagram where the strong-pairing quantum Hall state is
the ground state. That means if the influence of dipolar
interaction’s higher-order pseudo-potentials are not sig-
nificant, the cold atom system with dipolar interactions
should also be in strong-pairing quantum Hall phase as
d/lB increases from 0 to a critical value in which the effect
of higher order pseudo-potentials can not be ignored.
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FIG. 9: (Color online) Energy levels of the dipolar interac-
tion model as a function of the interlayer distance d in the
10-particle system in square geometry with the dipolar inter-
action. The degeneracy is 1 for the yellow and black levels, 2
for the red level, 4 for the blue level, 8 for the purple level.
The energy level with degeneracy 1 corresponds to the mo-
mentum sector (kx = 0, ky = 0) when it is in yellow, and
(kx = (N/2)(2π/Lx), ky = (N/2)(2π/Ly)) when it is in black.
The momentum sectors corresponding to the levels with de-
generacy 2 are (kx = (N/2)(2π/Lx), ky = 0) and (kx = 0,
ky = (N/2)(2π/Ly)). At d . 2lB , the gaped four low energy
states are in the above four momentum sectors. At large d
(d & 4lB), the eight low energy states are also in the same
four momentum sectors, but two for each.

As expected, in Fig. 9, we observe that the quantum
numbers as well as degeneracy of the low-lying states is
consistent with those of the strong-pairing phase, as the
inter-layer distance d increases from zero. Then the gap
of the strong-pairing phase closes at d ≈ 2lB. This re-
sult is consistent with the value obtained from the phase
diagram of the TCTP model. For larger d the spec-
trum suggests the system is compressible. We expect
the corresponding state to be two weakly coupled com-
posite fermion Fermi liquids in the two layers, each with
filling factor 1/4.

IV. CONCLUDING REMARKS

In this work we have studied two-component fermions
at total Landau filling factor 1/2, with hollow-core type

of interactions. This is motivated by the possibility of
realizing novel quantum Hall states in cold atom systems
with dipolar interactions, with the fermionic atom sitting
in two separate layers. We find the dipolar interaction
puts the system in the strong pairing d-wave quantum
Hall phase, when the interlayer distance is not too large.
In addition to the genuine bilayer systems with dipo-
lar interactions, we also studied a truncated model with
only the zeroth and first Haldane pseudopotentials, and
obtained a rich phase diagram, that includes both the
strong and weak pairing d-wave quantum Hall phases, a
compressible stripe phase, and a cluster phase (or phase
separation).

In addition to understanding which phase the system
would be in for dipolar interaction, which may be realized
experimentally in the future, our work also clarifies a
long-standing theoretical issue, namely the nature of the
Haldane-Rezayi state. Our results clearly indicate that
it represents a critical point separating the strong and
weak pairing d-wave quantum Hall phases. This also has
implication on the more general issue of whether wave
functions based on non-unitary conformal field theories
(of which the Haldane-Rezayi state is an example) can
represent stable quantum Hall phases or not.

More generally, our work represents another example
that novel quantum Hall states (not possible in electronic
systems) can be realized with cold atom systems, due to
the very different types of atomic interactions they afford.
In particular, the dipolar interaction which is partially
attractive, can be very useful in realizing other types of
paired quantum Hall states as well.
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