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A low-energy theory for the helical metallic states, residing on the surface of cubic topological
Kondo insulators, is derived. Despite our analysis being primarily focused on a prototype topological
Kondo insulator, Samarium hexaboride (SmB6), the surface theory derived here can also capture
key properties of other heavy fermion topological compounds with a similar underlying crystal
structure. Starting from an effective mean-field eight-band model in the bulk, we arrive at a low-
energy description of the surface states, pursuing both analytical and numerical approaches. In
particular, we show that helical Dirac excitations occur near the Γ̄ point and the two X̄-points of
the surface Brillouin zone and that generally the energies of the corresponding Dirac points are offset
relative to each other. We calculate the dependence of several observables (such as bulk insulating
gap, energies of the surface Dirac fermions, their relative position to the bulk gap, etc.) on various
parameters in the theory. We also investigate the effect of a spatial modulation of the chemical
potential on the surface spectrum and show that this band bending generally results in “dragging
down” of the Dirac points deep into the valence band and strong enhancement of Fermi velocity of
surface electrons. Comparisons with recent ARPES and quantum oscillation experiments are drawn.

PACS numbers: 72.15.Qm, 73.23.-b, 73.63.Kv, 75.20.Hr

I. INTRODUCTION

Samarium hexaboride (SmB6) has recently emerged
as a prominent candidate for an ideal time-reversal-
and inversion-invariant topological insulator - a material
which is insulating in the bulk, but hosts topologically
protected metallic surface1–9. The hallmark signatures
of these gapless surface states are the helical spin struc-
ture and their robustness against time-reversal invari-
ant perturbations10,11. In SmB6, the hybridization be-
tween the conduction electrons occupying d-orbitals and
predominantly localized electrons residing on f -orbitals
drives an insulating gap opening at low temperatures.
What also makes SmB6 special is the presence of strong
on-site Hubbard interaction between the samarium f -
electrons12–14. In particular, the Hubbard interaction
is strong enough to favor the valence configuration with
odd number of electrons, 4f5 and the hybridization be-
tween the conduction and f -electrons drives the sys-
tem into a mixed-valence regime between 4f5 and 4f6

configurations15.

While this theoretical work mainly concentrates on
SmB6, we allude to its possible generalization to address
electronic properties of other cubic Kondo insulators (in-
cluding other possible topological insulators in hexa-
borides). Due to the presence of the strong electronic
correlations in SmB6 all the recent analytical approaches
of computing the Z2 topological invariant are based on
either an effective low-energy approximations1,2,16 or var-
ious types of large-N mean-field theories17–20. Gen-
erally, the main outcome of these studies is that a
topologically non-trivial insulating state emerges due to

the odd number of d- and f -bands inversions at the
high-symmetry points of the Brillouin zone (BZ). First-
principle calculations21 as well as studies based on dy-
namical mean-field theory (DMFT)22 also confirm this
result23. In addition, the existence of various topologi-
cally distinct phases has been predicted from the DMFT
analysis, which, for example, can be accessed by contin-
uously tuning the strength of the onsite Hubbard inter-
action of the f -electrons from Uff = 0 to Uff → ∞.
Since the transition between the two topologically dis-
tinct states must necessarily be separated by a gapless
phase, the band insulators and the Kondo-insulators can-
not be connected adiabatically24–26.

The appearance of topologically nontrivial states in the
f -electron insulators stems from the fact that the hy-
bridization between the d- and the f -electrons necessar-
ily needs to be an odd function of momentum to preserve
the time-reversal and inversion symmetries. Therefore,
the hybridization matrix element vanishes at the high-
symmetry points of the BZ. Consequently, the Z2 topo-
logical invariant is determined by the relative position
of the renormalized f -electron (due to the Hubbard in-
teraction) and conduction d-electron energies computed
at the high-symmetry points of the BZ (see Appendix
A). In particular, for a wide range of the parameters,
corresponding to an average valence on Samarium, even
and odd parity bands invert at the three X points of the
BZ, suggesting that a three-dimensional topological in-
sulating state can be realized in SmB6. Note that band
inversion at the X points implies the existence of three
Dirac points on the surface; one at Γ (in red) and two
at X and Y (in blue) points of the 2D surface BZ, as
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FIG. 1: (Color online) Left: Position of the Dirac points at
the Γ̄ and X̄ relative to the valence and conduction bands. It
is in principle possible to drag down one or both the Dirac
points into the valence band, by tuning some parameters in
the effective theory, defined in Eq. (5) or introducing a band
bending potential, shown in Eq. (50). EΓ̄ and EX̄ are the en-
ergies of the surface Dirac fermions at Γ̄ and X̄ of the surface
BZ (see right panel). The dotted line represents a generic off-
set among these two Dirac points. The arrows represent the
helical texture of the spin of the surface states. For the sake of
simplicity we here assume that all three surface Dirac cones
have identical chirality, and the corresponding spin-texture
constitutes vortex in the momentum space. Right: A repre-
sentative surface BZ, when the chemical potential (µs) at the
surface resides in between two Dirac points at Γ̄ and X̄ points,
i.e. EX̄ < µs < EΓ̄. The red and blue pockets, respectively,
correspond to hole- and electron-like Fermi pockets. How-
ever, nature of the Fermi pockets depends on the location of
µs with respect to EΓ̄ and EX̄ .

shown in Fig. 1, which has been confirmed experimen-
tally through a number of ARPES measurements6,7,27–31.
Interestingly, a similar surface band structure has been
observed in another hexaboride compound - YbB6

32–34,
although the underlying interaction-induced mechanism
of the possible topological behavior was argued to be dif-
ferent from Kondo hybridization33,35.

In this paper we derive an effective model for the sur-
face states in prototype cubic topological Kondo insula-
tors, on the surfaces perpendicular to the main axes. Our
effective surface model is derived from the bulk Hamil-
tonian, which takes into account the band structure of
SmB6

19. Otherwise, near all three Dirac points, namely
at the Γ, X, and Y points of the surface BZ, the effective
low energy description of the surfaces is captured by two
dimensional massless Dirac Hamiltonians. In the vicinity
of the Γ = (0, 0) point it goes as

H Γ̄
sur = vΓ̄

F (σxkx − σyky) , (1)

representing an isotropic conical dispersion, where ~k is
measured from the Γ point. On the other hand, in the
vicinity of the X = (π, 0) and Y = (0, π) points, the
two-dimensional Dirac Hamiltonian is

Hj
sur =

(
vjxσxkx − vjyσyky

)
. (2)

for j = X,Y and generically vjx 6= vjy. In addition, we

show that vXx = vYy , and vXy = vYx , reflecting the underly-
ing cubic symmetry in the bulk of the system. Therefore,
in the vicinity of X and Y points the conical Dirac disper-
sions are anisotropic. A representative two dimensional
surface BZ and the helical spin texture of low energy
quasi-particles are shown in Fig. 1. Although the spin
textures near Γ̄, X̄ and Ȳ in Fig. 1 corresponds to vortices
in the surface BZ, the ones associated with HΓ̄, HX̄,Ȳ in
Eqs. 1 and 2 respectively corresponds to anti-vortices in
the momentum space. Nevertheless, both situations are
protected by bulk strong Z2 topological invariant. These
features are in qualitative agreement with a number of
ARPES measurements in SmB6, and we confirm such
low energy description of the surface state both analyti-
cally as well as numerically (see Sec. III). A subsequent
mean-field theory approximation for the bulk Hamilto-
nian is controlled by the parameter 1/N with N = 4 for
SmB6 corresponding to the four-fold degenerate f -orbital
multiplet19. We here also determine the effective Fermi
velocities, location of the Dirac points (EΓ̄ and EX̄ in Fig.
1) and penetration depth of the surface states for each of
the three Dirac cones. When possible, we obtain closed
analytical expressions for these quantities as a function
of various microscopic parameters, appearing in the ef-
fective theory, describing a Kondo-insulating bulk state.
In particular, we find that the values of the Fermi veloci-
ties are primarily controlled by the renormalized strength
of the hybridization amplitude (due to the particle-hole
anisotropy in the bulk) between d- and f -states on the
surface.

Our method of finding the effective theory on the sur-
face is similar to the one used to derive the model for
surface states in Bi-based topological insulators36–39 -
systems where electronic correlations are weak. Our
main assumption in the first part of the paper is that
the self-consistent mean-field theory for the ‘bulk plus
surface’ system will not significantly modify the values
of the hybridization and chemical potentials compared
to the mean-field theory for the bulk system only. In
other words, we assume there that the boundary does
not significantly affect the parameters of the bulk. How-
ever, the non-universal boundary effects resulting in band
bending are also considered (see Sec. IV), by introduc-
ing a spatially-modulated profile of the chemical poten-
tial for the f -electrons, and it is demonstrated that the
band bending can qualitatively modify the surface band
structure43–45. We here show that in the presence of spa-
tially modulated chemical potential, the Dirac points at Γ̄
and X̄ points can be gradually dragged down into the va-
lence valence band, when its characteristic decay length
length into the bulk (λB) and/or its magnitude (U0) is
large enough. In addition, we find that the Dirac point
at the Γ̄ point gets immersed into the valence band for
relatively weaker modulation of the chemical potential,
while that near the X̄ point continues to live inside the
bulk Kondo insulating gap for a wider range of λB and
U0 (see Figs. 7, and 8). Such peculiar behavior arises
from the fact that the penetration depth for the surface



state near the Γ̄ point is smaller than that near the X̄
point.

This paper is organized as follows. In the next Sec-
tion we formulate the effective tight-binding model for
cubic topological Kondo insulators, which may serve as
minimal model in various hexaboride compounds at low
energies, and discuss the bulk band structure. In Sec. III,
we explicitly derive the surface states and obtain surface
Hamiltonians. In this section, we also present the band
structure of the surface BZ, and demonstrate the explicit
dependence of various quantities such as Fermi velocity,
energies of the Dirac fermions, penetration depths etc. on
the band parameters. Section IV is devoted to address
the effect of spatial modulation of the chemical potential
or the band bending on the the structure of the surface
states. In Sec. V we summarize our main findings and
compare the results with recent ARPES and quantum
oscillation measurements. We show the computation of
the bulk topological invariant within the framework of
our effective minimal model in Appendix A.

II. MODEL HAMILTONIAN IN BULK

Let us first introduce the effective tight-binding or
mean-field model for the cubic Kondo insulators, with
our focus being on a prototype system, SmB6

19. SmB6

has a simple cubic structure with a clusters of six boron
(B) atoms located at the center of the unit cell, acting
as spacers which mediate electronic hopping among the
samarium (Sm) sites. Recent “LDA + Hubbard-U” band
structure calculations suggest that the Kondo hybridiza-
tion is strongest between samarium 4f orbitals and dis-
persing d-bands which form electron pockets around the
X points of the BZ46. Based on these predictions, we wish
to promote here an effective model for a family of topo-
logical Kondo insulators, which share similar underlying
cubic symmetry of SmB6, such as PuB6, for example47.

A. Orbital Structure and Cubic Symmetry

Due to the underlying cubic symmetry of the local
crystalline field environment of a samarium ion, the five-
fold degenerate d-orbitals get split into doubly degenerate
eg and triply degenerate t2g orbitals. The cubic envi-
ronment, also splits the J = 5/2 f -orbitals into a Γ7

doublet and a Γ8 quartet. Raman spectroscopy studies
show that the dominant hybridization channel involves
f -states of the Γ8 quartet and the conduction eg states,

e− + 4f5(Γ
(α)
8 ) 
 4f648. It should be noted that the eg

doublet is composed of dx2−y2 and d3z2−r2 orbitals, while

the Γ
(α)
8 (α = 1, 2) f -quartet is composed of the following

linear combination of orbitals:
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FIG. 2: (Color online) Bulk bandstructure, obtained by diago-
nalizing Hbulk(k) in Eq. (5), as a function of k from the points
Γ to X to M (along ky = 0), showing a strongly dispersing
(i.e. nearly vertical) d-band and a relatively flat f -band (i.e.
nearly horizontal), with an approximate gap of 15 meV, for
the chosen values of the parameters quoted in Eq. (9). Inset:
same bulk band structure, but shown over a larger window of
energy.

From the above symmetry analysis on the cubic crystal
field driven splitting of the d- and the f -orbitals, it follows
that the minimal tight-bonding model must involve the
Γ8 quartet of the localized f -states, and the eg quartet of
the dispersive d-electrons, which besides being Kramers
degenerate, are enriched by additional two fold orbital
degeneracy. Ultimately, the hybridization among the d-
and the f -electrons gives rise to the Kondo insulating
phase. Therefore, a minimal Hamiltonian representing a
three dimensional cubic topological insulator, e.g. SmB6,
can essentially be described in terms of an eight com-
ponent spinor, organized according to Ψ> = [Ψd,Ψf ],
where Ψd/f are 4-component spinors defined as

Ψ>l = [l1↑, l1↓, l2↑, l2↓] , (4)

for l = d, f . Here 1, 2 correspond to two orbitals of d-
and f -electrons, and ↑, ↓ are two projections of spin. For
the sake of notational simplicity, we use α =↑, ↓ for the
Kramers doublet components of the f -multiplet as well.

It should be noted that here we have taken into account
only the Γ8 quartet and neglected Γ7 doublet. Whereas
various recent numerical studies have considered the ef-
fect of both multiplets of the f -electrons23. However, we
strongly believe that inclusion of the hybridization of d-
electrons with Γ7 doublet can only lead to some quantita-
tive, but non-universal corrections for various quantities.
In the Appendix we have demonstrated that hybridiza-
tion with Γ8 quartet is sufficient to produce a topologi-
cally nontrivial bulk insulating gap. Hence, the model we
study serves the purpose of a minimal description that
can succinctly capture the topologically robust features



of this system, including the surface states, about which
in a moment.

B. Mean-field Hamiltonian

At the mean-field level the full Hamiltonian of the de-
scribing Kondo insulators contains single particle terms
as well as the Hubbard interaction term (Uff ) for the
f -electrons. In the limit of infinitely strong Hubbard re-
pulsion ( i.e., Uff →∞) the doubly occupied f -electron
states are projected out and the corresponding projec-
tion operators are replaced with their mean-field values,
which are then determined self-consistently. As a result,
within the mean-field approximation, the effective Hamil-
tonian is defined through the following three terms: the
hopping elements for the conduction d-electrons and f -
quasiparticles, and the hybridization between these two
species, however with the renormalized hopping and hy-
bridization amplitudes19. Therefore, the 8-dimensional
effective bulk Hamiltonian describing cubic topological
Kondo insulators conforms to the generic form

Hbulk(k) =

(
Hd(k) Vh(k)

V †h (k) Hf (k)

)
, (5)

where Hd(k), Hf (k) and Vh(k) are 4-dimensional matri-
ces. For l = d and f , H l(k) is given by

H l(k) = εlÎ4 + tl
(
φ̂1(k) + ηlφ̂2(k) (1− ηl)φ̂3(k)

(1− ηl)φ̂3(k) ηlφ̂1(k) + φ̂2(k)

)
,

(6)
where td and tf the are hopping amplitudes, and εd and
εf are the corresponding chemical potentials, for the d-
and f -electrons, respectively. In the above equation,

φ̂j(k) = σ̂0φj(k), where σ̂0 and Î4 = σ̂0 ⊗ σ̂0 are respec-
tively the two- and four-dimensional identity matrices.
Different components of the φ(k) functions are

φ1(k) =
1

2
(cx + cy + 4cz) ,

φ2(k) =
3

2
(cx + cy) , φ3(k) =

√
3

2
(cx − cy)

(7)

with cα = cos kα, for α = x, y, z (in what follows next we
choose the units in which the lattice spacing a = 1). The
hybridization matrix reads as

Vh(k) =
V

4

(
3(σ̄x − σ̄y)

√
3(σ̄x + σ̄y)√

3(σ̄x + σ̄y) σ̄x − σ̄y + 4σ̄z

)
, (8)

where σ̄α = σ̂α sin kα for α = x, y, z, and σ̂x,y,z are the
standard two-dimensional Pauli matrices. The bare hy-
bridization amplitude is represented by V . In this work
we restrict ourselves with hole-like f -states, i.e., tdtf < 0,
only for which a topologically non-trivial insulating state
emerges below the Kondo transition temperatures, which
for SmB6 is ∼ 50 K1,20,22. The resulting band structure

in the bulk is shown in Fig. 2, with the following choice
of various parameters

td = 2 eV, tf = −0.05 eV, V = 0.0365 eV, ηd = −0.3,

ηf = −0.29, εd = 0.2 eV− 3td(1 + ηd),

εf = −0.01 eV− 3tf (1 + ηf ), (9)

appearing in Hbulk(k). Interestingly, with such choice of
the parameters, the bulk Kondo insulating gap is ∼ 15
meV, resembling this regard the observed bulk gap in
SmB6 in various ARPES measurements27–31.

The above eight-dimensional Hamiltonian for the cubic
topological Kondo insulators, Hbulk(k), should be con-
trasted with the model Hamiltonian for weakly interact-
ing strong Z2 topological insulators (HTI(k)), such as
Bi2Se3, which, on the other hand, is four-dimensional. In
the low energy and long wave-length limit HTI(k) takes
the form37

HTI(k) = (A+Dk2) (τ̂0 ⊗ σ̂0) + (M −Bk2) (τ̂3 ⊗ σ̂0)

+ VF~k · (τ̂1 ⊗ ~̂σ), (10)

where VF is the Fermi velocity. The second term repre-
sents a parity odd but time-reversal even, band-inverted
(when MB > 0) Dirac mass. The first term gives rise to
particle-hole anisotropy, and the last term yields Dirac ki-
netic energy in three dimensions. Here we have neglected
the anisotropy among the Fermi velocities along differ-
ent directions, arising from the underlying crystalline
structure37. Two sets of Pauli matrices, τ and σ, re-
spectively, operate on the even-odd parity band and the
spin index. Next we argue that although Hbulk(k) is
eight-dimensional, it still represents a three dimensional
Z2 topological insulators, however, generalized for multi-
band systems. To perform this exercise we first need to
reorganize the spinor basis according to

Ψ>l = [l1↑, l2↑, l1↓, l2↓] , (11)

for l = d, f and define Ψ> = [Ψd,Ψf ]. This reorganiza-
tion is tantamount of a unitary transformation that ex-
changes 2nd and 3rd entries, and also 6th and 7th entries
in Hbulk(k). In the unitarily rotated spinor basis

Hbulk(k) = (τ̂0 ⊗ σ̂0)⊗ Ĥ+ + (τ̂3 ⊗ σ̂0)⊗ Ĥ−
+ (τ̂1 ⊗ σ̂3)⊗ V̂z + (τ̂1 ⊗ σ̂1)⊗ V̂x + (τ̂1 ⊗ σ̂2)⊗ V̂y.

(12)

The Pauli matrices τ̂j operate on (d, f)-states, while σ̂j
operate in spin space, and Ĥ±, V̂α operate in orbital sub-
space, spanned by l1 and l2 for l = d, f . The orbital
components of various matrices go as

V̂x =
V

4

(
3
√

3√
3 1

)
sin kx,

V̂y =
V

4

(
−3
√

3√
3 −1

)
sin ky, V̂z =

V

4

(
0 0
0 4

)
sin kz,

(13)



and Ĥ± = 1
2

[
Ĥd(k)± Ĥf (k)

]
, where for l = d, f

Ĥl(k) =(
εl + tlφ1(k) + tlηlφ2(k) tl(1− ηl)φ3(k)

tl(1− ηl)φ3(k) εl + tlφ2(k) + tlηlφ1(k)

)
.(14)

The following identification of various terms appear-
ing in Eq. (12), in conjunction with the comparison with
Eq. (10), in turn allows us to conclude that Hbulk(k)
represents a multi-band strong Z2 topological insula-
tor in three dimensions: terms proportional to V̂α de-
fine Dirac kinetic energy in three dimensions, Ĥ− repre-
sents time-reversal symmetric, odd-parity, inverted-band
Dirac mass, and Ĥ+ gives rise to particle-hole asymme-
try. Equivalent quantities in HTI(k) are replaced by
scalar entries. The Parity operator in this basis reads
as P̂ = τ̂3 ⊗ σ0 ⊗ 0̃2, where 0̃2 is a two dimensional
unit matrix, here operating on the orbital subspace. It
should be noted that Hbulk(k) describes strong Z2 topo-
logical insulator only when H− is not diagonal, which is
satisfied for any ηd,f 6= 1. Hence, Hbulk(k) can be gen-
eralized for multi-band strong Z2 topological insulators,
where the dimensionality of V̂α, Ĥ− and Ĥ+ corresponds
to the number of orbitals participating in the low en-
ergy dynamics. To further substantiate our claim, we
also compute the topological invariant with the above
model, shown in Appendix A, confirming that Hbulk(k)
represents a strong Z2 topological insulator in three di-
mensions.

In the bulk Hamiltonian Hbulk(k), we can add a term

M = ∆PT

(
τ̂2 ⊗ σ̂0 ⊗ Î2

)
, representing a parity and

time-reversal odd Dirac mass, which anticommutes with
Hbulk(k), i.e. {Hbulk(k),M} = 0. Therefore, together
Hbulk(k) + M represents an axionic state of matter.
The time-reversal operator in our representation reads

as IT =
(
τ̂0 ⊗ σ̂2 ⊗ Î2

)
K, where K is the complex con-

jugation. Recently, axionic ground state has been pro-
posed for various magnetic topological insulators49–51, as
well as for paired ground state in various three dimen-
sional narrow gap semiconductors with p + is pairing
symmetries52. On the other hand, in the present situ-
ation the parity and time-reversal odd Dirac mass corre-
sponds to a Kondo singlet state53, and can, in principle,
be favored by strong interactions between the conduction
d- and localized f -electrons.

III. SURFACE STATES

The nontrivial Z2 topological invariant of the bulk
makes topological insulators distinct from a trivial vac-
uum, and therefore an interface between these two states
hosts topologically protected metallic surface states.
Next we proceed to find the low-energy Hamiltonian for
such surface states. Let us first outline the strategy of
finding the surface Hamiltonian. Without any loss of

generality, we will only consider surfaces that are per-
pendicular to the main cubic axes in this paper. For
definiteness, we focus on the (001) surface on which the
momentum components kx and ky remain good quantum
numbers.

Here we assume that the even (d-electron) and odd (f -
electron) parity bands invert at one of the high-symmetry
points of the BZ, denoted by km. To determine the en-
ergy Em of the electrons at the Dirac point, we expand
Hbulk(k) up to the second order in δk = k − km and
then set δkx = δky = 0, while replacing δkz → −i∂z.
The energy Em is then an eigenvalue of the Schrödinger
equation

Hbulk(δkz → −i∂z)Ψ(z) = EmΨ(z). (15)

We here consider a semi-infinite sample, occupying the
region z > 0, with a sharp boundary at z = 0 and vac-
uum for z < 0. Therefore, the wave function of the sur-
face bound state Ψ(z) ∝ e−λz, where λ corresponds to
the penetration depth of the surface states into the bulk.
One of the boundary conditions Ψ(z → ∞) = 0, im-
poses a constraint over λ, <(λ) > 0. The effective surface
Hamiltonian will then obtained by averaging out Hbulk

evaluated at finite δkx,y over Ψ(z):36–38

Hsurf (kx, ky) =

∞∫
0

dz〈Ψ(z)|Hbulk(kx, ky; z)|Ψ(z)〉. (16)

Below, we subscribe the above methodology to derive the
surface Hamiltonian for the family of cubic topological
Kondo insulators, such as SmB6, with the bulk Hamilto-
nian shown in Eq. (12).

A. Effective Hamiltonian Near Y = (0, π) Point

To obtain the effective Hamiltonian near the Ȳ point
of the surface BZ we need to expand Hbulk(k) around
(0, π, 0) point. In the vicinity of (0, π, 0) point various
functions appearing in Hbulk(k) to the leading order are

φ1(k)→ 2− 2k2
z , φ2(k)→ 0, φ3(k)→

√
3,

sin kz → kz, sin kx → kx, sin ky → −ky.
(17)

For the calculation of surface states, we, once again, need
to organize the spinor basis slightly different than in Eq.
(11). For convenience, let us define the 8-component
spinor as Ψ> = [Ψ↑,Ψ↓], where Ψ>σ = [d1σ, d2σ, f1σ, f2σ],
for σ =↑, ↓. In this basis the 8-dimensional Hamiltonian



Hbulk(k) becomes

Hbulk(k) =


Ĥ− V̂z 0̃2 V̂x − iV̂y
V̂z −Ĥ− V̂x − iV̂y 0̃2

0̃2 V̂x + iV̂y Ĥ− −V̂z
V̂x + iV̂y 0̃2 −V̂z −Ĥ−



+


Ĥ+ 0̃2 0̃2 0̃2

0̃2 Ĥ+ 0̃2 0̃2

0̃2 0̃2 Ĥ+ 0̃2

0̃2 0̃2 0̃2 Ĥ+

 ≡
(
H↑↑ H↑↓
H†↑↓ H↓↓

)
,(18)

where 0̃2 represents 2-dimensional null matrix, and H↑↑,
H↓↓, H↑↓ are 4 × 4 matrices. For the calculation of sur-

face bound states we first set V̂x, V̂y = 0. After obtaining
the solutions of the surface states, say |Ψ↑〉 and |Ψ↓〉, the
eigenstates of H↑↑ and H↓↓, respectively, we will perform

a perturbative expansion of H↑↓, H
†
↑↓, in the two dimen-

sional basis spaced by |Ψ↑〉 and |Ψ↓〉 to obtain the surface
Hamiltonian.
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FIG. 3: (Color online) Dependence of four roots of λ (solu-
tions of Eq. (26)), for fixed value of the parameter ηd = −0.3,
but as a function of ηf , appearing in Eq. (6). Rest of the pa-
rameters of Hbulk(k) are same as in Eq. (9). Dependence
of the location of the Dirac points (EX̄) on this parameter
is shown in Fig. 4. The smallest root of λ determines the
penetration depth of the surface state into the bulk.

Next we make an ansatz for the surface states (drop-
ping the spin index in |Ψ↑,↓〉 from now on for the sake
of notational simplicity) Ψ(z) ∼ exp (−λz)Ψ(λ). Taking
kz → −i∂z, we here first wish to solve

H↑↑(kz → −iλ)Ψ(λ) = EȲ Ψ(λ), (19)

where EȲ is the energy of the surface states at Ȳ = (0, π)
point of the surface BZ. The above equation introduces
a set of constraints among various spinor components as

follow

d2(λ) = Gd(λ)d1(λ) and f2(λ) = Gf (λ)f1(λ), (20)
where

Gl(λ) = −
(
εl1 + tlλ2 − EȲ

εl3

)
,

εl1 = εl + 2tl, εl3 =
√

3tl(1− ηl),
(21)

for l = d, f . The remaining two spinor components are
related according to f1(λ) = H(λ)d1(λ), where

H(λ) =
iV λGd(λ)(

εf2 + tfηfλ2 − EȲ
)
Gf (λ)− εf3

, (22)

and εl2 = εl+2ηlt
l. A non-trivial solution of all the spinor

components yields the secular equation

Ṽ 2λ2 +

[
λ2 + Λ̃2

d −
Π2
d

λ2 + Λ2
d

] [
λ2 + Λ̃2

f −
Π2
f

λ2 + Λ2
f

]
= 0,

(23)
where

Ṽ 2 =
V 2

tdtfηdηf
, Λ2

l =
εl1 − EȲ

tl
, Λ̃2

l =
εl2 − EȲ
tlηl

,

Π2
l =

3(1− ηl)2

ηl
,

(24)

for l = d, f .
The above equation altogether yields eight roots of the

form ±λj , for j = 1, 2, 3, 4. Upon imposing the boundary
condition Ψ(z →∞) = 0, the surface state gets restricted
to the following form

Ψ(z) =
∑

j=1,2,3,4

Cj exp(−λjz)Ψ(λj), (25)

where Cjs are arbitrary constant, which can now be elimi-
nated from the second boundary condition Ψ(z = 0) = 0.
Here we have assumed that <(λ)j > 0, for j = 1, 2, 3, 4.
This assumption is justified, since all the coefficients in
Eq. (23) are real. Upon imposing the above boundary
condition we obtain the following algebraic equation

G1
fH1 −XG2

fH2 − Y G3
fH3 − ZG4

fH4 = 0, (26)

from which one can immediately determine the energy
EȲ . The above equation is too complicated to obtain an
analytic expression for EȲ . We here obtain its solution
numerically. Scaling of four roots of λ as a function of
the parameter ηf , while keeping rest of the parameters
in Hbulk(k) fixed at their values quoted in Eq. (9) is
shwon in Fig. 3. Various quantities appearing in the last
equation are



X =
H1 −H3,4G

1,3,4
d

H2 −H3,4G
2,3,4
d

, Y =
1

G3
d −G4

d

[(
G1
d −G4

d

)
−
(
G2
d −G4

d

)
X
]
, Z = 1−X −

{(
G1
d −G4

d

G3
d −G4

d

)
−X

(
G2
d −G4

d

G3
d −G4

d

)}
,

(27)
where

Gjl ≡ Gl(λj), Hj ≡ H(λj), H3,4G
k,3,4
d = H4 + (H3 −H4)

(
Gkd −G4

d

G3
d −G4

d

)
, (28)

l = d, f , j = 1, 2, 3, 4 and k = 1, 2. Various arbitrary
coefficients appearing in Eq. (25) are related to the above
parameters according to

C2

C1
= −X

(
d1

1

d2
1

)
,
C3

C4
= −Y

(
d1

1

d3
1

)
,
C4

C1
= −Z

(
d1

1

d4
1

)
,

(29)

where ljk = lk(λj) for l = d, f , j = 1, 2, 3, 4, and k = 1, 2.
In terms of these new parameters the surface state is

|Ψ↑(z)〉 = C1

∑
q=1,2,3,4

Xq exp (−λqz)


1

Gqd
Hq

HqG
q
f

 , (30)

where X1 = 1, X2 = −X, X3 = −Y , X4 = −Z.
Here we have reintroduced the spin-index in the wave-
function. The remaining arbitrary constant C1 deter-
mines the overall normalization factor of |Ψ↑(z)〉. After
some lengthy but straightforward calculation it can be
shown that the other surface bound state |Ψ↓(z)〉, satis-
fying

H↓↓(kz → iλ)Ψ↓(λ) = EȲ Ψ↓(λ), (31)

is identical to |Ψ↑(z)〉, shown in Eq. (30). From the
numerical solution of the wave-functions |Ψ↑/↓(z)〉, we
find that magnitudes of all the four-components of the
spinor wave functions are comparable with each other.

Next we perform the perturbative expansion of the off-
diagonal components of Hbulk in Eq. (18), yielding the
surface Dirac Hamiltonian at Y = (0, π) point of the
surface BZ

H Ȳ
sur =

∫ ∞
0

dz

[
0 〈ψ↑(z)|H↑↓|Ψ↓(z)〉

〈ψ↓(z)|H†↑↓|Ψ↑(z)〉 0

]
,

= (vȲx σxkx − vȲy σyky).

(32)

In the above Hamiltonian vȲx 6= vȲy , and thus H Ȳ
sur de-

scribes an anisotropic Dirac cone at Y point. How-
ever, due to the complex nature of the algebraic equation
(Eq. (26)), expressions for vȲx,y and λs are quite lengthy
and they cannot be expressed compactly. We, therefore,
perform numerical diagonalization to obtain the surface
band structure (see Fig. 4) that captures the essential
properties of the surface states.

B. Effective Hamiltonian Near X = (π, 0) Point

To arrive at the effective Hamiltonian for the surface
states near the X̄ point, we need to expand Hbulk(k)
around (π, 0, 0), around which

φ1(k)→ 2− 2k2
z , φ2(k)→ 0, φ3(k)→ −

√
3,

sin kz → kz, sin kx → −kx, sin ky → ky.
(33)

Otherwise, the calculation of the surface states near
(π, 0, 0) are exactly the same as the one near (0, π, 0)
point, shown in previous subsection. Otherwise, the sur-
face Hamiltonian in the vicinity of the X = (π, 0) point
reads as

HX̄
sur = (vX̄x σxkx − V X̄y σyky), (34)

and once again vX̄x 6= vX̄y . Therefore, HX̄
sur also repre-

sents an anisotropic Dirac cone near the X̄ point of the
surface BZ. We also notice that vX̄x = vȲy and vX̄y = vȲx ,
reflecting a four-fold C4 rotational symmetry on the sur-
face, resulting from the underlying cubic symmetry in the
bulk, which has been confirmed in recent measurement of
magneto-resistance oscillations54,55. The location of the
Dirac fermions near X̄ and Ȳ points are also the same,
i.e., EX̄ = EȲ . From now on we will refer X̄ and Ȳ
points of the surface BZ together as X̄ points.

C. Effective Hamiltonian Near Γ = (0, 0) Point

Next we proceed to find the surface state and the cor-
responding Hamiltonian near the Γ̄ = (0, 0) point of the
surface BZ. In this case we can obtain analytical expres-
sion for both penetration depth (λ) and Fermi velocity
(vF ) of the surface states. In the vicinity of (0, 0, π) point
various function appearing in Hbulk(k) are

φ1(k)→ −1 + k2
z , φ2(k)→ 3, φ3(k)→ 0,

sin kz → −kz, sin kx → kx, sin ky → ky.
(35)

Once again we can bring the bulk Hamiltonian in the
form as in Eq. (18) to calculate the surface bound
states and surface Hamiltonian, and solve for H↑↑(kz →
−iλ)Ψ↑(λ) = EΓ̄Ψ↑(λ). In the vicinity of (0, 0, π) point



this equation simplifies significantly, immediately yield-
ing (once again here we are dropping the spin index from
the spinor components for notational simplicity)

d1(λ) = f1(λ) = 0. (36)

The rest of the components satisfy

(Ad − λ2)d2(λ) + iṼdλf2(λ) = 0,

(Af − λ2)f2(λ) + iṼfλd2(λ) = 0,
(37)

where

Al =
εl2 − EΓ̄

ηltl
, Ṽl =

V

ηltl
,

εl1 = εl + tl(3ηl − 1), εl2 = εl + tl(3− ηl),
(38)

for l = d, f . Notice that εl1,2 are slightly different near
(0, 0, π) and (0, π, 0), although to avoid notational com-
plication, we are using the same symbols. Nontrivial so-
lutions of the spinor components, yield four roots of λ,
of the form ±λj , and for j = 1, 2 we have

λj =
1√
2

[ (
Ad +Af

)
− ṼdṼf

+ (−1)j
√(

Ad +Af − ṼdṼf
)2

− 4AdAf
]1/2

.

(39)

FIG. 4: (Color online) The surface bandstructure plotted
along the same directions (but not all the way to M) shows
an isotropic Dirac point at Γ and a strongly anisotropic Dirac
point at X. The relative shift of the Dirac points at X and Γ
are controlled by the parameters ηd and ηf , which are tuned
so that the Dirac point at X is below Γ. The anisotropy
(i.e. ratio of the velocities vx/vy) of the Dirac cone at X
varies from vx/vy = 20 in the vicinity of the Dirac point to
vx/vy = 3 at energies away from the Dirac point.

Imposing boundary condition Ψ↑(z →∞) = 0, we can

write the surface bound state as

|Ψ↑(z)〉 = C1

e
−λ1z


0

d1
2

0

f1
2

+A e−λ2z


0

d2
2

0

f2
2


 . (40)

Upon imposing the second boundary condition Ψ↑(z =
0) = 0, we obtain

(
Ad − λ2

1

)
λ2 =

(
Ad − λ2

2

)
λ1, yielding

EΓ̄ =
εf2 t

dηd − εd2tfηf
tdηd − tfηf

,

=
tfηf

(
εd + td(3− ηd)

)
− tdηd

(
εf + tf (3− ηf )

)
tfηf − tdηd

.

(41)

The wave-function for the surface state can then be com-
pactly written as

|Ψ↑(z)〉 = C1

(
e−λ1z − e−λ2z

)


0

d1
2

0

f1
2

 , (42)

where lj1,2 ≡ l1,2(λj) for j = 1, 2 and l = d, f , and C1

stands as an overall normalization constant. Perform-
ing the similar analysis for the surface bound state for
the ↓ component of the spin projection, we find that
|Ψ↓(z)〉 = |Ψ↑(z)〉. A perturbative expansion of H↑↓ and

H†↑↓ in the basis of |Ψ↑(z)〉 and |Ψ↓(z)〉, yields the surface

Hamiltonian in the vicinity of the Γ point

H Γ̄
sur = vΓ̄

F (σxkx − σyky) , (43)

which represents an isotropic Dirac cone, with the Fermi
velocity

vΓ̄
F = 2V

√
−2tdtfηdηf

(ηdtd − ηf tf )2
. (44)

Note that the Fermi velocity is of the order of hybridiza-
tion amplitude, which implies that vΓ̄

F � pF /m, where
m is a bare electron mass and pF is a Fermi momentum.
From the solution of the wave functions, we find that in
|Ψ↑,↓(z)〉, d2(λ1) � f2(λ1). Therefore, the overlap be-
tween the d- and f -electrons for the surface states near
the Γ̄ point is small, in contrast to the situation near X̄
points.

D. Surface Band Structure

Next we numerically compute the surface state of the
bulk SmB6 from the model Hamiltonian Hbulk(k) on the
(001) surface. For this purpose we can treat momentum
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FIG. 5: (Color online) Dependence of various quantities in
the bulk as well as on the surface on ηf , while rest of the
parameters are kept fixed to their values quoted in Eq. (9).
Here, EV

Γ/X represents the top of the valence band at Γ/X

point (shown in red/orange) and EC
Γ/X stands for the bottom

of the conduction band at Γ/X point of the bulk BZ (shown
in black/green), of the 3d bulk BZ. EΓ (brown) and EX (blue)
are the energies of the Dirac fermions near the Γ̄ and X̄ point
of the surface BZ. This figure shown that at least the Dirac
point at the X̄ point can be dragged down into the valence
band by tuning some parameter (ηf for example here) in the
theory.

kx and ky to be constant, and represent the bulk Hamil-
tonian as Hbulk(k) ≡ Hbulk(kx, ky, kz) where

Hbulk(kx, ky, kz) = h(kx, ky)+[ρ(kx, ky)eikz + h.c], (45)

and h(kx, ky), ρ(kx, ky) are defined as follows:

h(kx, ky) =
Hbulk(kx, ky, 0) +Hbulk(kx, ky,

π
a )

2
, (46)

ρ(kx, ky) =
Hbulk(kx, ky, 0)−Hbulk(kx, ky,

π
a )

4

− i

2
Hbulk(kx, ky,

π

2a
) +

i

2
h(kx, ky). (47)

To compute the surface states as well as the surface band
structure, we first need to Fourier transform the Hamilto-
nian Hbulk(kx, ky, kz) to real space along the z-axis yield-
ing

H1(kx, ky) =

N∑
n=0

[h(kx, ky)⊗ |n〉〈n|

+ [ρ(kx, ky)⊗ |n〉〈n+ 1|+ h.c],

(48)

and we set N = 180. Upon numerically diagonalizing the
above Hamiltonian H1(kx, ky), we obtain the spectrum of
the surface states, shown in Fig. 4, for a particular set of
parameters quoted in Eq. (9).

Therefore, generically (unless ηd = ηf ) there exists an
offset among the position of the Dirac points, residing at

FIG. 6: (Color online) Fermi wavevector (kF ) as a function
of Fermi energy (EF ) that would be measured by quantum
oscillation around each of the Dirac points at Γ̄ and X̄, show-
ing an approximately linear dispersions. The average Fermi

velocity at the Γ̄ point is vΓ̄
F = 2.3×103 m/s and that around

the X̄ point is larger and given by vX̄F = 5.7 × 103 m/s.

the Γ̄ and X̄ points. For the chosen values of the pa-
rameters as in Eq. (9), all the Dirac points are placed
within the bulk insulating gap. However, tuning vari-
ous parameters in the effective model Hbulk(k), one can
tune various measurable quantities in the bulk such as
the hybridization gap, as well as on the surface, such as
the energies of the Dirac fermions near different points
and the offset among them. In Fig. 5, we demonstrate
the variation of these quantities as a function of a single
tuning parameter ηf , while the rest of the parameters are
kept fixed at their values quoted in Eq. (9). This plot
shows that surface Dirac points can be moved over a cer-
tain range in energy and Kondo insulators with different
bulk gaps can be realized by tuning the band parame-
ter, which may be relevant for other Kondo systems with
cubic symmetry.

Perhaps one of the most intriguing recent experimental
results concerns the measurement of the effective mass,
and concomitantly the effective Fermi velocity of the sur-
face carriers56. Quantum oscillations measure the area of
the Fermi surface A(EF ) at each of the pockets Γ̄ and X̄
and can be used to estimate the Fermi wavevector

kF (EF ) =
√
A(EF )/π, (49)

where EF is the Fermi energy. The scaling of kF near
each pockets, as a function of energy of the surface states,
obtained from our effective model, are plotted in Fig. 6.
From this scaling, the Fermi velocity (vF ) and corre-
sponding mass (m) can be computed since vF (EF ) =
(∂kF /∂EF )−1 and m(EF ) = kF (EF )/vF (EF ). Com-
paring these results with the quantum oscillations56 and
ARPES experiments6,7,27–29, we observe that the ratio of



FIG. 7: (Color online) Surface bandstructure for screening
length λB = 2a for various surface potential amplitude (a)
U0 = 0 meV, (b) U0 = 5 meV, (c) U0 = 10 meV and (d)
U0 = 15 meV. As the potential increases towards the band-
gap, the Dirac point at Γ is found to approach the valence
band and for sufficiently strong band-bending potential, the
Dirac cone at Γ disappears into the valence band. The velocity
of the Γ surface state increases significantly (by an order of
magnitude) in (d) relative to (a). The modification to the X
point is comparatively minor.

the Fermi wave-vectors near the X̄ point along kx and
ky directions can be consistent with ARPES measure-
ments and the ratio of the Fermi velocities at the X̄ and
Γ̄ points is also consistent with quantum oscillation mea-
surements. In contrast, the typical values of the Fermi
velocities and kF , obtained in our calculation are off by
more than an order of magnitude than the one extracted
from the quantum oscillation and AREPS measurements,
respectively.

IV. BAND BENDING

As we have already discussed in the introduction, our
derivation of the effective theory for the surface states is
based on the mean-field theory for the interacting Hamil-
tonian in the bulk. In particular, we have assumed that
the hybridization amplitude, as well as the chemical po-
tential remain spatially homogeneous even close to the
surface of the material. An implicit assumption that has
been made in this work so far is that the valence of the
f -ions remains the same both on the surface and in the
bulk. Recent experimental studies on SmB6

57, however,
suggest that the valence state of samarium ion is close
to 4f5, which is different from the mixed valence state in
the bulk. Therefore, coupling between surface and bulk
lattice degrees of freedom may play an important role
in determining the values of various parameters for the
surface electrons43–45. We here address this issue by nu-

FIG. 8: (Color online) Surface bandstructure for screening
length λB = 12a for various surface potential amplitude (a)
U0 = 2 meV, (b) U0 = 5 meV, (c) U0 = 12 meV and (d) U0 =
20 meV. In addition to a stronger, but otherwise qualitatively
similar, effect on the Dirac cones as in the λB = 2 (i.e. Fig. 7)
we find the appearance of multiple states in addition to the
Dirac cone. These states would likely to have small kF .

merically computing the spectrum of the surface states
assuming a spatially modulated profile of the chemical
potential.

While the tight-binding model captures the topolog-
ical properties of the surface states, the details of the
electronic structure depend on details of the surface. In
particular, generically one can expect a shift in the sur-
face potential from broken bonds at the surface, charged
impurities and defects, polar surface termination58 and
surface reconstruction59. We model this surface poten-
tial, which requires accounting for self-consistency effects
in addition to details of the surface, by an exponential
decaying potential with amplitude U0 and decay length-
scale λB , represented by

V (x, y, z) = U0 exp[−z/λB ], (50)

which we add to the tight binding Hbulk(k). The strength
of the band bending potential (U0) is not tied with the
Kondo insulating gap in the bulk, and therefore it is likely
that U0 � V .

We first consider the situation of short-ranged screen-
ing by taking λB = 2a in Fig. 7, where a is the lattice
constant. As the potential increases towards the band-
gap, the Dirac point at Γ̄ is found to approach the valence
band and for sufficiently strong band-bending potential
(U0), the Dirac cone at Γ̄ disappears into the valence
band. It is interesting to notice that the velocity of the
surface states at Γ̄ point increases significantly as one in-
creases the band-bending potential (U0), in particular by
an order of magnitude in (d) relative to (a). On the other
hand, the modification of the surface states near the X̄



point is comparatively minor in comparison to that near
Γ̄ point.

Next we consider the limit of long-ranged screening
λB = 12a, and the resultant modification in the surface
band structure is shown in Fig. 8. A stronger, but oth-
erwise qualitatively similar effect on the surface Dirac
cones is observed in comparison to that for λB = 2a (i.e.
Fig. 7). In addition to the Dirac cones, we also find the
appearance of multiple states at the surface when the
screening length is large. These states would likely have
a small kF . Thus band-bending not only significantly
renormalizes the Fermi velocity (vF ), but also modifies
the Fermi wave-vector (kF ). It is worth pointing out
that a realistic strength of the band bending potential
can drag down the Dirac points into the valence band
and place it outside the bulk insulating gap, which in
SmB6 is ∼ 15 meV, much smaller than that in Bi2Se3

(∼ 300 meV). This may stand as a possible explana-
tion for the absence of surface Dirac points in ARPES
measurements6,7,27–31.

V. DISCUSSION AND CONCLUSIONS

To conclude, we have derived the effective Hamilto-
nian for the helical metallic states on the surface of cubic
topological Kondo insulators, such as SmB6. The bulk
band structure here has been obtained within the mean-
field approximation. To derive the surface state Hamil-
tonian we have projected the inverted even- and odd-
parity bands near the high-symmetry points (X points)
of the 3D BZ onto the one of the main surfaces. We
show that helical Dirac fermionic excitations live around
Γ̄ and X̄ points of the surface BZ. While the conical dis-
persion near the Γ̄ point is isotropic, that near X̄ point
is anisotropic. We have also obtained the expressions
for the penetration depth and effective Fermi velocities
near each of these points. Finally we wish to put for-
ward some connections with recent ARPES6,7,27–31 and
quantum oscillation measurements54–56.

ARPES: A number of recent ARPES measurements
suggest an insulating bulk at low temperatures, as well
as they have revealed the structure of the surface states
in SmB6

6,7,27,30,31. In particular ARPES has shown
a circular/isotropic pocket around the Γ̄ point, and
oval/anisotropic pockets in the vicinity of the X̄ points
of the surface BZ6,27. Otherwise, among the energies of
the surface Dirac fermions at different points of the BZ,
generically there exists an offset, and that near the Γ̄ and
X̄ points are ∼ 18 meV and 15 meV, respectively7,27.
More recent ARPES measurements has also revealed the
similar band structure of the surface BZ of SmB6

6,31.
Fermi surface cuts within the window ±4 meV, discern
pockets near Γ̄ as well as near the X̄ points6. These
observations are in excellent qualitative agreement with
our findings, reported in Sec. III. A recent spin-resolved
ARPES measurement60 has confirmed the helical spin-
texture for the surface states around the X̄ and Ȳ points

of the surface BZ, we found here.

The helical nature of the surface states can, for exam-
ple, be established through the mapping of the chirality
of the orbital angular momentum using circular dichro-
ism ARPES measurement7. Upon mapping the Fermi
surfaces using right and left circular polarized light, it
has been shown that the ARPES intensities in the por-
tion of the Fermi surface with positive and negative ky is
stronger, respectively. Otherwise, this feature is present
near Γ̄ and X̄ points. Consequently, the difference of the
ARPES intensities with right and left circular polarized
light clearly discerns an antisymmetric structure for all
the Fermi pockets about the ky = 0 axis. Thus circular
dichroism ARPES measurements are suggestive of the
helical nature of the surface states, which causes locking
of spin and orbital angular momenta, yielding helical spin
texture of the surface states of SmB6, shown in Fig. 1.
The helical quasi-particle excitations at low energies near
the Γ̄ and X̄ points are, respectively, captured by the
low energy Dirac Hamiltonians H Γ̄

sur and HX̄
sur, shown

in Eqs. (43) and (34) or (32). It is worth mentioning
that the circular dichroism ARPES technique has suc-
cessfully established the helical structure of the surface
states in weakly correlated topological insulators, such as
Bi2Se3

61–63.

Recently an ARPES measurement for another member
of the hexaboride family, YbB6, became available32–34,
clearly suggesting the existence of surface states in the
vicinity of Γ̄ and X̄ points, similar to SmB6. Fur-
thermore, circular dichroism ARPES measurements with
right and left circular polarized light also suggests the
helical structure of these surface states, which may arise
due to the presence of a topologically nontrivial bulk.
However, it has been argued that YbB6 is possibly not a
topological Kondo insulator33. Nevertheless, our analysis
on the band bending phenomena due to the spatial modu-
lation of the chemical potential may as well be applicable
in YbB6, and provide an explanation for the absence of
the Dirac points.

Quantum Oscillations: Recent quantum oscillation
measurements also provide valuable insight into the
Fermi surface topology of the surface BZ in SmB6. The
angular dependence of the out-of-plane component of
magneto-resistance, measured in the presence of in-plane
magnetic fields, discerns a four-fold periodicity, for any
field B > 4T, and at temperature > 5− 10 K54,55, which
may arise from the four-fold rotational symmetry among
the anisotropic Fermi pockets around the X̄ points in
the surface BZ. On the other hand, the isotropic Fermi
pocket near the Γ̄ does not contribute to the oscillation
of magneto-resistance.

In addition, quantum oscillation has also been ob-
served in SmB6 using torque magnetometry (de Hass-
van Alphen effect) in strong magnetic fields (B > 5 T),
which through the formation of Landau levels for the two
dimensional surface states, yields a very sensitive tool to
probe the Fermi surface topology56. Firstly, the quantum
oscillation confirms the existence of two different pockets



on (100) surface, which is in accordance with our explicit
calculation and also with number of ARPES measure-
ments. The fast Fourier transformation of the torque
oscillation gives the oscillation frequencies (ν) for differ-
ent Fermi pockets, which in turn provides the area of the
Fermi pockets (A), since

ν =
~

2πe
A, (51)

where e is electronic charge and consequently the Fermi
momentum (kF )64. On the other hand, from the temper-
ature dependence of the oscillation amplitude one finds
the effective mass (m) of the quasiparticle excitation
(Lifshitz-Kosevich formula)65. From the notion of these
two quantities, one can find the effective Fermi veloc-
ity (vF ≈ kF /m), yielding ∼ (2.9 ± 0.4) × 105 m/s near
Γ̄ and ∼ (6.5 ± 0.21) × 105 m/s near X̄ point56. The
measured values of vF are roughly two order magnitude
larger than their values obtained in ARPES measurement
(0.3 eV.Å)6, which on the other hand, may arise due to
the band bending phenomena44. Tracking the Landau
level index to infinite field limit, which measures the geo-
metric Berry phase, one obtains an interception ≈ −1/2
as H → ∞, for both the pockets in residing on (100)
plane56. This observation strongly suggests the existence
of topologically protected two component massless Dirac
fermionic excitation around Γ̄ and X̄ points.
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Appendix A: Calculation of the topological
invariants

To compute the invariants we need to evaluate the
Hamiltonian at the high-symmetry points (HSP) of the
BZ. Since the hybridization matrix elements vanish at
HSPs, the Hamiltonian can be diagonalized. The result-
ing band structure consists of four (two d-like and two
f -like) doubly degenerate bands:

E±d (km) =εd +
td
2
{(1 + ηd)(φ1m + φ2m)±

(1− ηd)
√

(φ1m − φ2m)2 + 4φ2
3m

}
,

E±f (km) =εf +
tf
2
{(1 + ηf )(φ1m + φ2m)±

(1− ηf )
√

(φ1m − φ2m)2 + 4φ2
3m

}
,

(A1)

where

φαm = φα(km), α = 1, 2, 3. (A2)

In the basis (4) the inversion operator is

P̂ = σ̂z ⊗ τ̂0 ≡ diag.(1, 1,−1,−1). (A3)

Consider the Hamiltonian Ĥbulk(km) = Ĥm from Eq.
(5) evaluated in the HSP in the basis of the eigenstates
corresponding to the eigenvalues (A1):

Ĥm = diag(E+
d (km), E−d (km), E+

f (km), E−f (km)).

(A4)
It follows that Eq. (A4) can be written as a sum of four
operators:

Ĥm =
σ̂z ⊗ τ̂z

4

[
E+
d (km)− E−d (km)− E+

f (km) + E−f (km)
]

+
σ̂0 ⊗ τ̂z

4

[
E+
d (km)− E−d (km) + E+

f (km)− E−f (km)
]

+
σ̂0 ⊗ τ̂0

4

[
E+
d (km) + E−d (km) + E+

f (km) + E−f (km)
]

+
σ̂z ⊗ τ̂0

4

[
E+
d (km) + E−d (km)− E+

f (km)− E−f (km)
]
.

(A5)

Note that the last term in this expression is proportional
to the parity operator.

To compute the invariant we need to consider the
bands which are occupied at least at one point of the
BZ. Since the d-band E+

d (km) is highest energy it re-
mains unoccupied at all points of the BZ and therefore
it can be ignored. For the remaining three bands we can
set the parity eigenvalues to

δm = +1 : E−d (km) > E−f (km) > E+
f (km),

δm = −1 : E−f (km) > E−d (km) > E+
f (km),

δm = −1 : E−f (km) > E+
f (km) > E−d (km).

(A6)

Note that E−f > E+
f since we are considering d-electron

bands and f -hole bands to ensure that insulating gap
does not vanish anywhere in the BZ. Therefore, the parity
eigenvalue is

δm = sign
[
E−d (km)− E−f (km)

]
. (A7)

Then, the topological invariant is determined by

(−1)ν =

8∏
m=1

δm. (A8)

The dependence of δm and ν on the microscopic param-
eters such as bare hybridization V and f -level energy εf
has been analyzed in Refs. 16, 19. It was found that
strong topological Kondo insulator, ν = −1, is realized
for a wide range of values of V, εf .



1 M. Dzero, K. Sun, V. Galitski and P. Coleman, Phys. Rev.
Lett. 104, 106408 (2010).

2 M. Dzero, K. Sun, P. Coleman and V. Galitski, Phys. Rev.
B 85, 045130 (2012).

3 S. Wolgast, C. Kurdak, K. Sun, J. W. Allen, D-J. Kim,
and Z. Fisk, Phys. Rev. B 88, 180405 (2013).

4 D. J. Kim, S. Thomas, T. Grant, J. Botimer, J. Fisk, J.
Xia, Sci. Rep. 3, 3150 (2013).

5 X. Zhang, N. P. Butch, P. Syer, S. Ziemak, R. L. Greene,
and J. Paglione, Phys. Rev. X 3, 011011 (2013).

6 M. Neupane, N. Alidoust, S-Y. Xu, T. Kondo, Y. Ishida,
D. J. Kim, Chang Liu, I. Belopolski, Y. J. Jo, T-R. Chang,
H-T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil,
S. Shin, Z. Fisk, and M. Z. Hasan, Nat. Comm. 4, 2991
(2013).

7 J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z.R. Ye, M.
Xu, Q.Q. Ge, S.Y. Tan, X.H. Niu, M. Xia, B.P. Xie, Y.F.
Li, X.H. Chen, H.H. Wen, and D.L. Feng, Nat. Comm. 4,
3010 (2013).

8 D. J. Kim, J. Xia, and Z. Fisk, Nat. Materials 13, 466
(2014).

9 Y. Nakajima, P. S.Syers, X. Wang, R. Wang, J. Paglione,
arXiv:1312.6132 (2013).

10 M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

11 J. E. Moore, Nature 464, 194 (2010).
12 A. Menth, E. Buehler and T. H. Geballe, Phys. Rev. Lett.

22, 295 (1969).
13 J. W. Allen, B. Batlogg and P. Wachter, Phys. Rev. B 20,

4807 (1979).
14 J. Cooley, M. C. Aronson, Z. Fisk, and P. C. Canfield,

Phys. Rev. Lett. 74, 1629 (1995).
15 P. Riseborough, Adv. Phys. 49, 257 (2000).
16 T. Takimoto, J. Phys. Soc. Jpn. 80, 123710 (2011).
17 M. Tran, T. Takimoto and K. S. Kim, Phys. Rev. B 85,

125128 (2012).
18 M. Dzero, Euro. Phys. Jour. B 85, 297 (2012).
19 V. Alexandrov, M. Dzero and P. Coleman, Phys. Rev. Lett.

111, 226403 (2013).
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