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We develop the first order gradient correction to the exchange-correlation free energy of the ho-
mogeneous electron gas for use in finite temperature density functional calculations. Based on this
we propose and implement a simple temperature dependent extension for functionals beyond the
local density approximation. These finite temperature functionals show improvement over zero tem-
perature functionals as compared to path integral Monte Carlo calculations for deuterium equations
of state and perform without computational cost increase compared to zero temperature functionals
and so should be used for finite temperature calculations. While the present functionals are valid at
all temperatures including zero, non-negligible difference with zero temperature functionals begin
at temperatures above 10000 K.

PACS numbers:

I. INTRODUCTION

Understanding of matter in extreme conditions repre-
sents a significant and current challenge of high energy
density physics1,2. Some particular systems of interest
include dense astrophysical plasmas as exist in the in-
teriors of giant planets, as well as warm dense matter,
which is increasingly studied in high energy density lab-
oratory experiments. In these conditions of elevated tem-
perature and density relative to the ambient condensed
matter state, ions can be strongly coupled and electrons
are at least partially degenerate. These conditions have
proven difficult to describe theoretically and necessitate
numeric simulations3.
One key approach is molecular dynamics simulations

via density functional theory (DFT). In this approach
the ions are treated classically and propagated accord-
ing to Newton’s equations where the force is determined
from the ions interaction with each other and the electron
density. The electron density is solved for at each ionic
configuration in accord with the Born-Oppenheimer ap-
proximation using DFT methods. In particular the elec-
tron free energy is minimized subject to conservation of
the number of electrons in order to determine the elec-
tron density. This free energy is given by the density
functional

F [n] = Fs[n] + FH [n] + Fxc[n] + Fei[n] (1)

where Fs is the non-interacting free energy comprised of
both kinetic and entropic parts, FH is the Hartree energy
or direct Coulomb interaction between the electrons, Fei

is the electron-ion Coulomb interaction, and Fxc is de-
fined as the remainder of the total free energy, which
includes the quantum mechanical exchange and correla-
tion as well as the excess kinetic and entropic terms. Fxc

is a key contribution for which there is not an exact ex-
pression and, hence, it must be approximated by a den-
sity functional that is in general temperature dependent.
However, while the DFT approach is increasingly used to
study higher temperature systems4–6, zero temperature
exchange-correlation functionals are most commonly em-

ployed, even at significant temperature, as opposed to
explicitly temperature dependent functionals.
Recently fits were provided for Fxc in the local den-

sity approximation (LDA)7 which is the simplest type
of density functional. At zero temperature the LDA has
seen significant improvements made upon it over the past
40 years. In the first step beyond LDA density gradient
expansions were examined, then generalized gradient ap-
proximations were developed, and later even more com-
plex, orbital-dependent functionals were considered8,9.
While a similar effort has not been seen at finite tempera-
ture, Geldart and co-workers10 did derive the gradient ex-
pansion for the exchange only contribution. In this paper
we examine the gradient expansion for the full exchange-
correlation functional and based on that provide a sim-
ple finite temperature extension for generalized gradient
functionals. In addition we perform self-consistent calcu-
lations to determine the overall importance of tempera-
ture dependence in exchange-correlation functionals.

II. GRADIENT CORRECTIONS TO THE

EXCHANGE-CORRELATION FREE ENERGY

A. Development of the gradient expansion

In order to determine the gradient expansion we con-
sider the relation of density functional theory to dielec-
tric theory for the uniform electron gas. Following Kohn
and Sham we first write the gradient expansion of the
exchange-correlation free energy as

Fxc[n] =

∫

drfxc(n, T )n(r)

+
1

2

∫

drg(2)xc (n, T ) |∇n(r)|2 + . . . , (2)

where n and T are the electron density and temperature.
The first term of the RHS on its own is the local density
approximation, with fxc the exchange-correlation free en-
ergy per electron in the uniform electron gas. The coef-

ficient of the gradient correction term, g
(2)
xc , is the piece
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determined in this work, and it is related to the static
local field correction G(k) of the homogeneous electron
gas by11–14

g(2)xc (n, T ) =
1

2

(

∂2[−vkG(k)]

∂k2

)

k→0

= −4πe2δ/k4F , (3)

where vk = 4πe2/k2 is the Coulomb potential, kF =
(3π2n)1/3, and in the second line we consider the small
k expansion of G(k) = γ(k/kF )

2 + δ(k/kF )
4 + . . . Here

the dependence of G, γ and δ on n and T is suppressed
for convenience.
It is known that G may be well represented for small

and large k, though not for intermediate values, by the
function15,16

G(q) = A
(

1− eBq2
)

(4)

with q = k/kF . Then for small q

G(q) = ABq2 − 1

2
AB2q4 + . . . , (5)

and so,

γ = AB δ = −AB2/2 . (6)

Next from the compressibility sum rule we have

γ = − k2F
4πe

∂2(nfxc)

∂n2
, (7)

which we may evaluate by the recent analytic fits7 for fxc
which are based on the quantum Monte Carlo (QMC)
data17 for the internal exchange-correlation energies of
the homogeneous electron gas at finite temperatures.
This leaves us needing still A or B independently to de-

termine δ and hence g
(2)
xc . This is completed then by the

relation for the large q limit of G(q) to the pair distribu-
tion function18, g(r),

A = G(q → ∞) = 1− g(0) . (8)

In order to determine the gradient coefficient, we now
need only g(0) further (again T and n dependence is
suppressed). This we obtain from the same QMC re-
sults of Brown et al.17 that the fxc fit is based on, in
which they also provide g(r) for the unpolarized sys-
tem. However, their grid does not include g(0) so we
have extrapolated their g(r) data to obtain g(0) by fit-
ting g(r) = a + ar + br2 for small r in accord with the
cusp condition19 at each density and temperature point
given in the QMC results. Next we perform a sepa-
rate fit for g(0) as a function of rs at each temperature
t = kBT/EF = {0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0},
according to the following equation20

g(0) =
1

2

1 + a
√
rs + brs

1 + crs + dr3s
(9)
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FIG. 1: Top: QMC data points for g(0) and our fit as a func-
tion of rs for a given t = kBT/EF , with the the curves being
t = 8, 4, 0.0625, 1 from top to bottom. Bottom: Coefficient of

the gradient expansion g
(2)
xc , for given t as derived from QMC

fits for fxc
7 and g(0) (top).

The fit results are plotted for selected t in the upper
panel of Fig. 1 along with the g(0) extrapolated from
the QMC data. Then using Eqs. (3)-(8) along with the

fits for g(0) we find g
(2)
xc as a function of rs for the given

t values. The results are plotted for t = 0.0625, 1, 4, 8 in
the lower panel of Fig. 1. It is worth noting that the
g(0) curve for t = 0.0625 is nearly identical to that for
the t = 0 QMC result of Spink et al.20.

B. Analysis of the temperature dependence

To examine the effects of the temperature dependent

gradient coefficient, g
(2)
xc , we calculate its relative contri-

butions on various systems at different temperatures and
densities. Specifically we solve all electron hydrogen, alu-
minum, and iron systems at each t for which we have

fit g
(2)
xc and at selected densities from ambient to several

times ambient compression. We first solve the system
in an average atom model21 using an orbital-free func-
tional for the non-interacting contribution, namely the
finite temperature Thomas-Fermi plus von Weiszäcker
approximation22, and a zero temperature LDA for the
exchange-correlation energy. The average atom model
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consists of a nucleus at the center of a spherical cavity
of volume that is determined by prescribing the density
of the material. The spherically symmetric electron den-
sity is then found by density functional theory, subject
to the condition that the integrated electron density in
the cavity is equal to the charge of the nucleus. This
gives us a realistic average density around each ion. Then
using this density we evaluate the different exchange-
correlation free energy contributions to determine their
relative effects, with the results shown in Fig. 2. The
relative effect of the temperature dependence of the local
density term is shown in the red curves given by

∫

dr n (fxc − ǫxc)
∫

dr nǫxc
, (10)

where ǫxc = fxc(t = 0) is the zero temperature exchange-
correlation energy. While the total relative contribution
due to the gradient term as well as that portion due to
its finite temperature contribution are given by

∫

dr |∇n|2 g(2)xc /2
∫

dr nfxc
, (11)

∫

dr |∇n|2
[

g
(2)
xc (t)− g

(2)
xc (t = 0)

]

/2
∫

dr nfxc
, (12)

and shown in the blue and green curves respectively. The-
ses results show that at high temperature, dependence of
the local density term provides the dominant correction,
however at low temperature the gradient correction is
most important. By comparison the temperature depen-
dent correction coming from the gradient term is always
negligible. This is not unexpected when considering Fig.

1 where for g
(2)
xc although the different temperature curves

due vary they remain relatively close to the lowest tem-
perature case for all t.

C. Beyond the gradient expansion

In considering an improved gradient corrected func-
tional for the exchange-correlation free energy we reiter-
ate that the previous analysis shows that temperature
dependence in the gradient term is in fact negligible.
That is using a zero temperature gradient correction at
finite temperature is in fact a good approximation. How-
ever this applies only to the gradient term, the local
density term does show a significant temperature depen-
dence and a proper finite temperature functional should
be used in that case. It is also clear, though, that gradient
corrections are important at low temperature. Beyond
this generality it is well known from zero temperature
development that gradient expansions for the exchange-
correlation yield poor results often not better or worse
then the local density approximation11,23,24. General-
ized gradient approximations (GGAs), such as PBE25

have proven to perform significantly better than gradi-
ent expansions at zero temperature. Given the quality
GGA’s available at zero temperature and with our cur-
rent analysis of the gradient corrections non-temperature
dependence, we therefore propose a temperature depen-
dent GGA as follows

FGGA
xc [n] = EGGA

xc [n]− ELDA
xc [n] + FLDA

xc [n] . (13)

Here the zero temperature GGA term, EGGA
xc [n] includes

the local density contribution. Then the zero tempera-
ture local density contribution is removed and replaced
with the finite temperature version. Thus capturing all
significant temperature and density gradient dependence
in the exchange-correlation free energy.

D. Self-consistent results

We have implemented the finite temperature exchange-
correlation free energy in both the local density approx-
imation as given in Ref. 7, as well as in finite temper-
ature modification of the zero temperature PBE func-
tional according to Eq. (13) in the plane wave density
functional theory code Quantum-Espresso26 as well as in
our orbital-free code. We then applied this to cases of
warm dense deuterium, for which there exists path inte-
gral Monte Carlo (PIMC) equation of state results27 that
do not require an approximate input for the exchange-
correlation free energy.
Specifically we ran both Kohn-Sham and orbital-free

DFT based molecular dynamics simulations for warm
dense deuterium. For the Kohn-Sham calculations a non-
local pseudopotential was used and a local pseudopoten-
tial was used for the orbital-free calculations, these are
as given in Ref. 22. The orbital-free functional is that
given in Ref. 28. In both cases 128 atoms were simulated
with periodic boundary conditions for at least 5000 time
steps, where the time step varied from 0.5 fs at 10 kK
to 0.0125 fs at 1000 kK. Also only the gamma-point was
used in the Kohn-Sham calculations.
In Fig. 3 we plot the resulting pressure relative to the

pressure from a zero temperature LDA calculation for
deuterium at 4.05 g/cc and up to nearly 200 kK (1000
K = 1 kK), where we have subtracting out the ion ki-
netic pressure Pion = NionkBT/V . Using the standard
zero temperature PBE it is clear that the gradient correc-
tion becomes less and less as temperature increases, by
contrast both finite temperature functionals show first
a small increase in pressure at low temperature, then a
more significant decrease in pressure as the temperature
is elevated to 200 kK. This is can be understood in terms
of fxc, which is always negatively valued. For a given den-
sity, fxc becomes slightly more negative to a minimum,
and then increase towards zero as temperature becomes
very high. The net result at high temperature then is to
reduce the exchange-correlation contribution to the pres-
sure. Again we note the gradient effects diminish with
increasing temperature.
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FIG. 2: Relative effects of the terms of the gradient expansion for the exchange-correlation free energy. The temperature
dependence of the local density term becomes dominant at high temperatures (red curves, Eq. (10)), and the gradient term
is most important at lower temperatures (blue curves, Eq. (11)), while the temperature dependence of the gradient term is
always negligible (green curves, Eq. (12)). Different curves of the same color represent the different densities.
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FIG. 3: Deuterium pressure, excluding the ion kinetic contri-
bution, at 4.05 g/cc for the LDA and GGA functionals with
and without temperature dependence plotted relative to the
zero temperature LDA results. Increased significance of the
temperature dependent functionals, and decreased effect from
the gradient terms for higher temperatures are shown.

In order to consider the temperature effect in the warm
dense regime, we consider just the LDA functional for
deuterium at 4.05 g/cc and at 10.0 g/cc. These results
are shown in Fig. 4 along with the PIMC data27. In
order to extend the calculation from 200 kK up to 1000
kK in temperature we make use of an orbital-free density
functional calculation. The plotted results are then the
total pressure relative to the total pressure from a zero
temperature LDA exchange-correlation calculation in ei-
ther Kohn-Sham or orbital-free method, hence the LDA
and OF LDA curves are exactly one. Note the PIMC
results are shown relative to OF LDA. The orbital-free
method is seen to be justified as here it overlaps well with
the highest temperature Kohn-Sham calculations. These
relative pressure results do show better agreement of the

temperature dependent functional to that of the PIMC
results versus those of the zero temperature functional
at both densities. We can see in these cases there is a
maximum difference of 1-2% in the total pressure in the
warm dense regime. This effect then diminishes to zero
at high temperatures as the total exchange-correlation
contribution to the pressure becomes completely negligi-
ble compared to the kinetic contributions of the electrons
and ions.

Finally we consider the effect of temperature depen-
dent exchange-correlation on the eigenspectrum of a real
system. In the upper panel of Fig. 5 we plot for a sin-
gle random configuration of 128 deuterium atoms at 4.05
g/cc and 181.8 kK the difference in corresponding eigen-
values when using different functionals. The difference
between finite temperature and zero temperature func-
tionals here produces about a five times greater differ-
ence than the difference between PBE and LDA whether
in the finite temperature or zero temperature versions.
In the lower panel the ratio of adjacent eigenvalue differ-
ences, (ǫn+1−ǫn), is taken between the different function-
als. The average is clearly seen to always be 1, but there
is non-negligible spread seen which is quantified by the
standard deviation of 0.12 and 0.09, for the finite tem-
perature to zero temperature functional results of LDA
and PBE respectively, and 0.15 and 0.12, for the PBE
to LDA results for zero temperature and finite tempera-
ture functionals respectively. The significance in address-
ing the eigenspectrum is that these orbitals (eigenfunc-
tions) and eigenvalues are directly used in various cal-
culation such as for the electrical conductivity through
the Kubo-Greenwood formalism, in which the differences
in energy levels are required. Here we have shown that
the primary effect of temperature dependent exchange-
correlation is to shift the eigenspectrum, however there
are also changes in the relative spacing. Though we have
not performed such calculations here, we suggest that
such orbital dependent calculations may also be affected
by temperature dependent exchange-correlation.
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FIG. 4: Deuterium pressure at 4.05 g/cc (top) and 10.0 g/cc
(bottom) for the LDA functional with and without tempera-
ture dependence, as well as PIMC results, relative to the zero
temperature LDA results. At both densities the temperature
dependent functional agrees better with the PIMC.

III. SUMMARY

We have derived the finite temperature gradient expan-
sion for the exchange-correlation free energy and then
demonstrated that the contribution from the tempera-
ture dependence of the gradient term in physical systems
is negligible. However the gradient corrections are im-
portant at lower temperatures and the finite temperature
correction to the local density contribution is important
at higher temperatures. We therefore proposed a temper-
ature dependent GGA and showed that the temperature
dependence is more significant than gradient dependence
in the warm dense matter regime and that better re-
sults are achieved using temperature dependent LDA or
GGA, as shown by better agreement with PIMC equa-
tion of state data for which there is no approximation for
the exchange-correlation energy. Finally these finite tem-
perature corrections are easily implemented in any DFT
code, through the fit given in Ref. 7 and perform with-
out computational cost increase and so should be used
for finite temperature calculations where better accuracy

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0  100  200  300  400  500  600  700  800  900 1000

(ε
nxc

1  -
 ε

nxc
2 ) 

  (
H

ar
tr

ee
)

Orbital number

FTLDA-LDA
FTPBE-PBE

PBE-LDA
FTPBE-FTLDA

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  100  200  300  400  500  600  700  800  900  1000

(ε
n+

1
xc

1  -
 ε

nxc
1 )/

(ε
n+

1
xc

2  -
 ε

nxc
2 )

Orbital number

FTLDA/LDA
FTPBE/PBE

PBE/LDA
FTPBE/FTLDA

FIG. 5: Differences in corresponding eigenvalue energies be-
tween two different exchange-correlation functionals (upper
panel) and the ratio of adjacent eigenvalue differences for two
functionals (lower panel) are shown for 128 deuterium atoms
at 4.05 g/cc and 181.8 kK. The two functional combinations
are given in the plot legend. There is non-negligible difference
which arises from inclusion of the finite temperature contri-
bution to the exchange-correlation energy.

is desired. We do note that though these finite tempera-
ture functionals are valid down to and including zero, for
most condensed matter systems below 10000 K, little to
no differences will be seen as compared with using zero
temperature exchange-correlation functionals.
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