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We present an improved first-principles description of melting under pressure based on thermody-
namic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC)
treatments. The method is applied to address the longstanding discrepancy between density func-
tional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve
of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods.
The calculations show agreement with data below 20 GPa and that the high-pressure melt curve is
well described by a Lindemann behavior up to at least 80 GPa in contrast to DAC data.
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The high pressure melt line of simple materials carries
great significance in both theoretical and in practical ap-
plications. For instance, the rapid decrease followed by
suspected increase in the melting temperature of lithium
under pressure is a bellwether for the complex series of
solid phases that exist at lower temperatures.1 Further-
more, the onset of melt triggers a dramatic loss of me-
chanical strength of a material, with significant changes
in dynamic behavior following. In fact, the point where a
material melts under shock compression is one of the key
properties that can distinguish between possible scenar-
ios for planetary accretion.2 Although diamond anvil cell
(DAC) experiments remain the most versatile experimen-
tal technique for probing high pressure melting behav-
ior, they have also been a source of controversy. Impor-
tant examples exist in the literature of melt lines showing
an anomalous change in slope under pressure that were
contradicted by either shock experiments or later DAC
experiments.3,4 An as yet unchallenged melt line of this
type is exhibited by xenon and other noble gases - which
are of particular importance due to their inert nature.
The high pressure behavior of the noble gases is a funda-
mental test of the DACmethodology and as such deserves
special scrutiny. Specifically, we consider the behavior of
xenon and find that the high-pressure melting behavior
is well described by a traditional melting curve.
As alluded to above, the experimentally obtained melt-

ing curve for xenon exhibits an interesting feature when
probed in the diamond anvil cell, abruptly flattening
at pressures above 25 GPa.5 This observation prompted
much theoretical attention, including the application of
quantum mechanical simulation techniques.6 These tech-
niques, lead by density functional theory (DFT), are
uniquely suited to the study of extreme conditions as
their fundamental approximations are not affected by
the presence of temperature or pressure. If a calcula-
tion is accurate near ambient conditions, the method is
also likely to be accurate at high pressure. DFT applied
to xenon supports a Lindemann melt curve in contrast
to experiments.6

The accuracy of DFT calculations of noble gases, how-
ever, is not to be taken for granted since fundamental

uncertainties remain regarding calculations of systems
where van der Waals interactions are significant. Stan-
dard semi-local functionals such as the local density ap-
proximation (LDA) tend to over-bind the noble gases due
to a self interaction of the electrons in regions of low den-
sity. Second generation GGA functionals such as AM057

remove this self-interaction, but as a result do not bind
noble gas solids at all. Despite much progress in the
area of dispersion corrected DFT,8 cases where disper-
sion dominated bonding gives way to covalent-or metallic
bonding remain a challenge. Xenon presents a canoni-
cal example of this effect and as a result its behavior is
greatly affected by pressure. Xenon turns metallic un-
der moderate shock compression9 and although xenon is
a narrow-range cryogenic liquid at normal pressure with
melting and boiling points of 161.4 K and 165.0 K, re-
spectively, at 20 GPa the melting point is above 2500 K.
These significant theoretical challenges necessitate the

application of a complementary technique whose approx-
imations are not tied to the local behavior of the elec-
trons. A promising candidate from this point of view
is diffusion quantum Monte Carlo (DMC).10,11 Whereas
the approximation made in DFT calculations requires the
consideration of an effective Hamiltonian, DMC treats
the Hamiltonian exactly. Therefore, DMC can accurately
study van der Waals interactions and has been success-
fully applied to noble gas solids12,13 and the interactions
between filled shell molecules.14–17

In order to thoroughly investigate the performance of
DMC for xenon, we focused on the three fundamental ap-
proximations in the calculations. These approximations
are the pseudopotential approximation that is necessary
for computational efficiency, the fixed node approxima-
tion which is necessary to mitigate the fermion sign prob-
lem, and the finite size approximation where calculations
on modest sized supercells are used to determine proper-
ties xenon in the thermodynamic limit.
As a test of these approximations, the energy versus

volume for the FCC crystal is used as a benchmark. Cal-
culations of a 32 atom supercell, using the finite size cor-
rection methods employed in the rest of the paper with
two different starting points are considered. Firstly pseu-
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FIG. 1. (color online) Energy of a unit cell of FCC xenon
calculated with DFT and DMC. The dotted lines correspond
to Vinet fits to the DFT calculations. The solid lines corre-
spond to Vinet fits to the DMC calculations. The triangles
correspond to DFT or DMC simulations based on the LDA
and the circles DFT or DMC based on AM05.

dopotentials and nodal surfaces from the LDA are used
as input to the DMC calculations. Then the processes is
repeated with pseudopotentials and nodal surfaces from
AM05, allowing a sensitivity test to the form of these ap-
proximations. The results of this test are shown in Fig 1.
We find that the DMC results are independent of the trial
wavefunctions and pseudopotentials to the level required
for this work. Fitting the DMC energy versus volume
curve with a Vinet form18 gives a lattice constant vary-
ing by only 0.25%± 0.61% when changing from LDA to
AM05 trial wavefunctions and a bulk modulus varying by
only 0.4%± 0.8%. For this reason we conclude the errors
arising from nodal and pseudopotential approximations
are small for these DMC calculations of xenon.
Despite this evidence that DMC is ideally suited for

the calculation of the properties of xenon under pres-
sure, an important wrinkle remains. Direct calculations
of melting are not currently feasible with DMC for any-
thing beyond the lightest of elements. Fortunately, a so-
lution to this problem has recently been proposed: ther-
modynamic integration can be used to connect the ac-
curacy of the DMC calculations with the speed and ef-
ficiency of DFT based molecular dynamics.19 Using this
technique, Sola and Alfé found that DMC calculations
favored the solid phase in calculations of the melting of
iron under pressure. This result was in disagreement with
DAC experiments.20 A potential concern with this result
is that QMC methods (both VMC and DMC) being vari-
ational tend to produce relatively lower total energies for
more ordered states (in this case solids versus liquids).
This effect is because the trial wavefunctions used tend
to be rather simple compared to the true many body
wavefunctions and typically do not increase in complexity
for the less ordered phases. Thus simpler phases where
the wavefunction is closer to the many body wavefunc-
tion tend to have a smaller positive fixed node error than

more complex phases.

In light of this and because the approach is new, we
elected to null-test the method by calculating the melt-
ing temperature of aluminum at 120 GPa. This material
and condition were chosen because shock experiments,
diamond anvil cell experiments and DFT calculations all
agree as to the melting temperature.21 If the QMC free
energies were biased towards the solid phase then the
melting temperature would be overestimated using this
method. Relative energies between the snapshots of the
same phase for aluminum agreed very well between the
DMC and DFT, giving confidence that the DFT dynam-
ics were close to the DMC ones. Additionally, the shift in
free energy between the solid and liquid was very small,
0.202± 0.100 meV/atom, leading to a temperature shift
of only 2.3±1.2 K. This result is well within the errors of
the method and experimental accuracy for melting under
pressure. Furthermore, this test shows that the thermo-
dynamic integration method does not suffer from notable
systematic errors when the DMC is performed with a rel-
atively simple trial wavefunction.

In applying this approach to the melting of xenon we
start by calculating the melting line at two points using
DFT based molecular dynamics. Specifically following
the work of Root et al.22 we performed calculations us-
ing VASP23 within the AM057 density functional. These
calculations started with FCC solid in the same simula-
tion cell as liquid xenon. Care was taken to ensure that
nonhydrostatic stresses were minimized via an equilibra-
tion procedure taking over 1000 two femtosecond time
steps and 220 eV plane wave cutoffs. Two densities were
selected for these simulations, 7.27 g/cc and 10.0 g/cc.
As the finite size of the simulation cell is a concern with
this type of calculation we performed two different pro-
cedures, one in the NVT ensemble that brackets the melt
line by performing calculations at different temperatures
and looking at whether the cell has frozen or melted after
a period of ≈8 ps, and another one in the NVE ensem-
ble that establishes a coexistence between the two phases
and measures the temperature of the resulting assembly
again over ≈8 ps, which allows the temperature to be
determined to within ≈ 20 K for the larger simulation
cells. We found that for the higher density, calculations
with 214 xenon atoms found a melt temperature of 6000
K in the NVT ensemble, but NVE yielded a lower value.
This suggested that larger simulation cells were necessary
and cells doubled in size in the direction perpendicular to
the interface (428 atoms) found agreement, yielding two
points at which the Gibbs free energy of the two phases
were equal: 24.4 GPa and 3000 K for 7.27 g/cc and 74.4
GPa and 5600 K for 10.0 g/cc.

From this foundation, we followed Sola and Alfé19

adding refinements to the methodology. The change in
free energy of a phase at a given temperature and vol-
ume is calculated by taking snapshots from long DFT
based molecular dynamics simulations and comparing
the energy of those snapshots to energies from DMC
calculations. Using this information, the change in the
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Helmholtz free energy of each phase is found using a per-
turbation series of cumulants in the energy difference as:

∆F =

∞
∑

n=0

(1/kBT )
n−1

n!
κn (1)

where the κn’s are cumulants of the difference in internal
energy between the DMC and DFT ensembles:

κ0 = 〈∆U〉λ=0

κ1 =
〈

∆U2
〉

λ=0
− 〈∆U〉

2

λ=0

... (2)

or directly in terms of the partition function

∆F = −kBT
〈

e−∆U/kBT
〉

λ=0
(3)

where ∆U = UDMC − UDFT with UDMC and UDFT

the potential energies of the DMC and DFT systems
respectively and 〈〉λ represents the thermal average in
the ensemble generated by the potential energy function
U(λ) = λUDMC + (1 − λ)UDFT . The approximation
above is valid when UDMC and UDFT are sufficiently
close so that the averages over all of state space can be
approximated using a few configurations sampled from
the ensemble of the reference system. A necessary con-
dition for this to be valid is that the higher order terms
in Eq. 1 are small and that the two approximations in
Eq. 1 and Eq. 3 yield very similar answers. A test of this
condition is found in Fig. 2. From this figure, it is appar-
ent that the total energies track each other well, again
suggesting that DFT provides a faithful sampling of the
energy landscape. Quantitatively, Eq. 1 bears this out,
with the second term in the cumulant expansion being
1.5% of the first one for the solid at 7.27 g/cc and 1.4%
for the liquid. The bottom panel in Fig. 2 shows the dif-
ferences between the solid and the liquid snapshots after
the average DMC-DFT energy difference for the solid is
subtracted for all points. This shows visually that the
DMC energy is on average 35.0 meV/atom larger for the
liquid snapshots than the corresponding DFT.
Given that the change in Helmholtz free energy at con-

stant volume can be calculated for the solid and liquid,
how should this knowledge be used to calculate a change
in melt temperature or pressure? The start of such meth-
ods is the equality of the Gibbs free energy between the
solid and liquid. Following the work of Sola and Alfe,19

for a given density and temperature, the change in the
Gibbs free energy for a phase when moving from DFT
interactions to QMC is

∆G ≈ ∆F − V∆p2/2BT (4)

with BT the isothermal bulk modulus and ∆p the change
in pressure as the potential energy is changed from UDFT

to UDMC at constant volume. In previous work on iron,19

it was argued that the second term on the right hand
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FIG. 2. (color online) Top: DMC energies corresponding to
configurations representative of solid (blue triangles) and liq-
uid (red squares) xenon, generated with QMD on 108 atom
systems. The solid lines connect DFT energies calculated on
the same configurations. An independent offset is added to
the DMC and DFT calculations so that the average energy of
the solid snapshots in each method is 0. Bottom: DMC-DFT
energy differences for the same configurations. The average
DMC-DFT energy difference for the solid is subtracted from
all points. Lines represent the average of the energy differ-
ences between DMC and DFT in the solid and the liquid.

side of the equation is small and only the change of free
energy was used. Given the deficiencies of semilocal DFT
in treating xenon, we evaluate these directly.
In order to evaluate the isothermal bulk modulus and

the change in pressure, we used thermodynamic inte-
gration to construct the relative Helmholtz free energies
within each phase using QMD. This was done by calculat-
ing the average pressure in QMD calculations for several
densities along an isotherm and constructing relative free
energies using the following expression:

dF = −

∫ Vf

Vi

PdV + C. (5)

Next, we use the calculated melting pressure at this tem-
perature to determine the relative free energy between
the solid and liquid. The first thing this procedure allows
is for the specific volumes at which the solid and liquid
coexist to be determined. These are the volumes at which
the change in free energy referenced by Eq. 4 should be
calculated. Next, we calculate the shift in the Helmholtz
free energy when changing from DFT to DMC for each
phase at three different volumes along these isotherms.
This procedure allows the volume dependent Helmholtz
free energy within the DMC ensemble to be determined
for each phase.
Having constructed the relative free energies of the

solid and liquid with a DFT determined interaction and
a DMC determined one, we determine the change in the
melting conditions in two ways. The first is to use the
Gibbs construction to determine the melting pressure in
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FIG. 3. (color online) Relative Helmholtz free energy of the
solid and liquid phases at 5600K determined by DFT cal-
culations to establish the melt pressure and thermodynamic
integration to find the relative free energies. A common tan-
gent to the QMC curves is also shown, establishing a new
melt pressure of 66 GPa.

the DFT ensemble as illustrated in Fig.3. This yields a
shift in the melting pressure at 3000K from 24.4 GPa to
23.4 GPa and at 5600K from 74.4 GPa to 66.0 GPa. Al-
ternatively, we can calculate the shift in the Gibbs free
energy at the density of coexistence in each phase. The
change in temperature necessary to restore the equality
of the Gibbs free energy is:

∆Tm ≃ Gls/Sls
DFT (6)

This procedure shifts the melting temperature at 24.4
GPa from 3000K to 3155K and at 74.4 GPa from 5600K
to 5810K.
It is particularly instructive to note what would have

happened if we had assumed that the shift to the free
energy as a function of volume was constant as was ar-
gued for iron in Ref. 19. With this simplifying assump-
tion, it is no longer necessary to determine the correction
to the free energy at the specific volumes of the coex-
istence, rather it can be done at a convenient density
(the density where the Helmholtz free energy of the two
phases is equal is a typical choice). This however, proves
to be a poor assumption for high pressure xenon, with
considerably larger shifts to the melting temperature (at
24.4 GPa, the temperature shifts is 315K instead of 155K
and at 74.4 GPa is 530K instead of 210K). Similarly, the
Gibbs construction can be used to calculate the change
to the melting pressure but now with the DFT values
being shifted by a volume independent constant. Again,
this results in a much larger shift to the pressure, going
from 24.4 GPa at 3000K to 17.7 GPa and from 74.4 GPa
at 5600K to 51.7 GPa.
Our results for the high pressure melting of xenon are

summarized in Fig. 4. Our DFT calculated values are
shown as green triangles which agree well with earlier
values calculated by Belonohsko et al.26 The values from
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FIG. 4. (color online) Melting of xenon as a function
of pressure obtained with various theoretical6,24–26 and
experimental5,27 techniques. Experimental points are solid
squares, classical molecular dynamics circles, DFT based
molecular dynamics triangles and QMC diamonds. A cor-
rection of the experimental points including an estimate of
thermal pressure from SESAME 519128 is shown with filled
pentagons. Horizontal error bars on the QMC points include
the statistical uncertainty in the pressure shift technique, the
vertical error bars from the temperature shift technique.

using the thermodynamic integration to DMC are shown
as closed diamonds with open diamonds the values from
assuming that the shift is constant as a function of vol-
ume. The net effect of these corrections is to increase the
disagreement between the melting at high pressure and
the DAC experiments. At lower pressures, our results
appear to be in slightly better agreement with the DAC
experiments. However, it should be noted that the DAC
experiments likely are not isobaric during the heating as
their pressure measurements would imply. If we instead
assume that they are isochoric, we can calculate the ther-
mal pressure at the melting temperature for each density
using an equation of state,28 resulting in corrected pres-
sures as shown in Fig. 4. These results for xenon suggest
that the high pressure DAC experiments should be reex-
amined to rule out either surface effects, non-hydrostatic
stresses, or melting from a different phase as the cause
of the reported flat melting line.29 This result might be
achieved by exploiting a bulk probe of the xenon struc-
ture such as x-ray diffraction rather than the speckle field
technique that was previously used.5

We have presented an extension of the methodology
of using thermodynamic integration to determine melt-
ing conditions, improving the accuracy for compressible
materials and showing that considering the volume de-
pendence of the free energy shift is crucial. This high-
accuracy procedure can be used to further explore the
melting behavior of a wide variety of materials, thereby
contributing to the ability of hydrodynamic simulations
to predictively model a wide range of phenomena from
inertial confinement fusion to planetary science.
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