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A major challenge to the chiral p-wave hypothesis for the pairing symmetry of the unconventional super-

conductor Sr2RuO4 is the null result of sensitive scanning magnetometry experiments designed to detect the

expected spontaneous charge currents. Motivated by junction tunneling conductance measurements which in-

dicate the quenching of superconductivity at the surfaces of even high-purity samples, we examine the sponta-

neous currents in a chiral p-wave superconductor near a normal metal / superconductor interface using the lattice

Bogoliubov-de Gennes equations and Ginzburg-Landau theory, and find that the edge current is suppressed by

more than an order of magnitude compared to previous estimates. These calculations demonstrate that interface

details can have a quantitatively meaningful effect on the expectations for magnetometry experiments.

I. INTRODUCTION

Strontium Ruthenate, Sr2RuO4, is an unconventional super-

conductor (Tc = 1.5K)1 for which there exists substantial ev-

idence for odd-parity pairing2–5 as well as for the spontaneous

breaking of time reversal symmetry below Tc
6–8. These obser-

vations lead naturally to the conclusion that the pairing sym-

metry is chiral p-wave (px ± ipy ), a two dimensional analog

of the A-phase of superfluid 3He. Though this is the leading

phenomenological hypothesis, it is seemingly contradicted by

several experiments. Prominent among these are high reso-

lution scanning magnetometry measurements9–11, which im-

age magnetic fields across several µm of sample (including

the sample edge) and see no sign of the expected spontaneous

currents.

The presence of spontaneous, persistent charge currents

at edges and domain walls is a robust consequence of time-

reversal symmetry breaking superconductivity. However, the

magnitude of these currents is determined by microscopic de-

tails – they are neither quantized nor universal. The reason

that the null result of the scanning magnetometry experiments

poses such a challenge to the chiral p-wave hypothesis is

quantitative – spontaneous currents of size comparable to the-

oretical estimates12–16 would give a magnetic signal more than

two orders of magnitude greater than the experimental resolu-

tion. Magnetometry measurements on mesoscopic samples5

also see no signs of these currents.

In this paper we calculate the spontaneous surface currents

for a family of models consistent with the phenomenology of

superconductivity in Sr2RuO4. Motivated by a-axis tunnel-

ing experiments17, we employ a different interface condition

than previous studies, modeling the surface region as a nor-

mal metal layer adjoining the superconducting bulk. We find

that, compared to previous estimates, the expected magnetic

signal from edge currents is reduced by over an order of mag-

nitude. These calculations demonstrate that interface details

can have a quantitatively meaningful effect on the expecta-

tions for magnetometry experiments.

II. SURFACE IMPERFECTION

The assumption of specular surface scattering as employed

in12–16 requires an atomically smooth surface. ab faces of

Sr2RuO4 can be cleaved, but ac and bc faces are typically

polished to a smoothness of several nm9, on the order of ten

lattice constants. In a-axis junction tunneling conductance

measurements, signatures of superconductivity at the surface

are present only at the sub-1% level on top of a substantial

smooth background17, as shown in Fig. 2 of that reference.

Accordingly, the best indication from experiment is that the

edge regions of large crystals are metallic18, with a supercon-

ducting gap developing only further into the sample. (It has

not been established whether a metallic region is present near

the etched edges of ref. 11).

The scenario of a metallic edge is plausible given the

fragility of unconventional superconductivity to elastic scat-

tering (i.e. the inapplicability of Anderson’s Theorem to a

sign-changing order parameter), which has been explicitly

verified for this material19. Rough or pair-breaking surface

effects have been shown20,21 to sharply reduce the supercon-

ducting order parameter at the surface, although not to mean-

ingfully alter the surface density of states. Accordingly, the

observation of metallic behavior suggests that there is a higher

density of defects near the surface (presumably introduced

during crystal growth or preparation procedures), leading to

a reduced mean free path and the quenching of superconduc-

tivity near the surface.

To facilitate calculations, we do not directly treat a rough

surface or defects in the surface region, but rather adopt a

model consisting of a clean interface between vacuum and a

metallic region, which in turn has a clean interface with the su-

perconducting bulk. The metallic region is arranged by setting

appropriate coupling constants to zero in lattice Bogoliubov

de-Gennes Hamiltonians. This introduces artifacts which will

be discussed in section VII. We focus narrowly on sponta-

neous currents here, though a calculation of quantities such as

the tunneling conductance (to compare with ref. 17) within a

more realistic model will be important in evaluating the con-

sistency of the present scenario with experiment.
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III. MODEL HAMILTONIANS

We consider spinless fermions on a 2D square lattice corre-

sponding to the RuO2 plane, and work in a cylinder geometry:

periodic boundary conditions are taken in the y direction, and

open boundary conditions in x. We will consider two different

Bogoliubov-de-Gennes Hamiltonians:

Hγ = −
∑

i,j

T z
ijc

†
z,icz,j

+
∑

i

[

∆γ
x(i)c

†
z,ic

†
z,i+x̂ +∆γ

y(i)c
†
z,ic

†
z,i+ŷ + h.c.

]

(1)

Hαβ =−
∑

i,j

∑

η=x,y

T η
ijc

†
η,icη,j

−t′
∑

i

∑

s=±1

s
[

c†x,icy,i+x̂+sŷ + h.c.
]

+
∑

i

∑

s=±1

[

∆αβ
x (i)c†x,ic

†
x,i+x̂+sŷ+

s∆αβ
y (i)c†y,ic

†
y,i+x̂+sŷ + h.c.

]

(2)

Hγ is a minimal Hamiltonian for chiral p-wave supercon-

ductivity on the γ band of Sr2RuO4, which arises princi-

pally from Ru 4d dxy orbitals (represented by the index z
on fermion operators), for which we include the tight bind-

ing matrix elements tz ≡ T z
i,i±x̂ = T z

i,i±ŷ , t′z ≡ T z
i,i±x̂±ŷ ,

µz ≡ T z
i,i. Hαβ corresponds to the quasi-one-dimensional α

and β bands, which arise principally from the dxz and dyz or-

bitals (fermion indices x and y respectively), with tight bind-

ing matrix elements t ≡ T x
i,i±x̂ = T y

i,i±ŷ , t⊥ ≡ T x
i,i±ŷ =

T y
i,i±x̂, µ ≡ T x

i,i = T y
i,i. For this model there is also an im-

portant next-nearest-neighbor orbital hybridization matrix el-

ement t′, whose presence is crucial for establishing a chiral su-

perconducting gap. We take values {t, t⊥, t
′, µ, tz, t

′
z , µz} =

{1, 0.1, 0.1, 1, 0.8, 0.3, 1.15} which are consistent with the

Fermi surface measured in ARPES22 and the quasiparticle ef-

fective masses measured in quantum oscillations23.

Nearest-neighbor pairing for the dxy orbital and next-

nearest neighbor pairing for the dxz and dyz orbitals rep-

resent the lowest lattice harmonics consistent with a weak

coupling analysis24, which predicts a fully gapped dxy or-

bital and "accidental" nodes on dxz and dyz which are lifted

to parametrically deep gap minima in the presence of or-

bital mixing t′. Calculations are performed with the self-

consistency conditions∆γ
x(i) = −gγ(i)〈cz,i+x̂cz,i〉, ∆

γ
y(i) =

−gγ(i)〈cz,i+ŷcz,i〉, ∆αβ
x (i) = −gαβ(i)〈cx,i+x̂+ŷcx,i〉,

∆αβ
y (i) = −gαβ(i)〈cy,i+x̂+ŷcy,i〉 with attractive interactions

gαβ(i) and gγ(i) which are allowed to vary along the x direc-

tion. We model the metallic edge region adjoining the super-

conducting bulk by setting gαβ and gγ to zero in a region of

widthNm sites, and nonzero and uniform in a region of width

Ns sites, with value chosen to yield the desired bulk values

of ∆αβ and ∆γ . In this model, superconductivity arises in-

dependently on the quasi-two-dimensional γ band and on the

quasi-one-dimensional α and β bands (i.e. there is no inter-

band proximity effect) and our estimate for the Sr2RuO4 edge

current will be the sum of contributions from Hγ and Hαβ .

The consequences of this artificial assumption will be consid-

ered in section VII.

The current operator for the link from site i to site j can be

derived from the lattice version of the equation of continuity

and the Heisenberg equation of motion. It has an intra-orbital

part

Ĵη
i,j = iT η

i,j

[

c†η,i,cη,j − h.c.
]

(3)

where η = x, y, z is the orbital index. For the model of the α
and β bands there is also an inter-orbital part for the current

between next-nearest neighbors

Ĵxy
i,i+s1 x̂+s2ŷ

=it′s1s2

[

c†x,i,cy,i+s1x̂+s2ŷ +

c†y,i,cx,i+s1x̂+s2ŷ − h.c.
]

(4)

where s1, s2 = ±1.

We neglect the effect of screening, whose effects have been

explored elsewhere12,13,20. Accordingly, our figure of merit

for edge currents will be the total amount of current I flowing

through the metal region and half of the superconducting bulk,

i.e.

I =

Nm+Ns/2
∑

n=1

〈Ĵnx̂,nx̂+ŷ + Ĵnx̂,nx̂+x̂+ŷ〉 (5)

where the two terms in the sum are for nearest neighbor and

next-nearest neighbor links, including intra- and inter-orbital

contributions as appropriate, and the angle brackets represent

a thermal average. Note that only net currents in the ŷ direc-

tion are allowed by continuity in the cylinder geometry.

IV. GINZBURG LANDAU THEORY

Ginzburg-Landau theory represents an approximate solu-

tion to the BdG equations that becomes exact in the limit

T − Tc → 0−, but provides valuable intuition even at low

temperatures. The expression for the free energy can be found

in the literature25:

F =r
(

|ψx|
2 + |ψy|

2
)

+K1

(

|∂xψx|
2 + |∂yψy|

2
)

+K2

(

|∂yψx|
2 + |∂xψy|

2
)

+K3 ([∂xψx]
∗[∂yψy] + [∂yψx]

∗[∂xψy] + c.c.)

+ higher order terms. (6)

For our purposes, we need not treat quartic terms or those with

more than two derivatives. The equations for the order param-

eter fields must be supplemented by appropriate conditions for

a boundary at fixed x:

ψx = 0, ∂xψy = 0, insulating boundary (7)

∂xψx =
ψx

bx
, ∂xψy =

ψy

by
, metallic boundary (8)
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The conditions for an insulating boundary follow from the fact

that specular scattering is fully pair-breaking for ψx (which is

by construction odd under x → −x)26. The conditions for a

metallic boundary involve phenomenological parameters bx,y
which capture the fact that a metal interface is partially pair-

breaking for both components27.

We continue to ignore screening, and focus on the sponta-

neous current (i.e. the current which exists in the absence of

phase gradients imposed by an external field):

Jspont ∝ −iK3 (ψy[∂xψx]
∗ + ψx[∂xψy]

∗ − c.c.)

∝ K3 (|ψy|∂x|ψx| − |ψx|∂x|ψy|) (9)

In these expressions we have implemented translation sym-

metry in the y direction and assumed a uniform relative phase

factor of i between ψx and ψy (i.e. positive chirality). Here

the coefficients K1 and K2 determine the coherence lengths

of the two order parameter components, the inter-component

gradient coupling K3 sets the scale of the currents, and r ∝
T − Tc is the usual parameter which tunes through the criti-

cal point. The coefficients can be treated as phenomenological

parameters or computed directly from the microscopic Hamil-

tonians given above.

V. BDG RESULTS

As previously mentioned, our estimate for the edge current

in Sr2RuO4 is the sum of contributions due to the quasi-2D γ
band and the quasi-1D α, β bands; we initially plot and dis-

cuss these contributions separately. Values of net current are

given in units of I0 ≡ 0.073et/~, which is the net current

due to the γ band with an insulating interface (Nm = 0) at

T = 0.2Tc, in the weak coupling limit ∆γ
0 → 0+. I0 is ap-

proximately equal to the value of the total current per spin

in a quasi-classical approximation (such as the Matsumoto-

Sigrist prediction12 used in9,10) when screening is neglected.

If our model predicts a current I and screening alters our pre-

dictions in the same way as it does the quasi-classical results

of Matsumoto-Sigrist, then our prediction of a magnetic sig-

nal (such as the peak flux) is equal to the Matsumoto-Sigrist

prediction times I/I0.

Plots of the current and both components of the order pa-

rameter as a function of distance from the edge are shown in

Figures 1. Figures 2 show the two current contributions ver-

sus temperature for several choices of Nm. Data points near

Tc are not included due to computational cost. Figures 3 show

the current contributions as a function of the bulk order param-

eter (∆γ and ∆αβ respectively, with fixed values of T/Tc and

Nm/ξ0. Before considering the effect of the normal-metal re-

gion, we note basic results for a clean insulator (or vacuum)

/ superconductor (IS) interface (Nm = 0). In that case, com-

pared to the contribution from Hγ , the net current from Hαβ

is reduced by a factor of approximately three at zero tempera-

ture and six at the experimental temperature of 0.2Tc.
Turning to the results for a normal metal / superconductor

(NS) interface (i.e. Nm 6= 0), one feature of the I − T curves

for different values ofNm is that they all coincide at zero tem-

perature and at sufficiently high temperature, differing only in
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Figure 1: Current and the two components of the order

parameter as a function of position for (a)Hγ and (b) Hαβ .

The first 40 sites are the metallic region, in which the gap

vanishes, and clean interfaces with vacuum are present at

positions 0 and 140. Pair correlations in the metallic region

are shown in dashed lines. The bulk order parameter values

are ∆αβ
0 = ∆γ

0 = 0.05t, T = 0.2Tc
.

an intermediate crossover region. This follows from the prox-

imity effect: while the superconducting gap ∆(i) ≡ −g〈cc〉
is zero in the metal (where g = 0), pair correlations 〈cc〉
do penetrate. The length scale for this penetration is set by

vF /T , (where vF is the Fermi velocity), and thus diverges

at zero temperature, so that the width of the metallic region

is effectively zero. By contrast, at temperatures such that

vF /T < Nm, pairing correlations decay to zero before the

edge is encountered, so that the metallic region is effectively

infinite. In both cases, an increase in Nm should have a negli-

gible effect on the currents, consistent with the calculation.

For vF /T < Nm there is a pronounced suppression of the

current in both the one and quasi-1D cases compared with the

current without a metallic region (Nm = 0). The amount of

this suppression depends on the size of the pairing gap. For
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Figure 2: Contributions to the current near a metallic edge

region from (a) the γ band and (b) the α, β bands vs.

temperature for several values of Nm, the thickness of this

metallic edge region abutting the superconducting bulk. The

superconducting bulk is of width Ns = 100 sites, and

currents are quoted in units of I0, which is essentially the

Matsumoto-Sigrist result12 in the absence of screening. The

bulk order parameter values are ∆αβ
0 = ∆γ

0 = 0.05t. For the

current from α, β there are finite size effects associated with

near-nodal quasiparticles which render the results at very low

temperature less well behaved. We have verified that the

zero-temperature current values in the thermodynamic limit

are within 15% of those shown here.

Sr2RuO4, the pairing gap is on the order of 10−3t, so that

extrapolation to the weak coupling limit ∆0 → 0+ is nec-

essary for a quantitative estimate. For a model including all

three bands in this weak coupling limit, we find a suppression

of approximately twenty compared to the initial Matsumoto-

Sigrist predictions.
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Figure 3: Extrapolation of current contributions of (a) the γ
band and (b) the α, β bands to the weak coupling limit

∆αβ
0 ,∆γ

0 → 0+ for the both insulator/superconductor (IS)

and normal metal/superconductor (NS) interfaces. Currents

are quoted in units of I0 which is essentially the

Matsumoto-Sigrist result12 in the absence of screening. As

the bulk gap is reduced, the temperature is reduced and the

length scales Nm, Ns are increased in order to fix the values

T/Tc = 0.2, Nm/ξ ≈ 4, Ns/ξ ≈ 12. The metallic boundary

leads to suppression of over an order of magnitude in both

the quasi-1D and quasi-2D cases.

VI. QUALITATIVE EXPLANATION FROM

GINZBURG-LANDAU THEORY

The results of the previous section can be summarized as

follows: 1) the contribution from the α, β bands is a several

times smaller than that of the γ band for the IS geometry. 2)

both contributions are substantially suppressed in the NS ge-

ometry. 3) the suppression due to the NS geometry is consid-

erably larger for the γ band than for the α, β bands. Ginzburg-

Landau theory, though it is not quantitatively valid at low tem-

peratures, can nonetheless qualitatively explain each of these

results.
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1) With a conventional insulating interface, the scale of

spontaneous currents is set by the coefficientK3. In the quasi-

2D model, this is a number of order one, whereas in the quasi-

1D model, it vanishes in the limit of zero inter-orbital mixing

t′. Since t′ = 0.1t, it follows thatKαβ
3 is substantially smaller

than Kγ
3 and similarly for the currents. A microscopic calcu-

lation gives Kαβ
3 ≈ 0.02Kγ

3 .

2) The suppression in current in the NS geometry can be

viewed as a consequence of the different boundary conditions

on the order parameter. The boundary values of of |ψx| and

|ψy| are respectively increased and decreased compared to the

insulating case. At a fixed distance from the edge |ψx| and

∂x|ψy| are larger while |ψy| and ∂x|ψx| are smaller than their

corresponding values for the insulating boundary. Eq. (9)

for the current shows that this yields a numerical (though not

parametric) reduction in the current for any choice of G-L co-

efficients.

3) The tremendous suppression of the current in the quasi-

2D NS model is a lattice effect. For the fine-tuned case

K1 = K2, one can show that bx = by and the two components

of the order parameter heal away from the metal in precisely

the same way, leading to a vanishing current in lowest-order

G-L theory20. For a quadratic dispersion and an order param-

eter kx + iky , as is often used to describe the γ band12–14,16,

the coefficients satisfy K1 = 3K2. However, for a lattice-

compatible order parameter sin kx + i sinky as treated here

and for an appropriate tight-binding band structure for the γ
band, K1 = 0.71K2. The large suppression of the γ band

current due to the NS geometry can be roughly identified with

the proximity of this result to the fine-tuned case K1 = K2.

VII. DISCUSSION

Superconductivity on the quasi-1D bands was previously

conjectured24 to lead to dramatically reduced edge currents

compared to a quasi-2D scenario due to trivial topology (i.e.

the Chern numbers of the two bands add to zero, yielding no

net chiral edge modes). The results shown above for the IS

interface show a substantial reduction (by a factor between

three and six), but nonetheless of order one, falsifying the

initial conjecture and illustrating the tenuous connection be-

tween topology and edge currents in chiral p-wave supercon-

ductors (this topic will be treated in depth in a forthcoming

paper).

Even if the quasi-1D bands had vastly reduced currents in

the IS case, the contribution from the γ band would generi-

cally be large, even if it were not the "dominant" band. The ne-

glect of the current contribution from the subdominant band(s)

is only justified if the experimental temperature exceeds the

subdominant gap scale. However, thermodynamic evidence

shows that the gaps on all bands are at least comparable to

Tc = 1.5K ≈ .13meV 28. At low temperatures, the edge

currents should then correspond to the sum of contributions

from the quasi-1D and quasi-2D bands, with the weak cou-

pling limit taken for both ∆αβ and ∆γ . At low temperatures

and with a clean interface, the generic scale of edge currents

is "of order one" regardless of microscopic mechanism details

such as the identity of the dominant band(s).

Though there does not seem to be any physical reason for a

parametric suppression of edge currents, we find a meaning-

ful quantitative reduction of over an order of magnitude com-

pared to previous estimates by considering the effect of sur-

face imperfection. Within a model of a clean metal of width

∼ 4ξ0 abutting a clean superconductor, with T = 0.2Tc, the

total current from all three bands is suppressed by a factor of

more than twenty in the weak coupling limit compared to the

result for the γ band and an IS interface. Within our model,

there is essentially no suppression in the limit of sufficiently

low temperatures and/or narrow metallic regions, where su-

perconducting correlations induced by the proximity effect

extend all the way to the edge. This is an artifact of our model,

however, which does not treat surface roughness or disorder

directly. For example, pair-breaking and diffuse scattering ef-

fects are known to reduce the zero-temperature current20,21.

The calculations presented here are not expected to be

quantitatively correct for the actual superconducting gap

structure and surface physics of Sr2RuO4. Our model of

spinless fermions entirely neglects spin-orbit coupling (SOC),

which has been proposed to qualitatively affect pairing29.

However, as far as the edge current is concerned, the pri-

mary effect of SOC is to modestly renormalize the band struc-

ture; hence, its explicit inclusion would not change any of

our results substantially. A more serious unphysical assump-

tion is the neglect of the inter-band proximity effect, with-

out which superconductivity would generically arise at very

different temperatures on the γ and α/β bands. While inter-

band proximity coupling would not change the additivity of

the current contributions from the different bands, it would

alter the length scale over which the various order parameter

components heal away from an interface. The resulting cur-

rents could be reduced or increased compared to our results,

depending on microscopic details.

These defects notwithstanding, the model treated above il-

lustrates that substantial reductions in magnetic signal can

arise from interface effects. We now consider the conse-

quences of a twenty-fold reduction for the interpretation of

magnetometry experiments. Even with this reduction the

magnetic signal at the edge would still be estimated to be sev-

eral times the resolution of scanning magnetometry experi-

ments, and should therefore be observable. However, if multi-

ple domains of sufficiently small size are present in the sample

and intersect the edge, the magnetic fields from spontaneous

currents would be unobservable. Kirtley et al9 find that, to be

consistent with the Matsumoto-Sigrist predictions12, ab-plane

domains below about 1.5µm in size are necessary. To be con-

sistent with a prediction twenty times smaller, the domains

could be as large as perhaps 5µm. However, the presence

of multiple ab-plane domains within the sample would lead

to spontaneous currents at the domain walls, which have not

been treated here. Unless domain walls are pinned by crystal

defects that, like a rough edge, lead to quenched supercon-

ductivity (an unlikely proposition), the suppression indicated

in the foregoing calculations would not apply to the domain

wall currents.

One scenario for the lack of an edge signal which would
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not imply a signal at interior domain boundaries is the c-axis

stacking of planar domains of macroscopic horizontal extent

and alternating chirality. The energetic cost of the domain

boundaries would be small, due to the very weak dispersion

of the electronic band structure along the c direction, and sym-

metry requires that no spontaneous current would flow at these

boundaries. The measurements of Hicks et al10 place an up-

per bound of 20− 400nm on the height of such domains, de-

pending on microscopic domain details, and again assuming

Matsumoto-Sigrist predictions for edge currents12 (similar

bounds have not been estimated for the experimental geome-

tries of refs. 5 and 11). Here, a twenty-fold reduction of ex-

pected edge currents for a single domain would revise upward

the experimental bound on domain size, possibly reconciling

the null result of scanning magnetometry experiments with the

spontaneous time reversal symmetry breaking seen in Kerr ef-

fect measurements with mesoscopic spot size (∼ 50µm) and

skin depth (∼ 150nm30).

We have shown that spontaneous currents in a chiral p-wave

superconductor are highly sensitive to interface details, in par-

ticular that surface disorder leading to a µm-thickness metal-

lic surface region can cause a suppression of more than an

order of magnitude compared to naive estimates. We pro-

pose that a scenario of c-axis domain stacking, along with

surface disorder, might resolve the seeming disagreement be-

tween scanning magnetometry and Kerr probes, and further

suggest that the edge of a crystal fractured in vacuum might

host a much lower defect density, and potentially lead to ob-

servable edge currents.
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