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Weyl fermions, which are fermions with definite chiralities, can give rise to anomalous breaking
of the symmetry of the physical system which they are a part of. In their (3 + 1)-dimensional
realizations in condensed matter systems, i.e., the so-called Weyl semimetals, this anomaly gives
rise to topological electromagnetic response of magnetic fluctuations, which takes the form of non-
local interaction between magnetic fluctuations and electromagnetic fields. We study the physical
consequences of this non-local interaction, including electric field assisted magnetization dynamics,
an extra gapless magnon dispersion, and polariton behaviors that feature “sibling” bands in small
magnetic fields.

In the 1980s, the study of anomalous behaviors of clas-
sically conserved currents in systems with Weyl fermions
revealed a deep connection between this physical phe-
nomena and the underlying topology of the systems. In
particular, it was realized that these anomalies are deeply
related to the skewness of the zero mode structure of the
Dirac operators, which in turn, using index theorems, can
then be related to characteristic classes, which are topo-
logical invariants1–4. Recently, with the advancement of
realizations of topologically ordered condensed matter
systems, the interest on the connection between topol-
ogy and anomaly has been revived. Not only the study
of anomalies might give rise to a way to classify topologi-
cal phases in matters in the presence of interactions5, but
it can also lead to topological responses, which are phys-
ical manifestations of the underlying topological nature,
of these topologically ordered systems5–8.

In this letter, we study topological aspects of the
Weyl semimetal, a topologically protected semimetal
with Weyl fermions. Weyl semimetals can be regarded
as a three-dimensional cousin of graphene, where pairs
of bands cross at certain points in the momentum space,
i.e, the Weyl points. For a short introduction to Weyl
semimetals, see for example Ref. 9. Some material real-
izations of Weyl semimetals consist of topological insula-
tor heterostructures that contain magnetic materials or
magnetic dopants10,11. An advantage of this realization
is that magnetic texture and fluctuations inherit some
physical properties that reflect the underlying topologi-
cal nature of this system. In particular, magnetic fluc-
tuations are coupled to Weyl fermions as an axial vec-
tor field12 and therefore, magnon excitations in this sys-
tem possess topologically non-trivial electromagnetic re-
sponses from the axial anomaly.

Our main result takes the form of a non-local interac-
tion between magnons and electromagnetic fields in Weyl
semimetals, dictated by the effective action Eq. (4) be-
low. The non-locality of the interaction arises from the
fact that the mediators of this interaction are gapless
excitations of Weyl fermions. The modifications of the
Landau-Lifshitz (LL) equation and Maxwell equation due
to this non-local interaction will give rise to two physi-

cal consequences, which reflect the underlying topological
nature of Weyl semimetals. Firstly, in Weyl semimetals,
electric fields can couple to the local magnetic moments
through gapless Weyl fermions, leading to an additional
magnon excitation. Compared to the conventional spin
wave in ferromagnet, this new magnon branch is gapless
and linear, inheriting the nature of Weyl fermions. Sec-
ondly, the non-local coupling between magnons and elec-
tromagnetic fields can induce a magnon-polariton excita-
tions in Weyl semimetals, which exhibit a quite different
spectrum from the usual polariton spectrum. In particu-
lar, in small values of magnetic fields, there exists a band
with finite width that bifurcates into a pair of “sibling”
bands with well-defined quasiparticles.

Let us start by considering a topological insulator
doped with magnetic impurities and assume that mag-
netic moments are magnetized along the growth direc-
tion, which we will take to be the x̂3-direction. This sys-
tem can be realized in for example, Cr doped Bi2Te3

13.
When magnetization is large enough, this model exhibits
Weyl nodes, at which the effective excitations are two
Weyl fermions with a relativistically-invariant dispersion
relation. Thus, this system provides a natural descrip-
tion of Weyl semimetals using the 4-band model12, the
details of which are given in Appx. A. It turns out that in
this system, magnetic fluctuations of magnetic moments
are coupled chirally to Weyl fermions12, and the effective
action describing the interaction between Weyl fermions,
electromagnetic fields and magnetic fluctuations is given
by

S = i

∫
d4x ψ̄γµ (∂µ − ieAµ − igγ5aµ)ψ, (1)

where two Weyl fermions have been written together as a
single Dirac fermion ψ, Aµ is the electromagnetic gauge
field and aµ is an axial vector field whose space-like com-
ponents a are identified as magnetic fluctuations12. Our
convention for the γ matrices

γµ =

(
0 σµ

σ̄µ 0

)
; σµ = (12×2, σ), σ̄µ = (12×2,−σ),

(2)
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and the metric follows closely Ref. 14, where the met-
ric is mostly positive. In the following, we will con-
sider only the case where the axial vector field strength
fµν = ∂µaν − ∂νaµ vanishes15, which is the case when
there is no magnetic domain wall in the system12. Even
though we are not going to use this fact here, it is worth
noting for fµν = 0, the axial vector field can be written
as aµ = ∂µθ, where θ has the physical meaning of axion
fields16.

To completely define this quantum field theory, it
is necessary to specify a regularization scheme. This
is particularly important here as the chiral nature of
the interactions (1) implies that the theory exhibits
an anomaly17,18, which appears as a violation of cur-
rent conservation in the three-point function Γµνρ =
〈jµ(p) jν(q) jρ5(−p − q)〉, where jµ = ψ̄γµψ and jµ5 =
ψ̄γµγ5ψ are the U(1) vector and axial current, respec-
tively. The anomaly is a reflection of the impossibility of
simultaneously preserving the vector and axial symme-
tries in the presence of any regulator. Since the vector
symmetry characterizes the interaction of fermions and
electromagnetic fields, the correct definition of the theory
must include a regularization scheme that respects the
vector symmetry, which is nothing but the gauge invari-
ance of electromagnetism. An example of such scheme
is the dimensional regularization scheme of ’t Hooft and
Veltman19, and the calculation of Γµνρ using this scheme
was done in Ref. 20. One can also calculate this three-
point function using Cutkosky rules and the dispersion
relation, as was done in Ref. 21. The result is

Γµνρ = − ie
2g

2π2
εαµβν pα qβ

gρσ(p+ q)σ
(p+ q)2

, (3)

where εαβγδ is the totally antisymmetric Levi-Civita ten-
sor.

It is easy to see that this three-point function satis-
fies the conservation of the vector current, pµ Γµνρ =
0 = qν Γµνρ, but violates axial current conservation,

(−p − q)ρ Γµνρ = ie2g
2π2 ε

αµβν pα qβ 6= 0. We note that
since anomalies are infrared phenomena (see for exam-
ple, Ref. 22 and references within), we can expect the
topological electromagnetic response of magnons to be
insensitive to the details of the model away from the Weyl
points as long as the electromagnetic gauge invariance is
not broken. In a classic (particle physics) example, a
similar anomaly is responsible for the decay of a neutral
pion into two photons independently of the high energy
completion of the theory of strong interactions that does
not break the electromagnetic gauge invariance. For ex-
ample, the pion decay is independent of the QCD quark
masses17,18. Nevertheless, it will be interesting to study
the non-topological electromagnetic response of magnons
from the high energy sector of Weyl semimetals and such
study will be taken up elsewhere. For the rest of this let-
ter, we will focus on studying the physical consequences
of the anomalous term Eq. (3).

To that end, we construct the effective action of the
topological electromagnetic response of magnons as fol-

lows

Stop =

∫
d4p

(2π)4
d4q

(2π)4
ΓµνρAµ(p)Aν(q)aρ(−p− q) (4)

= − e
2g

8π2

∫
d4x d4y εαβγδ Fαβ(x)Fγδ(x)

∂G(x− y)

∂yµ
aµ(y),

where Fµν = ∂µAν − ∂νAµ is the (vector) field strength,
G(x−y) is the Green function of the d’Alembertian � =
∂µ∂

µ and it obeys �xG(x− y) = δ4(x− y).
We note that in the limit of a constant axial vector aµ

we recover the result of Refs.23,24. For details, see Appx.
B. Furthermore, using the definition jα = δS/δAα, we
can obtain the anomalous Hall response

jα(x) = − e
2g

2π2
εαβγδ Fγδ(x) ∂β

∫
d4y

∂G(x− y)

∂yµ
aµ(y),

(5)
which, in the limit of a constant axial vector aµ, reduces

to the known result jα = − e2g
2π2 ε

αβγδaβ Fγδ of Ref. 25.
As another non-trivial check, we can also compare the

effective action Eq. (4) with the result from 4-band model
of Ref. 12 at uniform magnetic field B = B x̂3, akin to
the calculation done in Ref. 26. In this case, we have
Landau levels and we can ask how the system responses
to an applied electric field E = E x̂3 and a perturbation
due to magnetization. The result agrees with Eq. (4)
and for details, see Appx. A.

We are now ready to study the modifications of LL and
Maxwell equations caused by the topological response
of Eq. (4). Assume an easy axis anisotropy is present
such that the magnetic moments are uniformly polarized
along the x̂3 direction in equilibrium. The magnon exci-
tations are investigated by considering the magnetization
dynamics of the following Hamiltonian:

Hmagnet =
1

2

(
J (∇M)2 +m2 |M‖|2

)
−B ·M, (6)

where M is the magnetization, ‖ denotes the in-plane
direction, B is the magnetic field, and m2 is the easy
axis anisotropy. Let M = M x̂3 + a, with M � ai.
Substituting Eqs. (4) and (6) into the LL equation

dM̂

dt
= γM̂× ∂(Hmagnet +Htop)

∂M̂
, (7)

we then have

∂ta1
γM

= − e
2g

8π2

∫
d4y εαβγδFαβ(y)Fγδ(y) ∂2G(x− y)

+B2 +
(
J ∇2 −m2 −B3/M

)
a2, (8)

∂ta2
γM

=
e2g

8π2

∫
d4y εαβγδFαβ(y)Fγδ(y) ∂1G(x− y)

−B1 −
(
J ∇2 −m2 −B3/M

)
a1, (9)

where γ is the product of the gyromagnetic ratio, Bohr
magneton and permeability of vacuum. It is interesting
to note that a spatial-dependent term contributed from
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the Weyl fermion enters the magnetization dynamics. It
plays the same role as the in-plane magnetic field B1

or B2. The magnetic moments experience this spatially
modulated effective field such that the magnon dispersion
can be significantly changed. As the electromagnetic field
strength Fαβ contains electric fields as its component, it
is quite interesting to see that the electric field can dra-
matically modify magnetization dynamics. To illustrate
this more clearly, let us consider Weyl semimetals in a
magnetic field along the x̂3 direction B = B3x̂3. For an
oscillating electric field E = E3 exp

(
iωt− iq‖ · x‖

)
x̂3,

we obtain

a‖(ω,q‖) = − ie
2g

π2

(J q2 +m2 +B3/M)q‖

ω2/(γ2M2)− (J q2 +m2 +B3/M)2

E3B3

ω2 − v2F q2
, (10)

where q = |q‖|. Here, we have inserted back the Fermi
velocity of the Weyl fermions in order to differentiate
it with the speed of light in the medium, which we are
taking to be unity.

Two poles of a‖(ω,q‖) suggest the existence of two
magnon branches in this system. In addition to the usual
spin wave ω = γM (J q2 +m2 +B3/M), a magnon with
ω = vF |q| is present. This novel dispersion is determined
solely by a property of the Weyl fermions, namely their
Fermi velocity. More importantly, this new branch is
gapless, leading to a long-range correlation of spin exci-
tations. Physically, this magnon excitation can be under-
stood as a direct result of the coupling between two mag-
netic moments mediated by Weyl fermions. The gapless
nature of Weyl fermions leads to long-range correlation
of this magnon excitation. Therefore, this new magnon
dispersion is a distinct feature of Weyl semimetals. One
can then employ neutron scattering experiments to test
our prediction.

Let us now look at the Maxwell equation in the pres-
ence of topological response of Eq. (4). It is given by

−∂αFαβ −
e2g

2π2
εαβγδFγδ

∫
d4y

∂G(x− y)

∂xα
∂aµ(y)

∂yµ
= 0.

(11)

By using the identity εµνρσ∂
ρFµν = 0 and keeping only

the linear term in E, we get

−∂2tE +∇2E− e2g

π2
B

∫
d4y ∂2tG(x− y) (∇ · a) (y)

+
e2g

π2
∇ (B · ∇)

∫
d4y G(x− y) (∇ · a) (y) = 0.

(12)

For concreteness, let us again consider applying a
uniform magnetic field B3 along the x̂3 direction.
If we shine a light with the electric field E =

E3 exp
(
iωt− iq‖ · x‖

)
x̂3, we have

[
ω2 − q2 −

(
e2g B3

π2

)2
q2 ω2

(ω2 − v2F q2)2

J q2 +m2 +B3/M

ω2/(γ2M2)− (J q2 +m2 +B3/M)2

]
E3(ω,q) = 0.

(13)

The solutions of the equation above correspond to the
poles of the polariton modes, which can then be detected
using various spectroscopy techniques, such as angle-
resolved electron energy-loss spectroscopy. In a typical
magnetic material, in the long wavelength regime, the
effective magnon velocity 2γMJq is significantly smaller
than the Fermi velocity of the Weyl fermions. Thus, the
dispersion of the magnon can be neglected. The typical
behavior of the real part of the poles are plotted in Fig.
1. See also Appx. C.

One can find four bands in total in Fig. 1. These solu-
tions represent the hybridization between electric fields
and magnetic moments due to the non-local coupling
induced by Weyl fermions. At a non-vanishing mag-
netic field, the top and bottom bands are non-degenerate.
Furthermore, the imaginary parts of their respective
poles vanish and therefore, their spectral density is given
by a Dirac δ-function. The intermediate band, how-
ever, acquires a non-vanishing imaginary part of its pole
and therefore, feature broadened spectral density. This
broadening is due to its ability to emit Weyl fermions,
which results in it acquiring complex self-energy. This is
not unlike the physics of plasmon, see for example Ref.
27. At a low magnetic field, this band bifurcate into a
pair of “sibling” bands, whose spectral densities are given
by Dirac δ-functions, where the threshold for emitting
Weyl fermions is beyond the energetics. As the magnetic
field increases, this bifurcation disappears. The value of
magnetic field at which this happens scales as g−2 and
for g ∼ 0.1, this value is of order 10 T.

At a small q, the top and bottom bands scale as ω ∼ q0
and q2, respectively, while the intermediate band scales
like ω ∼ q1/2. We note that for the intermediate band,
there is a regime where the velocity of the latter exceeds
the speed of light in the Weyl semimetal. This “tachy-
onic” regime needs to be excised, similar to the case of
surface optical phonon for a polar crystal such as NaCl28.

The polariton spectrum also features an energy range
at which there exists no polariton modes. This “for-
bidden” band is particularly manifest at larger values
of magnetic field. Therefore, the incident light will be
totally reflected if its frequency lies within the forbidden
band. Such forbidden band is predicted to be a generic
feature of topological magnetic insulator29, however, sib-
ling bands are particular to the Weyl semimetal.

In order to probe the polariton, it is crucial that the
energy dumped into the system is spent to excite the po-
lariton and not the Weyl fermions. In other words, the
observability of the polariton spectrum depends heavily
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FIG. 1. The polariton spectra as we increase the magnetic field from left to right. Top: Real parts of the polariton poles, where
the solid lines correspond to those with vanishing imaginary part while the dashed lines otherwise. Here, the magnon gap is given
by ωm = γ(Mm2 +B3) and the bifurcation starts at qc ≈ 2egB3/

[
πγ(Mm+

√
MB3)

]
, which we estimate to be ∼ 10−5−10−4

A−1. We have also shown the forbidden band for the intermediate value of magnetic field, depicted as the shaded region. Bottom:
Imaginary part for the intermediate band, whose maximum value is given by ωh, with ωh ≈

√
2egB3/

[
πγ(Mm+

√
MB3)

]
.

on how much it overlaps with the single particle exci-
tation regimes of the Weyl fermions. We find indeed
that this overlap is negligible as the typical minimum en-
ergy needed to excite the Weyl fermions is about 10 meV
(see Appx. A for details) while the typical magnon gap
ωm = γ(Mm2 +B3) is about 0.1 meV30.
Summary – In this article, we have shown that the

topological response of magnons in Weyl semimetal is
given by a non-local interaction between magnons and
electromagnetic fields. This non-local interaction mani-
fests itself in term of electric-field-induced magnetization
dynamics that results in gapless magnon excitations. It

also gives rise to resonant behavior in the form of magnon
polariton featuring sibling bands and forbidden band.
Acknowledgements – We would like to thank Gerald

Mahan, Xiaoliang Qi, Cenke Xu and Jainendra Jain for
insightful discussions. J. H. is supported by NSF grant
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Appendix A: 4-band model calculations

Let us start with the 4-band model of Ref. 12

H = H0 +H1, (A1)

where

H0 =



M+M 0 −i L1 k3 i L2 k−

0 M−M −i L2 k+ −i L1 k3
i L1 k3 i L2 k− −M+M 0
−i L2 k+ i L1 k3 0 −M−M


 , (A2)
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with

M = M0 +M1 k
2
3 +M2 k

2
‖, (A3)

k± = k1 ± i k2; (A4)

and

H1 = diag(g̃µ3,−g̃µ3, g̃µ3,−g̃µ3) = g̃µ3σ3 · 12×2. (A5)

Here, we have magnetized the system along the x̂3-direction with magnetization M and for simplicity, allow magnetic
fluctuations only along that same direction, where g̃ � 1. All the material related parameters are defined in Ref. 12.

For |M | > |M0|, this model exhibits Weyl points. Expanding around these Weyl points, one can obtain the low
energy effective theory of Weyl fermions coupled chirally to the magnetic fluctuations as in Eq. (1). In particular,
the axial vector field can then be related to the magnetic fluctuations as

a3 = − M

L1

√
M2 −M2

0

µ3. (A6)

For details, see Ref. 12.
Let us now turn on the external uniform magnetic field B = B x̂3. The conjugate momenta on the direction

perpendicular to the magnetic field become k+ → Π+ =
√

2 a/`c and k− → Π− =
√

2 a†/`c, where a and a† are
the annihilation and creation operators for the Landau levels, respectively, and `c is the magnetic length. Since
aφn =

√
nφn−1 and a† φn =

√
n+ 1φn+1, writing the wave function as

φ =



fn1 φn−1
fn2 φn
fn3 φn−1
fn4 φn


 , (A7)

the Hamiltonian then can be written as

HLL =




Mn +M 0 −i L1 k3
i
√
2L2

`c

√
n

0 Mn −M − i
√
2L2

`c

√
n −i L1 k3

i L1 k3
i
√
2L2

`c

√
n −Mn +M 0

− i
√
2L2

`c

√
n iL1 k3 0 −Mn −M



, (A8)

where

Mn = M0 +M1 k
2
3 +

2M2

`2c

(
n− 1

2

)
. (A9)

Diagonalizing this Hamiltonian, we can then obtain the Landau levels for n > 0. For n = 0, this Hamiltonian is
reduced to half in size

HLLL =

(
M0 −M −i L1 k3
i L1 k3 −M0 −M

)
. (A10)

The resulting Landau levels are plotted in Fig. 2.
We can now perturb the above Hamiltonian by applying an external electric field E = E x̂3 and ask what the

response of the system to the axial vector field is. The response function is given by

ΠaE(ω, qx̂3) =
δ2S

δa3 δE

=
eB

2π`3

∑

n,n′∈LL

∑

k3

nF [εn(k3)]− nF [εn′(k3 + q)]

ω + εn(k3)− εn′(k3 + q)
(i g̃ e) 〈n′, k3 + q|I4×4|n, k3〉

(
−L1

√
M2 −M2

0

M

)
〈n, k3 |σ3 · I2×2|n′, k3 + q〉. (A11)
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FIG. 2. Landau levels for M0 = −0.005 eV, M1 = 0.342 eV·Å2, M2 = 18.225 eV·Å2, L1 = 1.3 eV·Å, L2 = 2.82 eV·Å2 and
B = 5T. n = 0 Landau levels are depicted in red, while the higher Landau levels are depicted in blue.

Here, nF is Fermi distribution, `3 is the length of the system in x̂3 direction and the factor eB comes from the
degeneracy of Landau levels. We can approximate this by neglecting the contribution from higher Landau levels

ΠaE(ω, q x̂3) =
L1

√
M2 −M2

0

M

i g̃ e2B

2π`3

∑

n,n′∈LLL

∑

k3

nF [εn(k3)]− nF [εn′(k3 + q)]

ω + εn(k3)− εn′(k3 + q)

∣∣∣〈n′, k3 + q|n, k3〉
∣∣∣
2

,

(A12)

where we have projected the matrix elements of the interaction Hamiltonian H1 (which is 4× 4) into the LLL space
(which is 2× 2). For T = 0, µ = 0 and small q, we therefore have

ΠaE(ω � q, q x̂3) ≈
[
L4
1 + 4L2

1M0M1 + 4M2
1M

2 − (2M0M1 + L2
1)
√
L4
1 + 4L2

1M0M1 + 4M2
1M

2

]− 1
2

√
2π |M1|L1

√
M2 −M2

0

g̃ e2B

π2 (−i q)

≡ g e2B

π2

(−i q
−q2

)
. (A13)

The Lagrangian density in momentum space is then given by

L = ΠaE E a3 =
g e2

π2
EB

(−i q
−q2

)
a3, (A14)

which upon Fourier transforming back to real space, reads

L = −g e
2

π2
E(x)B(x)∇yG(x− y) · a(y), (A15)

in agreement with Eq. (4).
Next, let us look at the polarization operator in the presence of the external magnetic field. The regime where its

imaginary part is non-vanishing corresponds to the regime of single particle excitations (SPE) of the Weyl fermions.
Since we are interested in comparing it to the spectrum of the polariton, we are going to focus on the case where the
momentum is perpendicular to the direction of the magnetic field q = q‖. The polarization operator is then given by

ΠEE(ω,q‖) =
δ2S

(δE)2

=
e3B

2π`3

∑

n,n′

∑

k3

nF [εn(k3)]− nF [εn′(k3)]

ω + εn(k3)− εn′(k3) + i0+

∣∣∣〈n′, k3|n, k3〉
∣∣∣
2

. (A16)
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We note that the right hand side does not depend on q‖. Furthermore, the bottom boundary of the SPE regime is
the smallest gap between the filled part of the lowest Landau level and the second Landau level. As can be seen from
Fig. 2, it is of order 0.03 eV.

Appendix B: The Constant Vector Limit

Let us start by putting our theory, Eq. (4), in a finite volume by introducing a finite volume regulator aµ(y) →
aµ(y) exp [−|â · y|/Λ], such that

Stop = − e
2g

8π2

∫
d4x d4y εαβγδ Fαβ(x)Fγδ(x)

∂G(x− y)

∂yµ
aµ(y)e−

|â·y|
Λ , (B1)

where Λ � L and L is the typical size of the system. We note that when the axial vector field goes to a constant
vector limit, the field strength ∂µ [aν(y) exp (−|â · y|/Λ)] − ∂ν [aµ(y) exp (−|â · y|/Λ)], which includes the curl ∇ ×
[a exp(−|â · y|/Λ)], remains vanishing while the divergence ∂µ[aµ exp(−|â · y|/Λ)] remains non-zero. Therefore, even
at the constant vector limit, the magnon is Helmholtz decomposed into the curl-free term only.

In order to obtain the constant vector limit of Eq. (B1), we write aµ exp(−|â·y|/Λ) = gµν ∂ν [a · y exp(−|â · y|/Λ)]+
O(1/Λ). Substituting it in Eq. (4) and integrating by parts, we obtain

Stop = − e
2g

8π2

∫
d4x d4y εαβγδ Fαβ(x)Fγδ(x) ∂ν

[
gµν

∂G(x− y)

∂yµ
a · y e− |â·y|Λ

]

+
e2g

8π2

∫
d4x d4y εαβγδ Fαβ(x)Fγδ(x)�yG(x− y) a · y e− |â·y|Λ . (B2)

The first term is the surface term that vanishes due to the regulator and using the definition of the Green’s function
we recover the action in the Ref. 23

Stop →
e2g

8π2

∫
d4x εαβγδ Fαβ(x)Fγδ(x) (a · x). (B3)

Appendix C: The Polariton Green Function

Setting B = Bx̂3 and then applying an electric field along the x̂3 direction, the Landau-Lifshitz and Maxwell
equations can be written as

E(ω, q)

(q‖·a‖
q

E3

)
= 0, (C1)

where |q‖| = q and

E(ω, q) =




ω2

γ2M2 −
(
J q2 +m2 + B3

M

)2 e2g
π2

iq(J q2+m2+B3/M)B3

ω2−v2
F q

2

− e2gπ2
i q ω2 B3

ω2−v2
F q

2 ω2 − q2


 . (C2)

The Green function for the polariton then must satisfy

E(ω, q)G(ω, q) = I2×2, (C3)

and its singularities are given by the singularities of E−1, which are the zeroes of det E . We note that the solutions
to det E = 0 are identical to the solutions of Eq. (13). Furthermore, we can obtain the spectral density from
ρ(ω, q) = =[G(ω, q)]. The spectral densities of the top and bottom band are trivial as they correspond to well-defined
quasiparticles, while the spectral density of the intermediate band exhibits finite width. In Fig. 3, we plot the spectral
density of the intermediate band at small magnetic field for different values of momenta up to q = 0.99qc, where qc is
the momentum at which bifurcation into the “sibling” bands occur.

∗ jah77@psu.edu 1 N. Nielsen, H. Romer, and B. Schroer, Phys. Lett. B 70,
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ωm
ω

ρ

FIG. 3. The spectral density at small magnetic field for different values of momenta q/qc = 0.2, 0.5, 0.75 and 0.99 for the blue,
purple, yellow and green lines (from left to right), respectively. Here, qc ≈ 2egB3/

[
πγ(Mm+

√
MB3)

]
is the momentum at

which the bifurcation into the “sibling” bands starts and ωm = γ(Mm2 +B3) is the magnon gap.
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