
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Unpaired Majorana modes on dislocations and string
defects in Kitaev's honeycomb model

Olga Petrova, Paula Mellado, and Oleg Tchernyshyov
Phys. Rev. B 90, 134404 — Published  7 October 2014

DOI: 10.1103/PhysRevB.90.134404

http://dx.doi.org/10.1103/PhysRevB.90.134404


Unpaired Majorana modes on dislocations and string defects in Kitaev’s honeycomb
model

Olga Petrova,1 Paula Mellado,2 and Oleg Tchernyshyov3

1Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
2School of Engineering and Applied Sciences, Adolfo Ibáñez University, Santiago, Chile
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We study the gapped phase of Kitaev’s honeycomb model (a Z2 spin liquid) on a lattice with
topological defects. We find that some dislocations and string defects carry unpaired Majorana
fermions. Physical excitations associated with these defects are (complex) fermion modes made
out of two (real) Majorana fermions connected by a Z2 gauge string. The quantum state of these
modes is robust against local noise and can be changed by winding a Z2 vortex around one of the
dislocations. The exact solution respects gauge invariance and reveals a crucial role of the gauge
field in the physics of Majorana modes. To facilitate these theoretical developments, we recast the
degenerate perturbation theory for spins in the language of Majorana fermions.

I. INTRODUCTION

In three dimensions all particles can be divided into
two categories by their quantum statistics: bosons and
fermions. The two possibilities correspond to two one-
dimensional representations of the permutation group
of N particles SN . In two dimensions, the situation is
richer because two particles can be exchanged clockwise
or counterclockwise and the two exchange paths are topo-
logically distinct. For this reason, particle exchange in
two dimensions is called braiding and exchange statistics
is related to the braid group BN , which has infinitely
many one-dimensional representations. As a result, par-
ticle statistics can interpolate continuously between Bose
and Fermi’s, hence the name anyons.1 When two Abelian
anyons are exchanged, the system’s wavefunction picks
up a phase that is not restricted to integer multiples of
π as it is in three dimensions.

Non-Abelian statistics corresponds to higher-
dimensional representations of the braid group. It
arises when the ground state of a system is degenerate
and winding one particle around another amounts to
a unitary transformation in the space of degenerate
ground states. An anyon system is characterized by a
set of fusion rules that state the possible outcomes of
fusing pairs of anyons.

Since the result of braiding depends only on the topol-
ogy of the braid, qubits made up of non-Abelian anyons
are very stable with respect to any local perturba-
tion. The anticipated applications in the field of quan-
tum computing2 have been fueling the search for non-
Abelian excitations, however, potentially physically real-
izable systems that give rise to them remain scarce. Here
we discuss how adding topological lattice defects to the
Abelian phase of the Kitaev honeycomb model3 can give
rise to non-Abelian statistics. Such defects can be clas-
sified as twists, related to the Z2 symmetry present in
the model. It is worth noting that their presence in the
system does not spoil its exact solvability, which allows
us to explicitly demonstrate the crucial role of the gauge
field in the physics of Majorana modes.

Twist defects are found in topologically ordered sys-
tems with a particular kind of symmetry: their fusion
and braiding rules are invariant under the exchange of
two distinct kinds of excitations. A twist is a point de-
fect in two spatial dimensions (and a line defect in three)
that alters the anyon type when an anyon is transported
around it. An early precursor of the twist was the Al-
ice string introduced by Schwarz,4 which induces electric
charge conjugation in some gauge models. The possi-
bility of anyon type exchange in a topological state was
first suggested by Kitaev3 for the honeycomb model and
studied by Barkeshli et al.5,6 in the context of fractional
quantum Hall states. The first explicit construction of
twist defects in a microscopic model was carried out by
Bombin.7 The name of the defect reflects the twisting
of the underlying topological state up to a symmetry of
the anyon model. Barkeshli et al. 8 suggested the term
genon to stress the connection between these defects and
an increase in topological degeneracy.

In ZN rotor models (where N = 2 case corresponds to
the toric code2,9) defined on a square lattice, excitations
live at the ends of string operators, connecting diagonal
plaquettes. Therefore, one defines two kinds of excita-
tions, e and m topological charges, that can exist on odd
and even plaquettes of a checkerboard lattice. Braiding
e and m charges around one another gives rise to a phase
factor, meaning that the two kinds of excitations are mu-
tual Abelian anyons. Since the choice of even and odd
plaquette type is arbitrary, the model is obviously sym-
metric under exchange of e and m anyons. A charge that
winds around a Z2 twist defect can be thought of as ex-
changing its type and the defect itself can be shown to
behave as a non-Abelian anyon with quantum dimension√
N .7,10

A recent addition to the family of topologically ordered
systems are topological nematic states. It is known that
fractional quantum Hall states (FQH) can be realized in
interacting lattice models with a non-trivial Chern num-
ber C.11–15 For an integer C > 1, such systems are equiv-
alent to C parallel FQH layers, so that translations of
the lattice can be thought of as permutation of the lay-



2

ers. Lattice dislocations in such systems also constitute
twist defects, where the symmetry in question exchanges
layers.6

Realizations of twist defects are not limited to dislo-
cations in lattice models. Other examples include edge
states in domain walls between FQH regions gapped by
two different means: for instance, by proximity to a su-
perconductor and a ferromagnet,16–19 etc.

In this paper we present an explicit construction
of non-Abelian quasiparticles—Majorana modes—in Ki-
taev’s spin model on a honeycomb lattice.3 This spin
model can be exactly solved by representing spins in
terms of Majorana fermions living in the background of a
static Z2 gauge field. In the gapped phases of this model,
low-energy excitations are Z2 vortices, which come in two
flavors living on alternating rows of hexagons of the lat-
tice. A vortex of one flavor cannot be converted into
another without creating or destroying additional quasi-
particles. A lattice dislocation may act as a twist defect
if moving a vortex around it returns the vortex to the
wrong row of hexagons, thereby altering its flavor. The
additional quasiparticle created in the process of conver-
sion is a nonlocal fermion formed by two Majorana modes
associated with the dislocation in question and with an-
other dislocation elsewhere in the system. One pair of
twists increases the degeneracy of the ground state by a
factor 2. Unitary transformations in the Hilbert space
of degenerate ground states can be achieved by braiding
vortices around twists. We study the robustness of the
Majorana modes to local perturbations such as an exter-
nal magnetic field and demonstrate that the energy split-
tings induced in this way decay exponentially with the
distance between dislocations. Furthermore, the interac-
tions between Majorana modes are strongly directional:
Majorana modes at two dislocations may not interact
at all for certain relative positions. This directional ef-
fect has been previously noted by Willans et al. 20 who
studied non-topological defects of the lattice such as va-
cancies in the same model. Some of our results have been
reported in an earlier short communication.21

The paper is organized as follows: first, we give an
overview of the Kitaev honeycomb model in Section II.
Since the focus of our work is on the gapped phase of the
model, we make extensive use of high order perturbation
theory. In order to simplify such calculations, we intro-
duce a diagrammatic approach to perturbation theory in
Section VI A, which may be of use for a wider range of
problems. The technical details behind this method are
given in Appendix A.

In this work, we consider two kinds of lattice dislo-
cations: 8–2 (consisting of an octagon and a site with
reduced coordination number 2) and 5–7 (composed of
a pentagon and a heptagon). Both types may be trivial
(not result in unpaired Majorana modes) and twist de-
pending on their topological details. We start our discus-
sion with 8–2 dislocations, which preserve the topology of
link types in the lattice, in Section IV. 5–7 dislocations,
discussed in Section V, are made up of two disclinations
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FIG. 1. (color) (a) Three types of bonds in the honeycomb lat-
tice, the conserved plaquette operator W = σx1σ
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6 ;

lower panel: graphic representation of spins in terms of the
Majorana operators bα and c. (b) e charges and m fluxes in
the toric code limit correspond to plaquettes where W = −1
on alternating blank and filled rows of the honeycomb lattice.
Pairs of spins connected by the strong z links become effective
spins living on the dash-dotted bonds of the toric-code square
lattice. ai are lattice vectors. (c)–(f) Winding an e-type flux
around an m-type flux multiplies the wavefunction by −1,
indicating that e and m fluxes are mutual semions. (g)–(h)
Local creation of an e ×m vortex pair (g) and conversion of
vortex flavor (h). Open red, green, and blue circles denote
the application of σx, σy, and σz operators.

which alter the orientation of the link flavors. We sum-
marize our results in Section VII.
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II. KITAEV’S HONEYCOMB MODEL

A. The spin model

Kitaev’s model has spins of length S = 1/2 on sites of a
honeycomb lattice, Fig. 1(a). Adjacent spins are coupled
through anisotropic two-spin interactions whose nature
depends on the direction of the bond:

H = −Jx
∑
x links

σxmσ
x
n − Jy

∑
y links

σymσ
y
n − Jz

∑
z links

σzmσ
z
n,

(1)
where links are labeled as shown in Fig. 1(a). Its solv-
ability is related to the existence of integrals of motion,
one for every hexagonal plaquette,

W = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 , (2)

in Fig. 1(a). In the ground state, W = +1
everywhere.3,22

The Kitaev model has been extended to other lattices
with coordination number 3 in two23 and three24–27 di-
mensions.

B. Majorana fermion representation

Kitaev’s exact solution is based on a representation of
spin operators σxn, σyn, and σzn on a given site n in terms
of four Majorana fermions bxn, byn, bzn, and cn that anti-
commute with one another and are normalized so that

(bxn)2 = (byn)2 = (bzn)2 = c2n = 1. (3)

The spin components are σαn = ibαncn, Fig. 1(a). The
transformation from spin to fermion variables enlarges
the dimension of the Hilbert space on each site from two
to four. Physical states are eigenstates of the operator

Dn ≡ bxnbynbzncn (4)

with the eigenvalue +1, which guarantees the correct spin
commutation relations, [σαm, σ

β
n] = 2iδmnε

αβγσγn.
The Hamiltonian expressed in terms of Majorana

fermions reads

H = i
∑
〈mn〉

Jαmnumncmcn, (5)

where 〈mn〉 denotes a nearest-neighbor bond connecting
sites m and n; spin component α = αmn depends on
the orientation of the bond. The Hamiltonian contains
explicitly the c Majorana modes, whereas the b modes
are hidden in link variables umn = −unm ≡ ibαmb

α
n. The

link variables are constants of motion that can be set
to umn = ±1, thus reducing the Hamiltonian (5) to a
quadratic form in c Majorana fermions. It can then be
diagonalized by an orthogonal transformation to a new

set of Majorana modes, cm =
∑
nOmnγn, whose Hamil-

tonian is block-diagonal,

H =
∑
n

iεn
2
γ2n−1γ2n =

∑
n

εn
2

(ψ†nψn − ψnψ†n). (6)

Here εn ≥ 0 represents the excitation energy of a pair of
Majorana modes {γ2n−1, γ2n} that can be combined to
form a complex fermion mode ψn,

ψn =
γ2n−1 + iγ2n

2
, ψ†n =

γ2n−1 − iγ2n

2
. (7)

The ground state of the Hamiltonian (6) is the vacuum
of the ψ fermions annihilated by every operator ψn. It
has the energy

E = −
∑
n

εn/2. (8)

The excitation spectrum of the Majorana modes {εn}
is gapless in the thermodynamic limit if the coupling con-
stants satisfy the triangle inequalities, |Jx| + |Jy| > |Jz|
and its permutations. Here we are interested in the
gapped phases, where one of the coupling constant dom-
inates, e.g., |Jz| > |Jx|+ |Jy|.

C. Z2 gauge symmetry

Although link variables umn are conserved quantities,
they do not commute with the operators (4) constraining
the physical states. In other words, they do not repre-
sent physically observable quantities. Assigning them a
definite value ±1 is akin to fixing a gauge. Indeed, it is
useful to view the constraint operators (4) as generators
of a Z2 gauge symmetry acting on the fermionic variables
as follows:

bαn 7→ D†nb
α
nDn = −bαn,

cn 7→ D†ncnDn = −cn, (9)

umn 7→ D†numnDn = −umn.

Physical variables such as spins σαn = ibαncn are gauge
invariant. In addition, a gauge-invariant quantity can be
obtained by taking a product of link variables around
a closed loop, u12u23 . . . un1, which could be interpreted
as a Z2 magnetic flux with values ±1. For a hexagonal
plaquette, this product yields, up to a sign, the integral
of motion W defined in Eq. (2).

Kitaev 3 defined the Z2 flux through a hexagonal pla-
quette [Fig. 1(a)] in two ways:

W
?
= σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 , (10a)

W
?
= (σz1σ

z
2)(σx2σ

x
3 ) . . . (σx5σ

x
6 )(σy6σ

y
1 ). (10b)

Although the two definitions are equivalent on a regu-
lar honeycomb lattice, this is not always the case in the
presence of lattice disorder or on other three-coordinated
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lattices that can support the Kitaev model Hamiltonian.
For instance, on a plaquette with an odd number of sites
the two definitions differ by a factor of ±i. It is therefore
desirable to select a definition applicable to plaquettes of
arbitrary shape.

It seems reasonable to expect that Z2 flux satisfies the
following rules:

(i) For any plaquette, W takes on one of the Z2 values,
+1 or −1.

(ii) For adjacent plaquettes 1 and 2, the flux through
the combined plaquette 1+2 is the product of their
individual fluxes, W1+2 = W1W2.

Surprisingly, it does not seem possible in general to sat-
isfy both rules simultaneously. Definition (10a) satisfies
rule (i). Rule (ii) is satisfied if link flavors are consis-
tently oriented on every site, following the pattern x, y,
z as we go around a site counterclockwise. If some sites
follow the opposite pattern z, y, x, rule (ii) is violated.
Definition (10b) violates rule (i), giving W = ±i for pla-
quettes with an odd number of sites. However, it satisfies
rule (ii).

We view multiplicativity as the more basic property
of Z2 flux and therefore stick with Eq. (10b). We now
must keep in mind that the flux on a plaquette with an
odd perimeter depends on direction: if going clockwise
yields W = +i then going counterclockwise would yield
W = −i. We shall see below that this quirky behav-
ior makes sense. The energy of the system depends on
fluxes through plaquettes with an even perimeter (where
W is real) but not on fluxes on plaquettes with an odd
perimeter (where W is imaginary).

We thus define the Z2 flux on a plaquette with sites
1, 2, . . . , n on the boundary, going counterclockwise, as

W = (σα12
1 σα12

2 )(σα23
2 σα23

3 ) . . . (σαn1
n σαn1

1 ). (11)

After converting each link product to Majorana variables,

σα12
1 σα12

2 = (ibα12
1 c1)(ibα12

2 c2) = −iu12 c1c2,

and after using the normalization condition c2n = 1, we
obtain the flux in terms of Z2 gauge variables:

W = (−i)n u12u23 . . . un1, (12)

which agrees with Eq. (16) of Kitaev.3

D. Z2 magnetic vortices in the gapped phases

We shall focus our attention on one of the gapped
phases, where one of the coupling constants in Eq. (1)
dominates, e.g., Jz > Jx + Jy. We assume ferromag-
netic couplings, Jα > 0, without loss of generality. The
physics simplifies in the limit Jz � Jx, Jy, where low-
energy states have parallel spins on strong (z) bonds.
The ground state |0〉 is in the sector with W = +1 on

all hexagonal plaquettes and with no fermions present,
ψn|0〉 = 0.

Excitations come in two forms, fermions and Z2 vor-
tices. Fermion excitations ψ are associated with breaking
the alignment of spins on strong bonds and thus have a
high energy cost of approximately 2Jz, so we shall refer
to them as high-energy fermions. Low-energy excitations
are Z2 vortices, W = −1, with energy J2

xJ
2
y/8J

3
z .3 The

effective Hamiltonian in this subspace turns out to be the
toric code,2,9 with effective spins τzmn = σzm = σzn living
on links of a rectangular lattice, Fig. 1(b). Crucially, vor-
tex excitations come in two flavors—e and m—depending
on the plaquette. A honeycomb plaquette centered on a
vertex (plaquette) of the rectangular toric-code lattice
may host an e (m) vortex. Thus e and m vortices live in
alternating rows, Fig. 1(b).

In the toric code, e andm particles are mutual semions:
the wavefunction acquires a minus sign when a particle of
one type winds around a particle of the other type. The
same is true of the e and m vortices in the honeycomb
spin model, Fig. 1(c)–(f). Here the winding is accom-
plished by the application of six σ operators, whose prod-
uct equals the flux (2) on the central plaquette, W = −1.
Exchanging two e×m pairs also produces a minus sign,
pointing to the fermionic nature of the composite e×m
particle. In the unperturbed toric code model there is no
way to have an odd number of e×m pairs. The underly-
ing reason for this is that the parity of the total number
of fermions in the system should be conserved. Much of
the toric code description carries over to the vortices of
the honeycomb model with different flavors. However,
unlike in the toric code, there is nothing that forbids us
from creating a vortex pair in adjacent rows of the lat-
tice pictured in Fig. 1(g), seemingly breaking the fermion
parity conservation. The mystery is solved by examining
the process in terms of the honeycomb spins: the e×m
vortex pair in adjacent rows is created via the applica-
tion of an operator σxn or σyn, which misalignes a pair of
spins connected by a strong z bond. It follows that cre-
ating a e×m vortex pair is accompanied by creation or
annihilation of a fermion ψ with a high energy cost of
2Jz. Such processes, as well as the local conversion of
the vortex flavor [Fig. 1(h)], are effectively forbidden at
low energies.

Consequently the low-energy processes are restricted
to (a) creating and annihilating two vortices in the same
row of the honeycomb lattice; (b) shifting a vortex in
its row; (c) a vortex hopping to the next-nearest row,
Fig. 2(a). The first two are accomplished by acting with
an operator σzn; the third by applying σxmσ

y
n or σymσ

x
n on

a strong bond 〈mn〉.

E. Fermion parity

Physical variables such as spin σαn are bilinear in the
Majorana operators, σαn = ibαncn. This principle also
works at the level of elementary excitations: a local oper-



5

(f)(e)

(d)

(a)

(c)

(b)

c

c

c

1

q

xbxb

a

2
r

m

e

ee

FIG. 2. (color) (a) Low-energy excitations in the gapped
phase of the model. Vortices are located at the ends of dashed
lines, representing string operators that flip the value of Wp

when they cross into, or out of, a plaquette. Open red, green,
and blue circles indicate σx, σy, and σz operators. (b)–(c) A
pair of 8–2 dislocations: twists with B = ±a1 (b) and trivial
with B = ±a3 (c). (d)–(e) A pair of 5–7 dislocations with
B = ±a2: trivial (d) and twists (e). (f) A line of links with
altered dimerization with twists at the ends. Dashed lines are
flux path. Dash-dotted lines are branch cuts. Filled circles
are unpaired Majorana modes.

ation always creates and destroys fermions in pairs. The
conservation of fermionic parity has been tied to Z2 gauge
invariance by Pedrocchi et al. 28 . They have shown that,
in a given flux sector, parity of the physical fermions
{γ} or {ψ} diagonalizing the energy (6) remains fixed.
Their proof was general and independent of the system’s
Hamiltonian. Here we adopt it to the specific case of the
gapped phase. Narrowing the focus allows us to compare
fermionic parity in different flux sectors. This is of inter-
est to us because a pair of fluxes of e×m types is also a
fermion. It is reasonable to expect that gauge invariance
translates into the conservation of the net fermion parity,
which counts both ψ and e × m fermions. We demon-
strate this explicitly for the case of simple topology: a
torus with an even number of rows, Fig. 3(a). This will
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FIG. 3. The system on tori: opposite edges of the parallel-
ograms are identified. (a) A torus with 6 rows of hexagons.
(b) A torus with 5 rows of hexagons. The dotted-dashed line
is a cut separating two rows of e hexagons.

set the stage for a discussion of Majorana modes on twist
dislocations, whose parity contributes to the net parity
budget. The story has an interesting twist (so to speak)
when the torus has an odd number of rows, Fig. 3(b).

1. Parity of ψ fermions

Deeply in the gapped phase where z links dominate
we may drop the x and y terms in the Hamiltonian as a
starting point:

H0 = −Jz
∑
z links

σzmσ
z
n = Jz

∑
z links

iumncmcn.

Complex fermionic eigenmodes of this Hamiltonian live
on strong links:

ψmn =
cm + iumncn

2
, ψ†mn =

cm − iumncn
2

. (13)

The Hamiltonian translates into

H0 = Jz
∑
z links

(ψ†mnψmn − ψmnψ†mn),

showing that each complex fermion has positive excita-
tion energy +2Jz. The parity of the ψ fermions is

πψ =
∏

z links

(ψmnψ
†
mn − ψ†mnψmn)

=
∏

z links

(−iumncmcn) =
∏

z links

σzmσ
z
n. (14)

Restoring the weak x and y terms in the Hamiltonian
will mix these modes. The parity of the new modes Ψ′

will be related to πψ by the determinant of the linear
transformation,28 which can only be +1 or −1. If the
change of variables were small, the transformation would
be close to identity and so its determinant could only
be +1. However, the starting point is highly degenerate:
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all ψ fermions have the same energy 2Jz, so they are
thoroughly mixed.

Fortunately, the presence of a large energy gap means
that ψ operators (energy Jz) are mixed among them-
selves and ψ† operators (energy −Jz) are mixed sepa-
rately. Therefore, the transformation matrix is (approx-
imately) block-diagonal: symbolically,(

Ψ
Ψ†

)
7→
(
U 0
0 U∗

)(
Ψ
Ψ†

)
,

where U∗ is the complex conjugate of the unitary trans-
formation matrix U . The determinant of this transfor-
mation is

detU detU∗ = detU detU† = detU detU−1 = +1.

Thus the parity of the complex fermions πψ is unchanged
by the transformation, so we may safely use Eq (14) to
represent the parity of the complex ψ fermions in the
gapped phase.

2. Contribution of fluxes

A physical state is an eigenstate of every gauge trans-
formation Dn (4) with the eigenvalue +1. An eigenstate
|ψu〉 of the free Majorana Hamiltonian (5) with fixed Z2

gauge field variables umn is not gauge invariant and thus
does not belong to the physical subspace. A physical
state |ψw〉 can be obtained from it by summing over all
possible gauge transformations of |ψu〉:3

|ψw〉 =

2N∏
n=1

1 +Dn

2
|ψu〉. (15)

|ψw〉 is invariant under all Dn, and, consequently, under
their product

∏
nDn. The latter leaves the individual

terms in the superposition (15) invariant. Therefore, one
can symmetrize a state |ψu〉 over all possible gauge trans-
formations and obtain a physical state when |ψu〉 is an
eigenstate of

∏
nDn with the eigenvalue +1. States with

eigenvalue −1 will be eliminated by
∏2N
n=1

1+Dn
2 , so one

may think of that operator as a projector onto the phys-
ical subspace.28

We factorize each Dn into the product of commuting
operators bxnb

y
n and bzncn and rearrange them:∏
n

Dn =
∏
m

bxmb
y
m

∏
n

bzncn.

In the second product on the right-hand side, we pair
sites connected by strong bonds:

(bzmcm)(bzncn) = −(bzmb
z
n)(cmcn) = iumncmcn,

whence ∏
n

Dn = (−1)N/2πψ
∏
m

bxmb
y
m.

where N/2 is the number of z bonds in a system with N
sites.

Next we rearrange the bx and by operators so as to
form a product of alternating x and y links arranged in
horizontal rows:∏

n

Dn = πψ
∏
rows

(−1)(−iu12)(−iu23) . . . (−iuL1),

where L is the number of sites in a horizontal row. On a
torus with an even number of rows, Fig. 3(a), the factors
of −1 contributed by every row cancel out. The product
of u variables for two adjacent rows of links yields the net
flux W through the hexagons between them. Depending
on how we pair the link rows, we end up with the net
flux of hexagons of e or m type:∏

n

Dn = πψWe = πψWm.

In fact, they should be the same, We = Wm, because
their product gives the net flux through the hexagons of
the torus, WeWm = +1.

3. Net fermion parity

Because an e×m fermion is a combination of an e flux
and an m flux, Wm = We coincide with the parity of the
e × m fermions πe×m. We thus obtain the anticipated
result:

πψπe×m =
∏
n

Dn = +1. (16)

The same conclusion can be arrived at much faster by
using the spin representations for flux (2) and fermion
parity (14). The product of all m fluxes and ψ fermion
parity is

Wmπψ = 1,

thus, the net parity of physical fermions, counting
both high-energy excitations ψ and low-energy compos-
ite fermions e × m, is 1. This is always the case for
states described in terms of spins, whereas in the Majo-
rana fermion representation πψπe×m = ±1. Only states
that yield +1 correspond to the physical subspace.

III. TRANSMUTATION OF VORTEX FLAVOR

A. Torus with a twist

The torus in Fig. 3(b) has an odd number of rows. As a
result, it is impossible to globally partition hexagons into
alternating e and m rows: there is a mismatch with two
adjacent rows of the same flavor. The defect line, which
we will call the cut, goes around the torus and can be
deformed and moved around but cannot be eliminated.
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We can see that the cut must play a role in the overall
budget of total fermion parity as follows. Starting in a
ground state, we create a pair of fluxes of the same type,
say m, and move one of them following a loop around
the torus. As the flux crosses the cut, its type changes
to e. As the e flux returns to its m partner, the two can
be viewed as an e×m fermion. If the net fermion parity
is conserved, the change of parity πe×m must be com-
pensated by another term. If the flux was moved gently,
without exciting high-energy ψ fermions, the compensat-
ing factor should be somehow related to the cut.

To see how this issue is resolved, we compute the prod-
uct πe×mπψ. Again, we do so by using spin variables,
leading to the following result:

Wmπψ =
∏
cut

σzn,

with the product of spins taken along the cut in Fig. 3(b).
This product looks like a Wilson loop operator,3 and in-
deed it is. By rewriting σz = −iσxσy and expressing the
spin variables in terms of Majorana operators, we find
that

−
∏
cut

σzn =
∏
cut

(−iumn) ≡Wcut.

The right-hand side is the global Z2 flux piercing the
vertical loop.

Finally, after using the identity Wm = We = πe×m,
we obtain the conservation law for a torus with an odd
number of rows:

πψπe×mWcut = −1. (17)

Moving an m flux across the cut—at low energies
(Sec. II D)—converts it into an e flux, thereby altering
the fermion parity. This is still consistent with Eq. (17)
because a flux moving across the cut alters its Wilson-
loop operator Wcut.

The presence of the cut has interesting consequences
for the ground state. Eq. (17) indicates that when
Wcut = +1, physical states of the flux-free sector have
πψ = −1. The lowest-energy configuration satisfying this
constraint has a single ψ fermion. This high-energy exci-
tation can be removed at the expense of introducing an
e × m fermion with a much lower energy cost. In that
case the ground state sector has two fluxes.

B. Introducing lattice dislocations

Vortices are created in pairs on neighboring hexagons
and can then be brought further apart by flipping val-
ues of Wp on plaquettes along the way. In Fig. 2 such
successive operations are depicted as dashed lines with
vortices at the ends. A closed loop in Fig. 2(c) can then
be thought of as creating a pair of m vortices out of the
vacuum and then one of them completing a loop via the
low-energy movements, returning to the starting point.

Since there are no lattice defects present, the vortex is
able to return to the same row and can then be anni-
hilated with its partner to bring the system back to its
original ground state. As can be seen from Fig. 2(b), (e),
if the loop encloses a dislocation, the vortex may return
to an adjacent e row, in which case we end up with a
composite e×m fermion.

To gain a better understanding of the vortex type
transmutation that took place, let us see what happens
to the degrees of freedom when a dislocation defect is in-
troduced into a system. First, consider the unperturbed
model. In a system with 2N spins, there are N plaque-
ttes and N strong bonds, giving rise to N fluxes and
N fermion modes (ψ) respectively. However, not all of
these degrees of freedom are independent. First, the
net flux through is trivial, hence WmWe = 1; second,
πψπe×m = +1, Eq. (16). This reduces the number of in-
dependent qubits to N+N−2, whereas the total number
should be equal to the number of spins 2N . The 2 re-
maining qubits correspond to closed string operators en-
closing non-contractible loops winding around the torus,
which give rise to the 4-fold topological degeneracy.

Let us introduce a dislocation pair into the system, so
that the two dislocations are `− 1 hexagons apart (` = 3
in Fig. 2(b)). In the process, we remove 2` sites, ` strong
bonds, and convert 2(` + 1) hexagons into ` + 1 plaque-
ttes (` − 1 hexagons and 2 octagons). In other words,
we are left with N − ` ψ fermion modes and N − ` − 1
fluxes. Additionally, there are two global strings around
the non-trivial loops of the torus. The number of inde-
pendent qubits is reduced by 2 because we still have the
relation WmWe = 1 and, similarly to the torus with an
odd length, there is a constraint involving the fermion
parities πψ and πe×m and a cut from one dislocation to
another, Eq. (27). If we now compare the number of de-
grees of freedom we have counted so far to the number
of sites (2N − 2`), we shall see that we are missing one
qubit. This mode, a nonlocal fermion, is divided between
the two dislocation cores. Along the same lines we find
that adding n dislocation pairs gives rise to 2 qubits asso-
ciated with the non-contractible loops around the torus
and n qubits associated with the Majorana modes of the
dislocations.

It is interesting to note that the ground-state degener-
acy on a torus with n ≥ 1 dislocation pairs is not 2n+2,
as one might infer from the count of qubits, but is 2n+1,
as pointed out by You and Wen.10 In other words, adding
the first pair of twist dislocations does not alter the 4-fold
topological degeneracy, whereas every additional pair will
increase the degeneracy by a factor of 2. This can be un-
derstood in the following manner. If we start with a
flux-free ground state and want to change the parity of
the nonlocal fermion mode, the way to do so would be
to create a pair of fluxes (say, e and e) and wind one of
them around a dislocation. However, the resultant pair
of e × m fluxes cannot be annihilated to bring the sys-
tem back to its ground state as this would require the
creation of a high-energy bond fermion. The presence
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of additional dislocation pairs allows us to wind one of
the fluxes around another twist, thereby changing the
flux’s type once more, and annihilate it with its coun-
terpart. Therefore, each additional dislocation pair will
contribute a factor of 2 to the system’s topological degen-
eracy, pointing to a quantum dimension of

√
2 associated

with each twist defect.
As suggested by the quantum dimension of

√
2, we

can fix the apparent non-conservation of fermion par-
ity by associating a Majorana zero mode β with the
dislocation defect. Majorana modes of two dislocations
can be combined to form a nonlocal complex fermion
Ψ = (β1+iβ2)/2. A vortex winding around one of the dis-
locations alters the fermion number Ψ†Ψ to compensate
for the creation of the composite e×m fermion. In what
follows we make an explicit construction of Majorana
modes on dislocations in Kitaev’s honeycomb model.

A typical dislocation in graphene29–32 is a composite
object that consists of two disclinations with angles +π/3
and −π/3, containing at their cores plaquettes with 5
and 7 sites. (Hence the name: a 5–7 dislocation.) Being
a combination of two disclinations, it alters the topology
of link labels, creating a string defect on which bonds of
two flavors have altered orientations, the upper half of the
shaded line in Fig. 2(d). The simplest dislocation that
preserves the topology of bond labels consists of an oc-
tagonal plaquette (a −2π/3 disclination) and a site with
reduced coordination number 2 (a +2π/3 disclination),
or 8–2 for brevity, Fig. 2(b) and (c). It can be synthe-
sized in Kitaev’s model by quenching a line of sites with
a strong magnetic field as discussed in Section IV D. We
first discuss the more straightforward case of 8–2 dislo-
cations.

To act as a transformer of vortex flavor, a dislocation
must have a Burgers vector B connecting plaquettes of
different types, e.g., B = ±a1 or ±a2 in the gapped phase
with strong z bonds. Fig. 2(b) shows a dislocation with
B = a1. It can be seen that a vortex winding around this
dislocation via low-energy moves alters its flavor. Follow-
ing Bombin7 and others,8,10 we refer to such dislocations
as twists. Fig. 2(c) shows a dislocation with B = −a3,
which preserves the vortex type and is in this sense triv-
ial.

IV. 8–2 DISLOCATIONS

A. Twist dislocations

As can be seen in Fig. 2(b), the presence of a B = a1

dislocation makes it impossible to partition the lattice
into plaquettes of e and m flavors globally. Any locally
consistent partition has a branch cut connecting two dis-
location cores. An e vortex crossing the branch cut turns
into an m vortex and vice versa.

Because site 1 at the cusp of the octagonal core in
Fig. 2(b) is missing a weak x bond, its Majorana fermion
bx1 is unpaired. To form a zero-energy (complex) fermion

mode Ψ, we can combine bx1 with a dangling Majorana
mode of another twist dislocation, e.g., bx2 in Fig. 2(b).
The naive recipe,

Ψ
?
=
bx1 + ibx2

2
, Ψ†

?
=
bx1 − ibx2

2
, (18)

does not work: the fermion parity π12 = ΨΨ† − Ψ†Ψ =
ibx1b

x
2 is not a physical quantity because it is not gauge-

invariant (odd under both D1 and D2). This problem
can be fixed by adding a gauge string factor,3

U12 = u1auab . . . uqrur2, (19)

where 1ab . . . qr2 is a path connecting dislocation cores 1
and 2 as depicted in Fig. 2(b). We have

Ψ =
bx1 + iU12b

x
2

2
, Ψ† =

bx1 − iU12b
x
2

2
. (20)

The fermion parity

π12 = Ψ†Ψ−ΨΨ† = iU12b
x
1b
x
2 (21)

is now gauge invariant and can be expressed as a product
of spin operators along the string,

π12 = σy1σ
x
a . . . σ

y
qσ

x
rσ

z
2 (22)

= σx1 (iσα1a
1 σα1a

a ) . . . (iσαqrq σαqrr )(iσαr2r σαr22 )iσx2 .

Like a branch cut, a string does not have a well-defined
position; only its ends are fixed at dislocation cores.

We can now see that the state of this fermion mode
is altered when a flux winds around either of the dislo-
cations. When the path of the flux crosses the string
1ab . . . r2, the link variable umn at their crossing changes
sign. This alters the sign of the gauge string (19) and
thereby changes parity (21). We have thus established
that the variable bαm of an octagon cusp missing a weak
bond α is the Majorana mode associated with a twist dis-
location. Together with a Majorana fermion of another
dislocation, it forms a zero-energy mode whose quantum
state can be changed by winding a flux around one of the
dislocations.

Having established the nature of the Majorana modes
at twist dislocations, we can estimate their tolerance to
local perturbations. In the presence of a magnetic field,
the Hamiltonian acquires an additional Zeeman part:

HZ = −
∑
m

hm · σm. (23)

Then the four dangling Majorana modes bαm in Fig. 4 are
coupled to the rest of the system by the term −hαmσαm =
−ihαmbαmcm. This coupling may endow the zero mode
with a finite energy and thereby induce its time evolu-
tion, an undesirable effect, especially if the field is noise.
We shall see that the splitting decays exponentially with
the distance between dislocations. The adverse effects
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of local noise can be suppressed by keeping dislocations
sufficiently far apart.

To compute the splitting of the zero mode, we integrate
out the high-energy c modes as explained in Sec. VI A 1.
Consider first three sites in the vicinity of dislocation core
1, namely 1, a, and b. Their Majorana modes bx1, c1, ca,
and cb are coupled to one another as follows:

H = −hx1σx1 − Jzσz1σza − Jyσyaσ
y
b

= −hx1 ibx1c1 + Jzu1a ic1ca + Jyuab icacb. (24)

Integrating out the strongly coupled modes ca and cb
generates an effective coupling between the remaining
modes b1x and cb:

Heff = −h
x
1Jx
Jz

u1auab ib
x
1cb. (25)

After repeating the process enough times, we gener-
ate an effective coupling between the dangling Majorana
modes b1x and b2x:

Heff =
hx1h

x
2

Jz

∑
paths

Jnxx J
ny
y

J
nx+ny
z

iU12b
x
1b
x
2 . (26)

The effective interaction depends on the fermion parity
(21), confirming our guess that it is a physical observable.

The sum in Eq. (26) is taken over paths 1a . . . qr2 with
nα links of type α. Paths must alternate between weak
and strong bonds and thus can propagate only upward or
downward, staying within overlapping 60-degree wedges
with vertices at the dislocations, Fig. 4. This coupling
only exists for dislocations on different sublattices. For
Jx/Jz = Jy/Jz = j � 1, the energy splitting induced by
the potential depends on the length L of a path between
dislocations as j(L−1)/2. A similar anisotropic interaction
was found by Willans et al. 20 between vacancy-induced
magnetic moments.

B. Unpaired Majorana modes and the net fermion
parity

The presence of Majorana modes on dislocations is ex-
pected to affect the budget of fermion parity. The trans-
mutation of the flux type upon crossing the branch cut
[Fig. 2(b)] is analogous to the case of a torus with an
odd number of rows [Fig. 3(b)]. One might therefore
anticipate that the combined parity will involve, in ad-
dition to πψ and πe×m, the gauge string U12 (19) along
the cut. However, this time the gauge string has ends.
To make this object gauge-invariant, we must cap its
ends with Majorana operators, thereby transforming the
gauge string U12 into the parity of the Majorana modes
π12 (21).

This turns out to be the correct guess. An evaluation
of the product Wmπψ in terms of spin operators in the
presence of a dislocation pair [Fig. 2(b)] yields

Wmπψ = σy1σ
x
a . . . σ

y
qσ

x
rσ

z
2 ,

by

4

bx

3

bx

1

c
1

cb

ca

by

2

FIG. 4. Effective interaction between dangling Majorana
modes b1x and b2y (colored dots) is generated by integrating
out c fermions along paths within the shaded area formed by
the overlapping 60-degree wedges (dashed lines). Black dots
indicate a sample path. Dangling modes b3x and b4y do not
interact with each other because their wedges do not overlap.

which agrees with the expression for π12 (22). Upon re-
placing Wm with fermion parity πe×m we obtain conser-
vation of combined parity,

πψ πe×m π12 = 1. (27)

When a flux crosses the gauge string between the two
dislocations, two quantities in Eq. (27) switch signs: the
conversion of flux type alters πe×m, while the change of
sign of the gauge string U12 alters π12. The net fermion
parity remains unchanged. Thus the presence of the non-
local fermion mode is fully consistent with the constraints
of the physical subspace.

C. Trivial dislocations

A trivial dislocation has a core of the same shape as its
twist counterpart. However, thanks to a different orien-
tation of the octagon core, the missing bond at its cusp
is strong, Fig. 2(c). The missing bond leaves a dangling
bz Majorana mode at the cusp. In addition, a trivial
dislocation has a second free Majorana mode of the c
type. If the weak bonds are completely switched off,
Jx = Jy = 0, the additional zero mode is the c fermion at
the cusp. At nonzero Jx and Jy, but still in the gapped
phase (Jx + Jy < Jz), the zero mode is a superposition
of c fermions in the vicinity of the cusp, as in the case
of a vacancy.20 The two zero modes can be combined to
form a local, gauge-invariant (and thus physical) degree
of freedom that acts like a free magnetic moment. Its
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FIG. 5. (color) (a) Magnetic field hx � Jα is applied to the
spins along the purple line C. The original alternating z-y
flavors of the bonds are preserved. (b) The effective descrip-
tion of such set up results in a defect that behaves as an 8–2
dislocation. (c) In order to keep the spins aligned with the
applied field, three bond terms from the Kitaev Hamiltonian
must be applied together as shown. Thick green and blue
bonds with open circles at the ends indicate applications of
Jyσ

y
mσ

y
n and Jzσ

z
mσ

z
n respectively. The three operations in

(c) are equivalent to connecting sites 1 and 6 directly with an
effective y bond (d).

gyromagnetic tensor g has only one nonzero component
gzz.

A trivial dislocation thus behaves very much like a va-
cancy. Its unpaired Majorana mode bz is susceptible to
local noise due to the presence of a second unpaired Ma-
jorana mode of the c type that it could couple to. The
additional mode is absent in a twist dislocation, so its
unpaired Majorana mode is robust.

D. Synthetic dislocations

One of the most anticipated potential applications of
non-Abelian anyons lies in the field of topological quan-
tum computing. We can manipulate the state of the Ma-
jorana fermion pair at the dislocations by winding a vor-
tex around one of them, but braiding unpaired Majorana
particles would be more computationally powerful. Addi-
tionally, it is desirable to be able to create effective lattice
dislocations in unperturbed Kitaev honeycomb systems
in a controlled manner. It turns out that both of these
goals can be achieved with the use of a strong magnetic
field applied along a line of spins, similarly to the mecha-
nism that has been suggested for the ZN rotor models.33

Consider an unperturbed Kitaev honeycomb system in
the gapped phase Jz > Jx +Jy. Let us apply a magnetic
field in the x direction along a zigzag line C as shown in

Fig. 5(a). In the limit where hx � Jx, Jy, Jz the spins
located along C will be aligned with hx. Consider the
terms in the Kitaev Hamiltonian (1) that involve those
spins: all terms except for Jxσ

x
mσ

x
n will misalign a spin

with the applied field. The lowest order low energy oper-
ation then involves three bond operators forming a y-z-y
zigzag shown in Fig. 5(c). We may think of two sites
at the ends of the zigzag as connected by a bond cor-
responding to the Hamiltonian term

(
3J2
yJz/8h

2
x

)
σy1σ

y
6 ,

and exclude sites along C from the effective Hamiltonian.
The x bond at the cusp of the synthetic dislocation can
also be omitted when Jz � Jx, Jy.

V. 5–7 DISLOCATIONS

Fig. 2(d) shows a 5–7 dislocation with a Burgers vector
B = a2. Even though it has the right Burgers vector, this
dislocation is not a twist. The presence of two disclina-
tions at the core changes the orientation of x and z bonds
along a line extending from the core. A vortex crossing
the defect line in low-energy motion comes off a Burg-
ers contour and will not change its flavor upon winding
around the dislocation. Plaquette types can be globally
assigned without ambiguity using low-energy vortex mo-
tion. This dislocation is trivial and is thus need not host
a free Majorana mode.

The situation changes if the strength of exchange cou-
pling is determined by the bond’s orientation, rather than
its type, Fig. 2(e). In this case, a vortex follows a Burg-
ers contour and changes flavor, making the dislocation a
twist. One of the sites at the dislocation core has a c
operator weakly coupled to its neighbors. The unpaired
Majorana mode is a superposition of that c operator with
its neighbors along two 60-degree wedges extending in
both vertical directions. Its interaction with other un-
paired Majorana modes is similar to that of a b mode at
an octagon dislocation, Eq. (26), with two distinctions:
the c mode couples in both vertical directions and does
not require a magnetic field for coupling. The shaded
path in Fig. 2(d) contains a Majorana chain with regu-
lar alternation and a gapped excitation spectrum. The
one in Fig. 2(e) has a defect—a domain wall between
the two possible alternating patterns—that binds a zero
mode. The fact that the ends of the string possess free
Majorana modes indicates that a lattice need not to be
deformed to create twists. A topological defect such as a
string is sufficient to alter a vortexs flavor upon braiding
at its ends. This zero mode has a one-dimensional ana-
log in Kitaev’s Majorana chain with alternating weak and
strong bonds34 and in other fermionic models.35,36

VI. FLUX BINDING BY DISLOCATIONS

In addition to the transmutation of vortex flavor, lat-
tice dislocations have interesting local properties, includ-
ing binding of the flux in the ground state in the case of
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FIG. 6. Four coupled Majorana modes. Thick and thin lines
represent strong and weak couplings. Integrating out high-
energy fermions c2 and c3 in (a) produces an effective coupling
between the remaining modes c1 and c4 (b). (c) Integrating
out all fermion modes yields an energy correction that de-
pends on the Z2 flux W = u12u23u34u41.

8–2 dislocations. In order to investigate this further, we
first introduce a method we used to calculate the energy
cost of having a flux through a dislocation, as well as
the interactions between the unpaired Majorana modes
when they are coupled to the system through local per-
turbations.

A. Diagrammatic perturbation theory

The energy of the ground state (8) can be viewed as
the energy of fermion zero-point motion. This gives a
convenient starting point for developing a perturbation
theory. Working with spin variables, one has to rely on
the Rayleigh-Schrödinger perturbation theory, which is
rather cumbersome at high orders and in the presence of
degeneracy. Switching to a fermion representation allows
us to use a more economical language of Feynman dia-
grams. This method has the added advantage of making
the Z2 gauge structure of the problem manifest.

We first illustrate the idea on simple examples with
four Majorana fermions c1 through c4 (Fig. 6).

1. Integrating out high-energy fermions.

The first case we consider is shown in Fig. 6(a), where
modes c2 and c3 are strongly coupled to each other and
weakly coupled to modes c1 and c4:

H = iΛc2c3/2 + iλ(c1c2 + c3c4)/2, λ� Λ. (28)

This Hamiltonian can be easily diagonalized following the
standard procedure,3 to obtain two (complex) fermion

modes with energies ε1 = Λ/2 +
√

(Λ/2)2 + λ2 ≈ Λ and

ε2 = −Λ/2 +
√

(Λ/2)2 + λ2 ≈ λ2/Λ. The high-energy
mode ε1 is associated primarily with fermions c2 and c3,
whereas the low-energy mode ε2 with c1 and c4. The low-
energy subspace is described by an effective Hamiltonian

Heff = iε2c1c4/2. (29)

It is convenient to view this procedure as integrating
out the high-energy fermions c2 and c3 and generating a
new coupling ε2 = λ2/Λ between the remaining fermions
c1 and c4, as indicated in Fig. 6(b).

2. Flux dependence of zero-point energy.

This time, strong coupling exists between Majorana
modes c1 and c2 and between c3 and c4 [Fig. 6(c)]:

H = iΛ(u12c1c2 + u34c3c4)/2 + iλ(u23c2c3 + u41c4c1)/2.
(30)

We have added Z2 gauge variables to see how the fermion
zero-point energy depends on the fluxW = u12u23u34u41.
Diagonalization yields fermion energies ε1,2 = Λ ± λ for

W = +1 and
√

Λ2 + λ2 (doubly degenerate) for W = −1.
The vacuum energy (8) for the two flux values is

W = +1 : E0 = −Λ, (31)

W = −1 : E0 = −
√

Λ2 + λ2 ≈ −Λ− λ2/2Λ.

Adding a π flux to a plaquette with four sites lowers the
fermion zero-point energy.

From the standpoint of perturbation theory, −Λ is the
energy of the system with the weak bonds switched off.
Flux dependence of the zero-point energy comes at the
second order in λ. Once again, these corrections arise
from integrating out strongly paired fermions (in this
case, all four). They can be computed systematically
by applying the following diagrammatic rules derived in
the Appendix.

3. Diagrammatic rules

(i) Construct all possible directed closed paths using
weak links. Treat strong links as connections that
complete these paths.

(ii) Compute the amplitude of a path by multiplying
the following factors. Each weak link (mn) con-
tributes a factor λumn. Each strong link [mn] con-
tributes a factor Λumn/(ω

2 +Λ2). Each strong link
attached to the path with only site contributes a
factor ω/(ω2 + Λ2). Give an overall factor 1/2. In-
tegrate over the frequency range −∞ < ω < +∞.

(iii) Sum over all distinct closed paths. The reverse of
a non-self-retracing path is a distinct path.

In the second example, Fig. 6(c), at the order λ2 we
have two self-retracing paths, (23)(32) and (14)(41). The
former contributes∫

dω

2π

1

2
λu23

ω

ω2 + Λ2
λu32

ω

ω2 + Λ2
= − λ

2

8Λ
, (32)

and so does the latter. There are also two non-self-
retracing paths at this order, (23)[34](41)[12] and its re-
verse, (14)[43](32)[21]. The former contributes∫

dω

2π

1

2
λu23

Λu34

ω2 + Λ2
λu41

Λu12

ω2 + Λ2
=
λ2

8Λ
W, (33)
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(a) (c)

(d)
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(b)

FIG. 7. (a) A hexagon. (b) A hexagon and a clover leaf near
a vacancy. (c) A 5–7 dislocation. (d) A twist 8–2 dislocation.
(e) A trivial 8–2 dislocation.

and so does the latter. The net correction to the zero-
point energy at order λ2 is (W − 1)λ2/4Λ, in agreement
with Eq. (31).

Several remarks are in order.

(i) Flux-dependent contributions only come from non-
self-retracing paths. Therefore, the lowest order at
which a flux-dependent correction to the energy of

a plaquette with m weak links appears is λm.

(ii) A path of length n and its reverse contribute am-
plitudes that differ by a factor (−1)n. Therefore,
closed paths with an odd number of links do not
contribute to energy.

(iii) The amplitude from a non-self-retracing path with
n links is a positive number times u12u23 . . . un1 =
(−1)n/2W . Therefore, a plaquette with perimeter
4n+ 2, e.g., a hexagon, has W = +1 in the ground
state, whereas a plaquette with perimeter 4n, e.g.,
a square, has W = −1.

(iv) Weak coupling constants λ may vary from link to
link and so can strong coupling constants Λ.

4. Energies of Z2 vortices

It is now easy to obtain the leading flux-dependent en-
ergy correction for a hexagonal plaquette in a honeycomb
lattice, Fig. 7(a). Two twin paths (the reverses of each
other) contribute an energy correction at order λ4. The
paths have two weak links of strength λ = 2Jx and two of
strength λ = 2Jy, two strong links of strength Λ = 2Jz,
and two attached strong links of strength Λ = 2Jz. The
flux-dependent energy correction at this order is

2× (−1)3W

∫
dω

2π

1

2
(2Jx)

2
(2Jy)

2

(
2Jz

ω2 + (2Jz)2

)2(
ω

ω2 + (2Jz)2

)2

= −
J2
xJ

2
y

16J3
z

W, (34)

in agreement with Kitaev.2

Willans et al. 20 considered the problem of a vacancy in Kitaev’s model. In effect, a vacancy removes three links.
The hexagon in Fig. 7(b) (Fig. 2 in Ref. 20) is missing one of the attached strong links. Setting Λ = 0 for that link,
we obtain the flux-dependent energy for such a hexagon at the fourth order,

2× (−1)3W

∫
dω

2π

1

2
(2Jx)

2
(2Jy)

2

(
2Jz

ω2 + (2Jz)2

)2
ω

ω2 + (2Jz)2

ω

ω2 + 02
= −

3J2
xJ

2
y

8J3
z

W, (35)

which correctly reproduces their result.
Finally, we evaluate the flux-dependent energy for the clover-shaped plaquette obtained by merging the three

hexagons around a vacancy, Fig. 7(b) (Fig. 2 in Ref. 20). The leading flux-dependent energy correction comes from
two twin paths with perimeter 12 that include 4 weak links with λ = 2Jx, four weak links with λ = 2Jy, and four
strong links with Λ = 2Jz; 3 attached strong links have Λ = 2Jz, and one strong link is missing, Λ = 0. They add
energy

2× (−1)6W

∫
dω

2π

1

2
(2Jx)

4
(2Jy)

4

(
2Jz

ω2 + (2Jz)2

)4(
ω

ω2 + (2Jz)2

)3
ω

ω2 + 02
=

21J4
xJ

4
y

210J7
z

W. (36)

Deriving this result in the language of spin variables requires a computation of 8! = 80640 different terms in pertur-
bation theory.20 The diagrammatic method requires considerably less effort.

B. 8–2 dislocations

We next show that 8–2 dislocations bind a Z2 vortex.
To that end, we compute the leading-order dependence to

the fermion zero-point energy on the flux W through the
octagonal plaquette at the core of the dislocation using
the diagrammatic method described in Sec. VI A. For a
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twist dislocation, Fig. 7(d), the two shortest closed paths
follow the perimeter of the octagonal plaquette (clock-
wise and counterclockwise). They contain 3 weak links
of strength λ = 2Jx, 2 weak links with λ = 2Jy, and

3 strong links with Λ = 2Jz. 2 strong links (Λ = 2Jz)
are adjacent to this path. These two twin paths give the
following contribution to zero-point energy:

2× (−1)4W

∫ ∞
−∞

dω

2π

1

2
(2Jx)3(2Jy)2

(
2Jz

ω2 + (2Jz)2

)3(
ω

ω2 + (2Jz)2

)2

=
5J3
xJ

2
y

128J4
z

W. (37)

The energy is lowered if a Z2 vortex is present, W = −1.
A similar calculation for a trivial dislocation, Fig. 7(e), yields the leading-order energy correction dependent on the

Z2 flux

2× (−1)4W

∫ ∞
−∞

dω

2π

1

2
(2Jx)3(2Jy)3

(
2Jz

ω2 + (2Jz)2

)2(
ω

ω2 + (2Jz)2

)3
ω

ω2 + 02
=

5J3
xJ

3
y

128J5
z

W. (38)

Again, the dislocation binds a vortex.

C. 5–7 dislocations

It is easy to show that a dislocation with a 5–7 core
does not bind a Z2 vortex. Closed paths around the

pentagon plaquette have an odd perimeter and thus do
not contribute to the zero-point energy, as explained in
Sec. VI A 3. The same applies to paths going around
the heptagonal plaquette. The shortest loop whose zero-
point energy contribution depends on the flux is the path
of length 10 going around both the pentagon and the
heptagon, Fig. 7(c). This path and its reverse contribute

2× (−1)5W

∫ ∞
−∞

dω

2π

1

2
(2Jx)4(2Jy)4

(
2Jz

ω2 + (2Jz)2

)2(
ω

ω2 + (2Jz)2

)6

= − 5

2048

J4
xJ

4
y

J7
z

W (39)

to the zero-point energy. The energy is minimized by
setting W = +1 so that 5–7 dislocations do not bind
vortices.

VII. DISCUSSION

In his seminal paper on the honeycomb spin model,
Kitaev 3 posited the possibility of having unpaired Ma-
jorana fermion modes in the Abelian phase of the model.
In our work we have demonstrated the existence of such
modes explicitly. We showed that unpaired Majorana
fermions are found in the presence of so-called twist
defects7 associated with the symmetry of the Abelian
phase under the exchange of e and m-type fluxes. When
a flux winds around a twist defect, it changes its type.
In the meantime, a non-local fermion associated with the
unpaired Majorana modes at the two twists is created or
annihilated. We verified that the total fermionic parity is
conserved in this process and that the non-local fermion
mode is physical.

The twist defects that we study in this work are re-
alized in certain kinds of lattice dislocations. Whether
a dislocation is a twist depends on its Burgers vector as

well as on its internal structure. The non-local fermion,
composed of the two unpaired Majorana modes localized
at dislocations and a gauge string between them, is a
zero mode. We have shown that separating the two dis-
locations in space would make the zero mode stable with
respect to any local perturbations. We did so by using
an applied magnetic field as a perturbation, and found
that indeed the splitting of the zero mode decays expo-
nentially with the distance between dislocations. It is
interesting to note that for 8–2 dislocations, only those
with the reduced coordination number sites located on
different sublattices and within each other’s 60 degree
wedges, are able to interact. A similar result was ob-
tained for the vacancy problem20.

Our study of 5–7 dislocations suggested that it is not
necessary to introduce lattice dislocations into the sys-
tem in order for it to have twists. Instead, one could
start with a lattice without dislocations and introduce a
string defect, along which alternating weak and strong
bonds are interchanged, Fig. 2(f). The ends of the string
act as twists and possess free Majorana modes of the c
type. Additionally, inspired by the work done for the
toric code,33 we considered another type of twist defect
that does not require altering the geometry of the lat-
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tice: synthetic dislocations created via the application of
a magnetic field along a line of sites.
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Appendix A: Derivation of the diagrammatic
perturbation theory

In this section we derive the diagrammatic perturba-
tion theory for Majorana fermions in the limit where one
of the coupling constants dominates, e.g., Jz � Jx, Jy.
Switching off the weak couplings, Jx = Jy = 0, leaves
all spins coupled pairwise, with the ground-state energy
−Jz contributed by each pair of so coupled spins. The
perturbation theory computes corrections to this value
due to small couplings Jx and Jy. We have found that
the formalism of fermion path integrals37 provides a much
simpler and intuitive way to evaluate higher-order correc-
tions than the standard Rayleigh-Schrödinger perturba-
tion theory applied to spin variables.3,20 In the fermionic
formalism, the quantity of interest is the zero-point en-
ergy of the c fermion modes (8).

1. Grassmann variables

For two Grassmann variables a and ā with Gaussian
action S = Kāa,∫

dā da exp (−Kāa) = K, (A1)

〈aā〉 ≡
∫
dā da aā exp (−Kāa)∫
dā da exp (−Kāa)

= 1/K.

For several pairs {am, ām} with Gaussian action S =
āKa ≡ āmKmnan (summation over doubly repeated in-

dices implied),∫
DāDa exp (−āKa) = detK, (A2)

〈amān〉 ≡
∫
DāDaamān exp (−āKa)∫
DāDa exp (−āKa)

= (K−1)mn.

2. Path integrals for two Majorana modes

Consider two coupled Majorana modes a1 and a2 with
excitation energy ε > 0. The quantum Hamiltonian of
this system is

H =
iε

2
u12a1a2 =

ε

2
(ψ†ψ − ψψ†), (A3)

where

ψ =
a1 + iu12a2

2
, ψ† =

a1 − iu12a2

2
. (A4)

For future reference, we have included a Z2 gauge variable
u12 = −u21 = ±1.

The classical action for these two modes is

S =
i

4

∫ tf

ti

dt

(
am

dam
dt
− amAmnan

)
, (A5)

where a1 and a2 are anticommuting Grassmann variables
and Amn is an antisymmetric matrix with A12 = εu12;
summation over doubly repeated indices m and n = 1, 2
is implied. Variation of the action with respect to a1 and
a2 yields classical equations of motion,

da1/dt = εu12a2, da2/dt = εu21a1. (A6)

“Complex” Grassmann variables ψ = a1 + iu12a2 and
ψ̄ = a1 − iu12a2 satisfy the following equations:

dψ/dt = −iεψ. dψ̄/dt = iεψ̄, (A7)

It follows that ψ(t) = ψ(0)e−iεt and ψ̄(t) = ψ̄(0)eiεt,
as expected for annihilation and creation operators of a
fermion mode with energy ε.

The partition function Z of the quantum system (A3)
at inverse temperature β can be obtained as a path inte-
gral of eiS , where the action S is computed for an imag-
inary time interval from 0 to −iβ:

S =
i

4

∫ −iβ
0

dt

(
am

dam
dt
− amAmnan

)
. (A8)

It is convenient to switch to imaginary time τ = it and
Euclidean action

SE = −iS =
1

4

∫ β

0

dτ

(
am

dam
dτ

+ iamAmnan

)
(A9)

with antiperiodic boundary conditions, am(β) = −am(0).
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The partition function Z is evaluated by integrating
e−SE over all possible paths of the Grassmann vari-
ables a1(τ) and a2(τ). Switching to Fourier modes
with fermionic Matsubara frequencies ων = 2πν/β, ν =
±1/2,±3/2, . . .,

am(τ) =
1√
β

∞∑
ν=−∞

amνe
−iωντ , (A10)

yields the Euclidean action

SE =
1

4

∞∑
ν=−∞

am,−ν (−δmniων + iAmn) anν . (A11)

Terms with a given ν appear in the sum twice: once for
the summation index ν and once for −ν. It is convenient
to gather them all by restricting the sum to ν > 0:

SE =
1

2

∞∑
ν=1/2

am,−ν (−δmniων + iAmn) anν . (A12)

Lastly, we rename am,−ν into āmν :

SE =
1

2

∞∑
ν=1/2

(
ā1ν ā2ν

)( −iων iεu12

iεu12 −iων

)(
a1ν

a2ν

)
.

(A13)
Correlations for the Fourier modes are

− i
2
〈amµānν〉 =

δµν
ω2
ν + ε2

(
ων εu12

εu21 ων

)
. (A14)

3. Perturbation theory

The unperturbed system has Majorana modes coupled
in pairs. In that limit, Majorana fermions can only prop-
agate within the limits of a strong bond, i.e., either stay-
ing on the same site or jumping to the site connected to
it by a strong bond.

Adding a perturbations in the form of weak bonds en-
ables Majorana modes to move around more freely. The
Euclidean action can be split into two parts, S0

E express-
ing the action of independent strong bonds and S1

E con-
sisting of terms iλumnaman/4 on weak bonds. The re-
sulting correction to the free energy can be obtained by
taking the ratio of the perturbed and unperturbed par-
tition functions:

∆F = − 1

β
ln

Z

Z0
,

where

Z

Z0
=

∫
DāDa exp (−S0

E − S1
E)∫

DāDa exp (−S0
E)

= 〈exp (−S1
E)〉0

=

〈
1− S1

E +
1

2!
(−S1

E)2 − . . .
〉

0

, (A15)

where the averaging is done over the unperturbed Gaus-
sian action S0

E of decoupled strong bonds. Taking the
logarithm (to obtain the free energy correction) elimi-
nates disconnected diagrams in the expansion as usual
(linked cluster expansion).

Each weak bond (mn) contributes to S1
E terms

∞∑
ν=1/2

iλ

2
[āmνumnanν + (m↔ n)]. (A16)

(no sum over doubly repeated indices m and n). The
lowest-order correction occurs at order λ2:

∆F = − 1

β

〈
1

2!

 ∞∑
ν=1/2

−iλ
2

[āmνumnanν + ānνunmamν ]

2〉
0

= − 1

β

∞∑
ν=1/2

〈
−iλ

2
āmνumnanν

−iλ
2
ānνunmamν

〉
0

,

(A17)
where the factor 1/2! cancels against the 2! ways to combine the pieces.

We now make use of Gaussian statistics and express
the quartic fermion term through quadratic ones. Modes
on sites m and n are independent when weak bonds are
switched off, hence

∆F =
1

β

∞∑
ν=1/2

〈
−iλ

2
amν āmνumn

〉
0

〈
−iλ

2
anν ānνunm

〉
0

.

(A18)
The sign has changed because we moved amν past an odd
number of Grassmann variables. Using the expressions

for the onsite propagators yields

∆F =
1

β

∞∑
ν=1/2

λumn
ων

ω2
ν + ε2

λunm
ων

ω2
ν + ε2

. (A19)

In the limit of zero temperature, β−1
∑
ν →

∫
dω/2π, so

∆F =

∫ ∞
0

dω

2π
λumn

ω

ω2 + ε2
λunm

ω

ω2 + ε2
= −λ

2

8ε
.

(A20)
As expected, the second-order correction to the ground-
state energy is negative. The minus sign comes from
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umnunm = −1. Higher-order diagrams are constructed in the same
way.
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