
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Enhanced densification under shock compression in porous
silicon

J. Matthew D. Lane, Aidan P. Thompson, and Tracy J. Vogler
Phys. Rev. B 90, 134311 — Published 27 October 2014

DOI: 10.1103/PhysRevB.90.134311

http://dx.doi.org/10.1103/PhysRevB.90.134311


Enhanced densification under shock compression in porous silicon

J. Matthew D. Lane,1 Aidan P. Thompson,1 and Tracy J. Vogler2

1Sandia National Laboratories, Albuquerque, NM 87185
2Sandia National Laboratories, Livermore, CA 94551

(Dated: September 22, 2014)

Under shock compression, most porous materials exhibit lower densities for a given pressure
than that of a full-dense sample of the same material. However, some porous materials exhibit
an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular
mechanism that drives this behavior. We also present evidence from atomistic simulation that pure
silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear
strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even
when bulk pressures are below the thermodynamic phase transformation pressure. This metastable,
local, and partial, solid-solid phase transformation, which accounts for the enhanced densification
in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This
mechanism may also explain the phenomenon in other covalently bonded materials.

PACS numbers:

INTRODUCTION

In most materials the introduction of voids or poros-
ity alters the shock response in a predictable way as
compared to the material’s full-dense response. Gener-
ally, the final high-pressure states of porous materials
are hotter and less dense than the corresponding full-
dense material compressed to the same final pressure.
Hotspot heating during void collapse and crush up signif-
icantly drives up temperatures. Thermal expansion then
results in lower densities for a given pressure; or con-
versely, higher pressures for a given density. However,
some porous materials exhibit an anomalous response,
in which the final shock state of the porous material is
denser than the final shock state of the non-porous sam-
ple of the same material. A porous material exhibits en-
hanced densification when its Hugoniot is shifted down
and to the right of the principal Hugoniot in a pressure-
density representation, as seen in Fig 1.

Enhanced densification has been observed experimen-
tally in silicon dioxide, boron carbide, uranium dioxide
and silicon nitride. Grady, Fenton and Vogler [1] have
reviewed experimental data, and empirically fit an Equa-
tion of State to describe this unusual shock response
in brittle high-strength porous materials. However, the
underlying mechanism responsible for the effect is not
known. Several mechanisms have been proposed which
are based on thermodynamic arguments [2], due to in-
creased temperature in the samples. These include a
thermally-activated volume-reducing chemical dissocia-
tion process, homogeneous lattice contraction due to neg-
ative thermal expansion (negative Gruneisen parameter)
and an accelerated solid-solid phase transition stimulated
by either thermodynamic arguments (increased temper-
ature combined with a negatively sloping T-P transition
line) [3], or by mechanical arguments (anisotropic stress
state in the vicinity of the voids) [4].

Porous silicon has not previously been identified with
enhanced densification, but shares some traits with such
materials, (e.g. brittle, high-strength, covalent bonding
and a pressure-induced solid-solid phase transformation).
We show in this letter that porous silicon exhibits en-
hanced densification and, using atomistic molecular dy-
namics simulations, illustrate the underlying mechanisms
which drive the response. We show that, in silicon, local
shear deformation resulting from collapsing voids drives
a partial phase transition to a higher density phase, and
produces anomalously higher final shock densities in ini-
tially distended materials.

Silicon’s critically important technological role comes
mainly from its semiconducting ambient diamond crystal
structure. Hydrostatic high-pressure loading produces a
low-temperature pressure-induced phase transition near
12 GPa to the metallic body-center-tetragonal (bct), β-
tin structure. The transition brings a 21% density in-
crease and change in c/a lattice ratio from 1.44 (dia-
mond) to 0.55 (bct). The phase diagram, reported by
Bundy [5], and more recently by Voronin et al.[6], shows
the possibility of a negatively sloped phase line in T-
P space. Moreover, silicon’s diamond phase exhibits a
negative Gruneisen parameter, or negative thermal ex-
pansion. Under uniaxial shock compression, multiple
solid-solid transitions have been reported [7, 8], to the
high-density β-tin, Imma, or sh structures. Moreover,
the transition barriers to these high-pressure phases are
lowered under shear, according to DFT calculations [9–
11]. Porous crystalline silicon has been produced through
high-energy helium implantation and annealing [12, 13].
To our knowledge, no shock loading experiments have
been conducted on porous silicon.



2

METHODOLOGY

Classical molecular dynamics (MD) simulation was
used to explore the atomic-scale processes associated
with the collapse of voids in porous silicon. MD has been
used extensively to study shock compression mechanisms
which require the resolution of atomistic detail [14, 15],
and is especially useful when heterogeneity [16, 17] re-
quires domain sizes too large for density functional the-
ory (QMD-DFT). Sandia’s LAMMPS code [18] was used
with the Modified Embedded Atom Method (MEAM)
[19] and silicon parameters distributed in LAMMPS as
Si97 within library.meam [20, 21].

The Modified Embedded Atom Method (MEAM) was
developed by Baskes et al. in a series of papers
[20, 22, 23] and has been implemented in LAMMPS as
an optional package. MEAM computes energies using a
semi-empirical combination of two-body interaction and
environment-specific electron density embedding ener-
gies. MEAM can model covalent bonding by introducing
angle-dependent electron densities.

The MEAM potential has been widely used for shock
simulations [24–27]. The parameters we used, Table I,
are distributed in the LAMMPS package as Si97 in li-
brary.meam. These parameters are from Baskes [20] and
have been widely applied. Yamaghishi et al. [28] used
it to study surface reconstructions in silicon. Heino [29]
used it to study strength at interfaces. Badis et al [21]
used it in a study of silicon’s more exotic high-pressure
crystal structures.

The atom embedding attempts to account for the elec-
tron density surrounding an atom. As atom density
increases, the electron density becomes a function of
many atoms and the embedding energy therefore be-
comes an effective environment-dependent interaction.
The environment-dependent nature of MEAM makes it
especially good for applications near surfaces, voids and
interfaces. In these regions, where the local environment
is very different from the bulk environment, potentials
are usually at their weakest, having been parameterized
with bulk measurements.

The total energy given by MEAM is

E =
∑
i

F (ρ̄i) +
1

2

∑
j 6=i

φ(Rij)

 (1)

where the sums are over particle indices; F is the embed-
ding energy as a function of ρ̄i, the background election
density at the site of the ith particle; and φ is the two-
body interaction between particles i, j.

The embedding function, F , has the form

F (ρ̄i) = AEc ρ̄i ln ρ̄i (2)

where A is a parameter and Ec is the cohesive energy.

Background electron density is calculated at each site by
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where the first term in the product is the partial electron
density of of ρ(1), ρ(2), and ρ(3), the angular dependent
partial electron densities associated with the p, f and
g orbitals, respectively. The second term in the prod-
uct is material specific function of which depends on a
weighted sum of the non-spherically symmetric partial
electron densities. t(1), t(2), and t(3) are parameters in-
dicating the relative importance of each orbital, and the
higher partial electron densities are
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where α, β and γ run through the coordinates, and riα
is the α-component of ri. Each of the ρa(h)(r) are the
atomic electron densities, which decay exponentially with
distance

ρa(h)(r) = e−β
(h)(r/re−1) (4)

where h is an integer from 1 to 3, β(1), β(2), β(3) are
parameters, and re is the nearest neighbor distance in a
material specific pre-defined reference structure.

The second term from the MEAM total energy, Equa-
tion 1, is the two-body interaction term

φ(R) =
2

Z

{
Eu(R)− F (ρ̄ 0(R))

}
(5)

where Z is the number of nearest neighbors in the refer-
ence structure and F (ρ̄ 0(R)) is the embedding energy of
the reference structure background electron density ρ̄ 0.
Eu(R) is the energy per atom in the reference structure
as a function of the nearest-neighbor distance R.

Eu(R) = −Ec(1 + α(R/re − 1))e−α(R/re−1) (6)

where α =
√

9ΩB
Ec

, and Ω and B are the atomic volume

and bulk modulus of the reference structure, respectively.
In lieu of a potential cutoff distance, MEAM imple-

ments a many-body screening.
The silicon samples were 13.1 nm x 13.1 nm wide

with periodic transverse boundaries, and ranged in length
from 320 nm to 1.84 µm in the shock direction. Shocks
were driven with a constant-velocity momentum mirror.
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E0 R0 rc α A β(0) β(1) β(2) β(3) t(0) t(1) t(2) t(3)

4.63 2.35 4.0 4.87 1.0 4.4 5.5 5.5 5.5 1.0 3.13 4.47 -1.8

TABLE I: MEAM Parameters for silicon (in eV, Å units) as in LAMMPS library.meam element Si97 and Ref. [20].

Piston velocities ranged from 0.2 to 2.0 km/s, and sim-
ulation times varied correspondingly from 10s to 100s
of ps. A 0.2 fs time step was used. Samples were pre-
equilibrated to 300 kelvins using a Langevin thermostat.
Once the shock driver was initiated no thermostat, baro-
stat or heat bath was applied. This integration ensem-
ble in LAMMPS is termed NV E, because the integrator
conserves particle number, N , volume, V , and energy,
E. However, the system is driven explicitly by the mov-
ing piston boundary condition, which decreases volume,
and increases energy through PV work done on the sys-
tem. One-dimensional profiles of density, pressure, tem-
perature, and particle velocity were calculated by aver-
aging per-atom quantities in 0.1 nm wide slabs normal to
the wave propagation direction. Representative profiles
are presented below in the results. Here, and through-
out this manuscript, pressure refers to the 1D pressure
in the propagation direction, the Pzz component of the
pressure tensor. Final values for the shock wave observ-
ables were determined by spatial averages behind the
shock front. These final values were consistent with the
Rankine-Hugoniot equations, indicating that the shocks
had reached a steady state condition.

FIG. 1: (Color online)Low porosity silicon Hugoniot curves
for 1% (blue circles) and 5% (green circles) shocked along the
〈100〉 orientation from molecular dynamics simulation. The
principal Hugoniot curves for defect-free single-crystal silicon
shocked along 〈100〉 (black squares) and 〈111〉 (red squares),
as well as defective crystal with 1% vacancy (pink triangles)
are shown for comparison.

Varying degrees of porosity were introduced in the sil-
icon samples from perfect crystal to 50% porosity. Per-
fect lattices contained no vacancy defects or interstitials.
A defective crystal was created by removing individual
atoms to reduce the density by 1%. Low porosity sam-
ples, with densities reduced by 1% and 5%, were created
by cutting randomly positioned 2 nm diameter spheri-
cal voids and re-equilibrating at 300 K for 10 ps. 2 nm
voids were chosen because they were the smallest voids
which produced response qualitatively different from the
defective crystal – localizing shear strains and nucleating
densification under shock. Larger voids, up to twice the
diameter, behaved similarly, but produced fluctuations
(inhomogeneity) in the density of the system, as the size
of the voids became a significant fraction of the transverse
system size. We do not carry out a systematic study of
the effects of void size, which would be better studied
in the collapse of single voids. Our focus in this paper
is the cumulative effect of porosity on the macroscopic
response to shock. High porosity samples, with densities
reduced by 25% and 50%, were constructed using two
methods. See Figure 2. The first was the void cutting
method already described. The second was to aggregate
randomly-oriented and randomly-placed 4 nm diameter
spheres of silicon single crystal, removing overlap atoms,
until the appropriate density was reached.

RESULTS

Figure 1 shows the principal shock Hugoniot results in
pressure-density for silicon single crystal along the 〈100〉
and 〈111〉 directions. We see that both exhibit elastic

FIG. 2: (Color online) Sample geometries for silicon with 50%
porosity. (left) Cut spherical voids from a single crystal; and
(right) assembly of polycrystal from randomly oriented spher-
ical grains.
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compression followed by a plastic softening, with a peak
elastic stress of 33 GPa in 〈100〉 and lower for 〈111〉.
These values are in relatively good agreement with high
strain-rate (106 − 109 1/s) compression experiments in
silicon by Smith et al. [30] which measured peak elas-

FIG. 3: (Color online) Slices showing atoms near collapsing
voids in 1% void silicon after a 20 GPa shock passes, mov-
ing along 〈100〉 (left to right in each image). On the left,
atoms are colored for coordination number, indicating dia-
mond (gray) and high-density phase (red). On the right,
atoms are colored for shear stress, τ = Pzz − (Pxx + Pyy)/2,
with blue for low τ and red for high. Times are approx. -6,
2, 4, 8, and 44 ps (top to bottom) relative to shock overtake.

tic stresses exceeding twice the Hugoniot Elastic Limits
(HELs) measured by Gust and Royce [7]. Extrapolation
of the Smith results to MD length and time scale predicts
peak elastic stresses in the range from 24−33 GPa. This
estimate and the experimental 〈100〉 HEL are indicated
by gray bands in Figure 1.

Figure 1 also includes the Hugoniot curve for 〈100〉
crystal with 1% vacancy defects. As expected, the in-
troduction of defects lowers the peak elastic stress, but
does not qualitatively alter the shock response. In both
the perfect and defective crystals we observe that the ap-
plied uniaxial strain produces shear stress which, above
the onset of plasticity, nucleates a solid-solid phase transi-
tion which propagates along planar stacking faults. This
shear stress driven partial phase transformation has been
observed previously in MD simulations of germanium [31]
and very recently in silicon [32]. The higher-density crys-
tal is either a tetragonal (β-tin) or the closely-related
orthorhombic (Imma) structure. As can been seen in
Figure 5, a well-ordered high-density phase is apparent,
however, a definitive determination of the crystal sym-
metry is difficult due to the small transformed volume
and deformation state caused by the large surface area
in contact with the diamond phase.

Also in Figure 1 we plot the Hugoniot results for 1%
and 5% porosity silicon. We note that the 1% void sample
responds significantly differently than the 1% vacancy de-
fective crystal. The voids drive a localized phase transfor-
mation in the vicinity of the void. The 1% and 5% porous
silicon Hugoniots both show enhanced densification, with
Hugoniots crossing below the principal Hugoniot under
moderate pressure – a signature of enhanced densifica-
tion. At pressures above 30 GPa the Hugoniots rejoin the
principal Hugoniot, as the samples are driven to partial

FIG. 4: (Color online) One-dimensional spatial profiles of the
propagating shock, with piston velocity of 1.2 km/s, in 5%
porous silicon after 20 ps (black) and 32 ps (red).
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FIG. 5: (Color online)An atomistic snapshot of the partial
phase transition in silicon. The image shows the higher-
density crystal phase between two diamond phases. This
snapshot is from a simulation at 1.4 km/s in near perfect
crystal.

melt and the effects of the induced solid-solid phase tran-
sition is suppressed. Importantly, we see that the void
collapse in low porosity silicon does not significantly raise
the system temperature or these high pressure Hugoniots
would not reconverge. We discuss temperature effects in
more detail below.

Figure 3 shows atomistic snapshots of void collapse in
the 1% porous silicon colored for crystal structure and
shear stress. The images demonstrate the mechanism re-
sponsible for the enhanced densification of these porous
samples. The top two images show a pair of voids in
the uncompressed material. The lower images show how
these voids gradually collapse behind the shock front, nu-
cleating partial phase transformation and relieving shear
stress. As the pores collapse, local shear stress is re-
lieved by shear strain in the neighborhood of the void.
This local shear strain nucleates the transition to the
higher density β-tin solid phase. As the pore further col-
lapses, these former low-density regions, become locally
more dense than average and the associated shear par-
tially transforms regions to higher density phase, which
in turn nucleates ribbons of transformed material extend-
ing from the collapsed void. In the bottom right image
of Figure 3 we see the final state after shock, a partially
transformed material with highest density regions replac-
ing voids and bulk crystal untransformed. Thus the en-
ergy and shear stress which in most porous materials is
lost to heat and leads to expansion, instead drives a lo-
cal transformation to a higher density phase. We believe
this partial transition to be metastable, since local tem-
peratures are below those that would allow either melt
or annealing to homogenize these structures.

Representative plots of the macroscopic state variables
are shown in Figure 4 for a 1.2 km/s piston velocity
driven into a 5% porous silicon sample. The plots are
spatial profiles of a wave traveling from left to right across

FIG. 6: (Color online)High porosity silicon Hugoniot curves
for 25% (brown) and 50% (purple) shocked along the 〈100〉
orientation. Two Hugoniot curves are shown for each porosity
representing the cut void (circles) and aggregated polycrystal
(diamonds) construction methods. The principal Hugoniot
curve for defect-free 〈100〉 single-crystal silicon (black squares)
and 5% low porosity (green circles) are shown for comparison.

the sample. The profiles in particle velocity, UP , temper-
ature, T , the pressure tensor component in the direction
of propagation, PZZ , and the density, ρ all show an initial
elastic precursor followed by a plastic shock. The fluctu-
ation in the density is due to the intrinsic inhomogeneity
of the location of voids within the sample. The elastic
precursor plateau rises slightly before the onset of plas-
ticity as the voids in the elastically compressed system
slowly collapse, as represented in Figure 3.

At higher porosities of 25% and 50%, we see an even
stronger effect. As shown in Figure 6, higher porosity
means more locally transformed regions and therefore an
overall higher density for a given pressure. As discussed
earlier, two methods were used to construct these highly
porous structures. At 50% porosity we see almost no de-
pendence on the different structures, while at 25% poros-
ity, we see some indication of slightly higher strength in
the cut voids sample. However, here too, the two curves
come together at higher pressure. All high porosity sam-
ples exhibit sharp steepening at higher shock intensities,
with the 50% porous samples even turning back to lower
densities. This effect is also seen in experiments [1] for
very distended materials and is due to the effect of shock
temperature increases, which ultimately drive expansion
of the sample. For high initial distentions, the maximum
density can be lower than the ambient crystal density.

Figure 7 shows the final temperature as a function of
density for shock compression of all systems. The tem-
peratures rise steeply for the 25% and 50% porous silicon.
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FIG. 7: (Color online)Temperature versus density for silicon
with various degrees of initial porosity. Symbols are the same
as in Figures 1 and 4.

In these two cases, the void collapse ultimately leads to
large and rapid increases in temperature. However, for
lower porosity, the increases compared to the full-dense
material (black squares in Fig. 7) are quite modest. This
indicates that temperature does not play a significant role
in the enhanced densification we observe at low porosi-
ties. The solid-solid phase transition is driven by the lo-
cal stress environment rather than thermodynamics, and
the transformation appears to act as an energy sink for
energy that would normally go toward system heating.
At higher porosities this mechanism is overwhelmed, and
this leads to the rapid temperature increases seen in the
25% and 50% porosity silicon.

CONCLUSIONS

In conclusion, we have identified porous silicon to be in
a class of materials which exhibit enhanced densification
under shock compression. It is our hope that this work
may lead to new processing methodologies in this tech-
nologically important material. Further, we have identi-
fied the mechanism by which this enhanced densification
can be explained, using atomistic molecular dynamics.
The primary mechanism is through local solid-solid phase
transition in the vicinity of collapsing voids to a denser
solid phase. Moreover, we show that this partial phase
transition is driven by the local stress state around these
voids, and is not due to a thermodynamic explanation
based on significantly increased temperature. These find-

ings imply that enhanced densification of porous materi-
als may be more common than realized in brittle mate-
rials with large-volume solid/solid phase transitions and
high strength. A comparative study in multiple high-
strength materials is planned.
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