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Abstract

We have examined the lowest-energy members of the quantized ILMs of a generalization of the

Fermi-Pasta-Ulam Hamiltonian to three-dimensions. The lowest energy ILMs are similar in form

to multi-phonon bound states, except that the number of phonons is not conserved. The ILMs can

be categorized as having a quasi-spin of either S = 2 or S = 0 and have other internal quantum

numbers. We find that ILMs can form in three-dimensions at zero temperature, but only if the

interaction exceeds a minimum value. Furthermore, as the temperature is raised, the magnitude of

the minimal interaction required to stabilize the ILM is reduced. When the ILMs first form they

split off from the top of the two-phonon continuum. The S = 0 ILMs form for lower values of the

interaction than the S = 2 ILMs. The ILMs form preferentially for center of mass momentum q

at the corner of the Brillouin zone. The tendency of ILMs to form at this momentum is traced to

a confluence of van-Hove singularities in the (non-interacting) two-phonon density of states at the

top of the two-phonon continuum. We have examined the ILM many-body wave functions and find

that the relative coordinate part of the wave functions have symmetries associated with internal

quantum numbers.
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INTRODUCTION

Intrinsically Localized Modes (ILMs), or discrete breathers, are persistent oscillatory

excitations of spatially homogeneous systems that have finite spatial extents and are stabi-

lized by anharmonic interactions [1]. The ILM excitations resemble the localized vibrational

modes found in the vicinity of lattice defects [2], but differ in a number of respects. Firstly,

the ILMs can be centered about any site of a homogeneous lattice, whereas the defect modes

are centered on impurity sites. Secondly, defect modes can exist in purely harmonic lattices,

however anharmonic interactions are essential for the existence of ILMs. Early reviews of

ILMs are found in refs.[3, 4]. In that ILMs have finite spatial extents and are essentially

non-linear modes, they form a class of excitations which are similar to the class of soli-

ton excitations. Soliton excitations are defined as localized excitations that have persistent

shapes found in systems that are continuous, homogeneous and non-linear [5–8]. Solitons are

also known to persist in discrete lattice systems [9, 10]. In fact, breather excitations (which

closely resemble ILMs) were discovered to be excitations of the sine-Gordon equation [6] and

the Korteweg - de Vries (KdV) equation [11]. The KdV equation was formulated to describe

the solitary water waves in long shallow channels. The solitary waves of the KdV equation

form the archetypical example of soliton excitations of one-dimensional non-linear systems

[12]. Derrick’s theorem [13] precludes solitons from occurring in two or higher-dimensional

systems. Gardner et al. [14] and Lax [15] showed that the KdV equation is exactly integrable

and, despite the non-linear nature of the equation, only has solutions that can be pictured

as linear combinations of small-amplitude excitations together with a countable number of

solitons. In this picture, the breather excitations can be thought of as being bound states of

a pair of soliton and anti-soliton excitations, in which the oscillatory nature of the breather

has its origin in the relative motion of the soliton/anti-soliton pair. For classical systems,

since the state of relative motion is part of a continuum, the breather’s energy spectrum

is continuous. Breather excitations were also found to exist in discrete, classical, anhar-

monic lattices [16]. The non-existence of soliton excitations in higher-dimensional systems

[13] would make it seem that breather excitations (specifically viewed as bound states of

a soliton/anti-soliton pair) should also be restricted to one-dimensional systems. Despite

this apparent restriction, in 1988, Sievers and Takeno [1] suggested that ILMs might also be

found in higher-dimensional lattice systems. ILMs were found in two and three dimensional

2



classical models within the rotating wave approximation [17]. In 1997, Kiselev and Siev-

ers [18] performed classical simulations which indicated that persistent oscillations could be

expected to occur in cubic anharmonic crystals.

In 2009, Manley et al. performed inelastic neutron scattering experiments [19] on NaI

and observed that, at elevated temperatures, the system showed a branch of excitations that

cannot simply be described in terms of harmonic phonons. These authors found that at high

temperatures, NaI has a branch of dispersionless excitations which exists for wave vectors

q along the (1,1,1) direction close to the corner of the Brillouin zone boundary and which

are polarized along the (1,1,1) direction. As seen in fig.(1), the excitations were found to

have an energy of approximately 10 meV which is bounded from above by a branch of optic

phonons and from below by the maximum of the branch of acoustic phonons. Manley et al.

interpreted the anomalous excitations in terms of classical ILMs. However, unlike the ILMs

observed in classical simulations which have continuous spectra, the anomalous modes have

sharp discrete spectral peaks. The discrete nature of the spectrum of anomalous excitations

can be taken as an indication of the quantum nature of the excitations. The need for a

quantum interpretation of the reported ILMs is supported by classical simulations which

indicate that the ILM excitation energies can be as large as 600 meV [20], which would

preclude ILMs being seen in thermal equilibrium. The inadequacy of a classical description

of the proposed ILM excitations also follows from consideration of the binding energy. In

the classical theory, the binding energy is defined as the energy separation between the

ILM energy and the zone-boundary phonon frequency. The value of the classical binding

energy inferred from the experiment would requires a much larger value of the anharmonic

interaction than is expected from standard two-body potentials [20]. Independent inelastic

neutron scattering experiments were performed by Kempa et al. [21] which do not support

the proposal that ILMs exist in NaI. Some of the uncertainty may arise from the unusual

temperature dependence of the ILM features [22, 23] combined with the uncertainty in the

measured temperatures.

Dashen, Hasslacher and Neveu [24, 25] showed that when the breather excitations of the

continuous, exactly integrable and one-dimensional sine-Gordon field theory are quantized

semi-classically, they form a hierarchy of discrete excitations. Moreover, the hierarchy of

quantum breather excitations can be thought of as being formed by the hierarchy of bound

states of multiples of the quantized small amplitude oscillations (phonons) [26]. Numerical
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nearly transverse geometry along �111� at the zone boundary
�ZB�. A correction for the two-phonon component was made
in the incoherent approximation16 using a temperature cor-
rected phonon DOS interpolated from the data in Fig. 1. At
room temperature, the ZB TA, ZB LA, and ZB TO modes are
all visible and have energies consistent with those reported
previously.19–22 On heating to 555 K, a peak again develops
in the gap, refining to a position at 10.2 meV. The intensity of
this feature in this scattering geometry indicates a strong
component of polarization along �111�. At a temperature of
473 K, just below where the gap mode is evident, some
intensity is lost in the ZB TO mode. The center frequencies
of the ZB TA and ZB LA mode decrease with increasing
temperature as expected for a thermally expanding lattice;
however, the ZB TO mode frequency remains fixed near 12.8
meV between 438 and 555 K.

Using a longitudinal scattering geometry with Q
= �2.5,2.5,2.5� and Q= �1.5,1.5,1.5� the temperature depen-
dence of different modes was measured over a wider tem-
perature range, as shown in Fig. 3. With the experimental
uncertainty of �0.2 meV the LA mode position with in-
creasing temperature is as follows: 9.7 meV, 300 K; 8.8 meV,
555 K; 8.6 meV, 660 K; 8.4 meV, 768 K. The gap mode at
555 K now appears as a significant shoulder at 10.3 meV on
the more prominent ZB LA mode. Although forbidden in this
geometry the TO is known to appear.23 The cause is the
transverse components picked up because of a relaxed verti-

cal Q resolution �0.34 Å−1 at the elastic line along �0,
−1,1��24 and a contribution from the incoherent cross section
of Na. The favorable neutron cross section weighting on the
TO relative to the LA �Fig. 1�b�� makes this effect more
noticeable. The “forbidden TO” mode and the ILM both ap-
pear broad at 660 K. By 768 K the ILM peak has gained
significant intensity, as has the two-phonon component. The
two-phonon component was again corrected in the incoher-
ent approximation,16 although this time by extrapolating pho-
non DOS from the data in Fig. 1. As a check the 768 K scan
was repeated at Q= �1.5,1.5,1.5� where the two-phonon
background is much smaller; the one-phonon intensity de-
creases as Q2 compared to Q4 for two-phonon intensity.16

The observed temperature dependence of the ILM strength
does not appear to follow that expected for a thermally acti-
vated process with a single activation energy.15

Additional measurements on dispersion properties at 555
K are summarized in Fig. 4�a�. The gap mode stands out as
dispersionless across the zone, with weakening intensity to-
ward the zone center. The occurrence of a maximum at the
ZB is consistent with the gap mode intensity appearing com-
parable to the LA at the ZB �Figs. 2 and 3� and yet relatively
weak in the Q averaged phonon DOS �Fig. 1�b��. The LA
mode softening with increased temperature is focused near
the zone boundary, while the softening in the TO and TA
branches is more uniform.

The Q dependence �structure factor� of the gap mode in-
tensity was determined from constant-energy Q scans per-

a

b

FIG. 4. �Color online� Summary of lattice dynamics measured in NaI along the �111� direction. �a� Phonon dispersion curves at 90 K
�dashed� from Ref. 19 and 555 K �solid� from this work, including a dispersionless local mode that appears in the gap. �b� Constant-energy
Q scans at 545 K measured in a transverse geometry �geometry shown in inset�. Data from scans away from the phonons at 20 meV, shown
in all scans, give a measure of the background. The intensity at 10 meV, middle panel, is fit to a Gaussian. Intensities associated with the TO
mode �top panel� and LA mode �bottom panel� are also indicated; see text.

INTRINSIC LOCALIZED MODES OBSERVED IN THE… PHYSICAL REVIEW B 79, 134304 �2009�

134304-3

FIG. 1. (Color on line) Summary of lattice dynamics measured in NaI along the [111] direction,

showing the phonon dispersion curves measured at 90 K (dashed lines) and 555 K (red lines),

including a dispersionless local mode (ILM) that appears in the gap between the branches of

acoustic and optic phonons. [From Manley et al. (2009).]

calculations on non-linear Klein-Gordon lattice models [27, 28] shows that this description of

quantum breathers carries over from continuous integrable systems to non-integrable discrete

lattice systems. The continuum limit of the one-dimensional Fermi-Pasta-Ulam model [29] is

described by the KdV equation [30], which also exhibits breather excitations [31]. Therefore,

it is not surprising that the lowest-energy excitations of the discrete quantum Fermi-Pasta-

Ulam model can be described in terms of bound states of multiple numbers of phonons [32]

and that the excitations have localized characters [33]. Analytic methods have been proposed

4



to describe the higher-energy members of this hierarchy [34]. For a diatomic Fermi-Pasta-

Ulam lattice [32], the lowest-energy excitations have dispersion relations that are bounded

from above by the optic phonon dispersion relation and are bounded from below by the two-

acoustic phonon continuum, in agreement with the observations on NaI. The calculations

of ref.[32] show that the breather excitations of the discrete one-dimensional lattice are

guaranteed to exist for arbitrarily small values of the anharmonic interaction, due to the

effects of the divergent van-Hove singularities in the non-interacting multi-phonon density

of states. This suggests that quantized breather excitations could also exist in higher-

dimensional lattices [35], if the value of the anharmonic interaction exceeds a critical value

determined by the magnitude of the multi-phonon density of states.

Here, we present the generalization of the quantized Fermi-Pasta-Ulam model to higher

spatial dimensions. We present the detailed calculation of the two-phonon propagator which

gives us the spectrum of interacting two-phonon excitations. We find that, in addition to a

continuum of scattering states, there may be branches of two-phonon resonances or bound

states. Therefore, the lowest-energy breather excitations of a cubic three-dimensional crystal

are consistent with the description of Dashen et al. [24, 25] as being the bound states

of multiple numbers of phonons. We examine the ILM excitations with center of mass

momenta directed along the high-symmetry lines of the Brillouin zone. We find that ILMs

form preferentially at positions in the Brillouin zone where the van-Hove singularity at the

upper edge of the two-phonon continuum is sharpest. A short report of our preliminary

results has been published [36].

THE D=3 QUANTUM FERMI-PASTA-ULAM LATTICE

The Fermi-Pasta-Ulam lattice [29] consists of a one-dimensional array of atoms which

are connected to their nearest neighbors by weakly anharmonic interactions. Fermi, Pasta

and Ulam originally considered two types of anharmonicity; the α-lattice corresponded to

cubic anharmonicity and the β-lattice corresponded to a quartic anharmonic interaction.

The cubic anharmonic interaction makes the α-system unstable, so henceforth we shall

only consider the β-lattice. The quantized Hamiltonian describing the β-Fermi-Pasta-Ulam
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lattice can be written as

Ĥ =
∑
i

[ P̂ 2
i

2 M
+

K2

2!
( ûi − ûi+1 )2 +

K4

4!
( ũi − ûi+1 )4

]
(1)

where P̂i is the momentum operator of the i-th atom and ûi is the displacement operator of

the i-th atom from its equilibrium position. The constant M is the mass of the atoms, K2

represents the strength of the harmonic component of the interaction and K4 determines

the strength of the anharmonic interaction.

In the three-dimensional generalization of the Fermi-Pasta-Ulam model, the labels i of

the lattice sites are replaced by the lattice vectors R of a periodic three-dimensional crystal

with a mono-atomic basis. Also, the interaction between the atom at site R only occurs with

the nearest neighboring lattice sites which are located at positions denoted by R + δ. The

resulting model describes longitudinal and transverse phonon modes on the same footing.

Since the Hamiltonian is to be a scalar quantity, the various terms in the Hamiltonian must

be expressed as scalar products of the vector momentum and displacement operators [36].

Hence, we have

Ĥ =
∑
R

[ P̂R . P̂R

2 M
+

1

2

∑
δ

K2

2!
( ûR − ûR+δ ) . ( ûR − ûR+δ )

+
1

2

∑
δ

K4

4!

(
( ũR − ûR+δ ) . ( ũR − ûR+δ )

)2 ]
(2)

The factor of one-half occurring before the sum over δ, ensures that the interaction between

a pair of atoms is only counted once. This Hamiltonian differs from the classical Hamil-

tonian previously investigated by Bickham and Sievers [17], in which they assumed that

the anharmonic interaction only coupled the same components of the displacements. The

anharmonic mixing between the different components of a vector field opens the possibility

that the ILM may have a rich variety of internal structures including different spatial forms

and, as we shall argue, also may have various values of an intrinsic quasi-spin.

The harmonic part of the Hamiltonian can be diagonalized. First, the vector momentum

and displacement operators are expressed in terms of their spatial Fourier transforms defined

by

P̂ q =
1√
N

∑
R

exp[ i q . R ] P̂R

ûq =
1√
N

∑
R

exp[ i q . R ] ûR (3)
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where N denotes the total number of sites in the lattice. The resulting harmonic part of the

Hamiltonian, Ĥ0, can be expressed as

Ĥ0 =
∑
q

[ P̂ q . P̂
†
q

2 M
+

K2

2!

∑
δ

(
1 − cos(q . δ)

)
ûq . û

†
q

]
(4)

where the sum over q is restricted to run over the first Brillouin zone. It should be noted that

as the scalar products are invariant under rotations, the harmonic Hamiltonian is diagonal

when expressed in terms of any complete set of orthonormal basis vectors ε̂p. The vector

operators are expressed in terms of their components as

P̂ q =

p=d∑
p=1

P̂q,p ε̂p(q)

ûq =

p=d∑
p=1

ûq,p ε̂p(q) (5)

Thus, the harmonic approximation to the Hamiltonian takes the form

Ĥ0 =
∑
q,p

[ P̂q,p P̂ †q,p
2 M

+
K2

2!

∑
δ

(
1 − cos(q . δ)

)
ûq,p û

†
q,p

]
(6)

since the polarization vectors form an orthonormal set

ε̂p(q) . ε̂p′(q) = δp,p′ (7)

Therefore, the harmonic Hamiltonian is expressed as the sum of harmonic oscillators where

the sum runs over all the normal mode labels (q, p). The frequencies ωq,p of the harmonic

modes are determined from

ω2
q,p = 2

K2

M

∑
δ

sin2
(q . δ

2

)
(8)

and are independent of the polarization index p [17]. Henceforth, we shall setK2 = M ω2
0. It

is seen that, in the harmonic limit, the three-dimensional Fermi-Pasta-Ulam model describes

three branches of acoustic phonon modes, which are required by Goldstone’s theorem [37].

We have implicity assumed that, in our ground state, the atoms of our three-dimensional

solid are located at specific positions R so that our choice of ground state is not invariant

under arbitrary uniform translations although the Hamiltonian is. The harmonic part of the
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Hamiltonian can be second quantized by expressing the operators for each normal mode in

terms of its boson creation and annihilation operators via

P̂q,p = i

√
M~ωq,p

2
( a†−q,p − aq,p )

ûq,p =

√
~

2Mωq,p
( a†q,p + a−q,p ) (9)

Thus, the harmonic Hamiltonian can be expressed as

Ĥ0 =
∑
q,p

~ωq,p
2

( a†q,p aq,p + aq,p a
†
q,p ) (10)

which is diagonal in the momentum and polarization indices. Hence, the phonons have

acoustic dispersion relations which are completely degenerate with respect to their polar-

izations. The transformational properties of the small-amplitude lattice displacements, in

our case of degenerate polarizations, results in the phonon having an intrinsic quasi-spin of

unity. Spin-one phonons also exist in continuum theories where there are spin-like conserved

quantities [40] which in the isotropic limit [41] transform like spin .

The anharmonic interaction part of the Hamiltonian is written in terms of the lattices

sites R and the nearest neighboring lattice sites located at R + δ as

Ĥint =
1

2

∑
R

∑
δ

K4

4!

(
( ûR − ûR+δ ) . ( ûR − ûR+δ )

)2
(11)

Using equations (3) and (5), the interaction Ĥint can be re-written as

Ĥint =
1

2 N

∑
δ

K4

4!

∑
k1,k2,k3,k4

∆k1+k2+k3+k4
exp

[
i(k1 + k2 + k3 + k4).

δ

2

]
× 16 sin (

k1.δ

2
) sin (

k2.δ

2
) sin (

k3.δ

2
) sin (

k4.δ

2
)
∑
p1,p2

ûk1,p1ûk2,p1ûk3,p2ûk4,p2

(12)

In this expression the function ∆k is a Kronecker delta function which conserves the total

momentum, modulo a reciprocal lattice vector, and is defined by

∆k =
∑
G

δk+G (13)

where the sum runs over all the reciprocal lattice vectors G. On substituting the expressions

for ûk,p given in eqn.(9), the interaction Hamiltonian takes the second quantized form

Ĥint =
I4

4! N

∑
p1,p2

∑
k1,k2,k3,k4

∆
( 4∑
m=1

km

)
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×
∑
δ

2∏
n=1

F δ
kn

(a†kn,p1 + a−kn,p1)
4∏

m=3

F δ
km

(a†km,p2 + a−km,p2) (14)

where the complex form factors Fkn.δ are given by

F δ
kn

=
sin

kn.δ

2[∑
δ′ sin2 kn.δ

′

2

] 1
4

exp
[
i
kn.δ

2

]
(15)

and I4 is the strength of the anharmonic interaction

I4 =
~2K4

2 M2ω2
0

. (16)

which has units of energy.

THE TWO-PHONON PROPAGATOR

The two-phonon propagator has the form of a four by four matrix D
(α),(β)
σ,σ′;q (k, t : k′, 0),

which involves the expectation value of the product of two two-phonon operators Â
(α)
σ;q(k, t);

one product evaluated at time t and the other product at time zero. The components of the

two-phonon propagator are expressed as

D
(α),(β)
σ,σ′;q (k, t; k′, 0) = − i

~
〈 T̂ Â(α)

σ;q(k, t) Â
(β)†
σ′;q (k′, 0) 〉 (17)

where T̂ is Wick’s time-ordering operator. The two-phonon operators Â
(α)
σ;q(k) are defined as

Â(++)
σ;q (k) ≡ a†q

2
+k,p1

a†q
2
−k,p2

Â(+−)
σ;q (k) ≡ a†q

2
+k,p1

a− q

2
+k,p2

Â(−+)
σ;q (k) ≡ a− q

2
−k,p1 a

†
q

2
−k,p2

Â(−−)
σ;q (k) ≡ a− q

2
−k,p1 a−

q

2
+k,p2

(18)

where the ordered pair of indices (a1, a2), in which a1 and a2 are taken from the set of {+,−},

are denoted by a single index (α) that takes on four values. Likewise, the ordered pair of

polarization indices (p1, p2) are denoted by a single index σ. To avoid ambiguity between

two phonon states labeled by σ and its permutation, momentum space will be separated

into two disjoint volumes, such that if the point k falls within one region, the value of −k
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falls within the other region. Henceforth, we adopt the convention that k is restricted to one

region. The components of the propagator can be obtained from the equation of motion

i ~
∂

∂t
D

(α),(β)
σ,σ′;q (k, t; k′, 0) = δ(t) 〈 [ Â(α)

σ;q(k, t) , Â
(β)†
σ′;q (k′, 0) ] 〉

− i

~
〈 T̂ [ Â(α)

σ;q(k, t) , Ĥ(t) ] Â
(β)†
σ′;q (k′, 0) 〉 (19)

where both terms on the right-hand side only involve equal-time commutators. The inho-

mogeneous term

[ Â(α)
σ;q(k, 0) , Â

(β)†
σ′;q (k′, 0) ] = [ aa1

a1(
q

2
+k),p1

aa2
a2(

q

2
−k),p2

, ab2†
b2(

q

2
−k′),p′2

ab1†
b1(

q

2
+k′),p′1

] (20)

can be evaluated as

= − ∆k−k′ δ
α,β
σ,σ′

[
a2

(1

2
+Na1(q/2+k),p1

)
+ a1

(1

2
+Na2(q/2−k),p2

) ]
(21)

where

Nk,p = < a†k,p ak,p > (22)

is the average number of phonons in the mode with wave vector k and polarization p.

In the absence of the interaction, the two-phonon propagators can be found exactly. For

purely harmonic interactions, the commutator with the interaction can be evaluated exactly,

leading to the equations of motion(
i ~

∂

∂t
+ a1 ~ ωa1( q2+k),p1 + a2 ~ ωa2( q2−k),p2

)
D0

(α),(β)
σ,σ′;q (k, t; k′, 0)

= − δ(t) ∆k−k′ δ
α,β
σ,σ′

[
a2

(1

2
+Na1(q/2+k),p1

)
+ a1

(1

2
+Na2(q/2−k),p2

) ]
(23)

The above first-order differential equation can be reduced to an algebraic equation by Fourier

transforming. The Fourier transform of the two-phonon propagator is defined by

D
(α),(β)
σ,σ′;q (k; k′ : ω) =

∫ ∞
−∞

D
(α),(β)
σ,σ′;q (k, t; k′, 0) e−iωt dt (24)

Fourier transformation of the equation of motion results in the non-interacting propagator

being given by

D0
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′

[
a2

(
1
2

+Na1(q/2+k),p1

)
+ a1

(
1
2

+Na2(q/2−k),p2

) ]
(
~ ω − a1 ~ ωa1( q2+k),p1 − a2 ~ ωa2( q2−k),p2

) (25)

Thus, the non-interacting propagator is diagonal in the pairs of ordered indices α and β,

as well as in the ordered pairs of polarization indices σ and σ′. Furthermore, the Bloch
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wave vectors k and k′ are conserved, modulo a reciprocal lattice vector. To emphasize the

diagonal nature of the non-interacting propagator we shall introduce the notation

D0
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(α)
σ,q (k : ω) (26)

The interaction produces an additional term in the equation of motion, which is expressed

as

− i

~
< | T̂

[
Â(α)
σ;q(k, t) , Ĥint(t)

]
Â

(β)†
σ′;q (k′, 0) | > (27)

The equal-time commutator involves a weighted sum over terms of the form[
aa1
a1(

q

2
+k),p1

aa2
a2(

q

2
−k),p2

,
2∏

n=1

(a†kn,r1 + a−kn,r1)
4∏

m=3

(a†km,r2 + a−km,r2)
]

(28)

and produces terms which are fourth-order in the phonon operators. The equations of

motion can be truncated by replacing the product of two of the four phonon operators by

their expectation values. This step results in the Ladder Approximation, which is expected

to be exact if there are only two phonons present in the system and if the number of phonons

is conserved. As was shown by Agranovitch [38], if one projects the excitations of the system

from the full Hilbert space onto a manifold of states with a fixed number of phonons, the

excitations can be found without further approximation. However, it has also been shown

[39] that a simple projection onto the space of fixed number of phonons leads to a violation

of Goldstone’s theorem [37]. Here we show that the phonon excitations obey Goldstone’s

theorem, if the space of fixed phonons is supplemented by two-phonon creation and two-

phonon annihilation processes. Furthermore, the equations of motion reduce to the Ladder

Approximation in an appropriately extended manifold of states.

On taking an expectation values of all possible pairs of phonon operators and using the

identities

< aaa(q),p (a†k,r + a−k,r) > = ∆q+k δp,r ( Nq,p +
1

2
− a

2
)

< (a†k,r + a−k,r) a
a
a(q),p > = ∆q+k δp,r ( Nq,p +

1

2
+

a

2
) (29)

one finds two types of contributions. The contributions in which the phonon occupation

numbers don’t depend on the center of mass momentum q produce corrections to the non-

interacting phonon frequencies

~ δωq =
5

36

(ωq
ω0

) I4
N

∑
k

(ωk
ω0

)
( 2 Nk + 1 ) (30)
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The identification with a change in phonon frequencies can be seen through the effect of this

truncation applied directly to the interaction. The resulting contribution can be considered

as yielding a temperature-dependent renormalization of the harmonic spring constant K2

[42] and obeys Goldstone’s theorem [37]. Hence, these terms can be eliminated by re-

defining the transformation of eqn.(9) which relates the lattice displacement operators to

the phonon operators. This transformation produces the renormalization ωq = ωharmq + δωq

in all expressions. Thus the transformation completely eliminates the anomalous terms in

the one-phonon Green’s function, at the same level of approximation. Henceforth, we shall

ignore these frequency shifts and focus our attention on the terms where the occupation

numbers depend on the center of mass momentum.

The other type of terms contain occupation numbers that depend on the center of mass

momentum q. These terms can be combined to yield

I4
3! N

δp1,p2
∑
δ

F δ ∗
q

2
+k

F δ ∗
q

2
−k

[
− a2(N q

2
+k,p1

+
1

2
)− a1(N q

2
−k,p2 +

1

2
)
]

×
∑
k1

F δ
q

2
+k1

F δ
q

2
−k1

∑
γ,r

D
(γ),(β)
(r,r),σ′;q(k1; k

′ : ω)

+
2 I4
3! N

∑
δ

F δ ∗
q

2
+k

F δ ∗
q

2
−k

[
− a2(N q

2
+k,p1

+
1

2
)− a1(N q

2
−k,p2 +

1

2
)
]

×
∑
k1

F δ
q

2
+k1

F δ
q

2
−k1

∑
γ

D
(γ),(β)
σ,σ′;q (k1; k

′ : ω) (31)

where the sums over k1 run over both sectors of the Brillouin zone. This leads to the Fourier

transformed equation of motion reducing to

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(α)
σ,q (k : ω)

+
I4

3! N
δp1,p2

∑
δ

F δ ∗
q

2
+k

F δ ∗
q

2
−k

D(0)(α)
σ,q (k : ω)

×
∑
k1

F δ
q

2
+k1

F δ
q

2
−k1

∑
γ,p

D
(γ),(β)
(p,p),σ′;q(k1; k

′ : ω)

+
2 I4
3! N

∑
δ

F δ ∗
q

2
+k

F δ ∗
q

2
−k

D(0)(α)
σ,q (k : ω)

×
∑
k1

F δ
q

2
+k1

F δ
q

2
−k1

∑
γ

D
(γ),(β)
σ,σ′;q (k1; k

′ : ω) (32)

The above equation represents the Ladder Approximation for the two-phonon propagator

which is depicted diagramatically in fig.(2). The above set of equations form a closed set

12



q/2+k 

q/2-k 

q/2+k' 

q/2-k' 

q/2+k' 

q/2-k' 

q/2+k' 
q/2+k 

q/2-k 

q/2-k' q/2-k1 

q/2+k1 

= + a a b b b a b dab I4 Dk-k' 

FIG. 2. (Color on line) Diagrammatic depiction of the Ladder Approximation for the two-phonon

propagator. The interacting propagator is represented by the filled bubble. The unfilled bubble

represents the free propagation of non-interacting phonon excitations. The vertex I4 represents

an interaction between the phonon excitations. The interaction not only scatters the phonon

excitations from states with relative momentum k to states with relative momentum k1, but may

also change the total number of phonons.

that can be solved by algebraic methods. The first term on the right-hand side of eqn.(32)

represents the propagation of a pair of phonon excitations which do not interact. The second

and third terms represent the processes in which a pair of phonons excitations interact at

least once and are scattered into different momentum states. Although the initial two-

phonon excitations are characterized by a specific value of α, after the first interaction

process the two-phonon excitations are characterized by the different possible values of the

index γ, i.e., involves states with different total numbers of (harmonic) phonons. This

occurs since the interaction does not conserve the total number of phonons. In fact, the

total number of phonons may change by the amounts +4, +2, 0, -2, -4 as a result of a single

interaction. The Ladder Approximation for the two-phonon excitations replaces the full

Hilbert space by a sub-space augmented by a space in which the total number of phonons

is either increased or decreased by two.

TWO-PHONON BOUND STATES AND RESONANCES

The singularities of the two-phonon propagator yields information about the two-phonon

excitations of the system. The two-phonon propagator has a dense set of simple poles

associated with the non-interacting two-phonon excitations. This dense set of simple poles

13



yields the continuous spectrum of two-phonon excitations, where the phonons scatter from

each other and then asymptotically become free. In addition to the continuum of excitations,

one expects that there may be other types of singularities that represent either two-phonon

resonances or two-phonon bound states. The equation for the two-phonon propagator has

a non-trivial dependence on the polarization index σ ≡ (p1, p2), which leads us to the

expectation that the excitations will depend on σ. In particular, since phonons are vector

bosons and have quasi-spin one [43], the Wigner-Eckhart theorem [44] leads one to expect

that the two-phonon excitations will be characterized according to their intrinsic quasi-spin

[36] which may have the values of either S = 0 or S = 2. This characterization will be

deduced directly from the algebraic solution of the Ladder Approximation to the equation

of motion.

In general the elements of the polarization matrix (p1, p2) can either be diagonal or they

can be off-diagonal. Below, we shall consider the two cases separately.

x-y Polarized Excitations

In this case, where the polarizations are different p1 6= p2, the equation of motion simplifies

to

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(α)
σ,q (k : ω)

+
2 I4
3 N

∑
i

F i ∗
q

2
+k

F i ∗
q

2
−k D

(0)(α)
σ,q (k : ω)

×
∑
k1

F i
q

2
+k1

F i
q

2
−k1

∑
γ

D
(γ),(β)
σ,σ′;q (k1; k

′ : ω) (33)

Hence, the off-diagonal polarization index σ is conserved. The equation can be solved by

multiplying by the product F j
q

2
+k
F j

q

2
−k

, summing over α and then summing over the k values

in both sectors. This procedure results in the equation

Φj
β,σ,σ′(k

′) = δσ,σ′ F j
q

2
+k′

F j
q

2
−k′

D
(0)(β)
σ′,q (k′ : ω) +

3∑
i=1

Πj,i
2 (q, ω) Φi

β,σ,σ′(k′) (34)

in which

Φj
β,σ,σ′(k

′) =
∑
k,γ

F j
q

2
+k

F j
q

2
−k

D
(γ),(β)
σ,σ′;q (k; k′ : ω) (35)

and

Πj,i
2 (q, ω) =

2 I4
3 N

∑
k,α

F j
q

2
+k

F j
q

2
−k

D(0)(α)
σ,q (k : ω) F i ∗

q

2
+k

F i ∗
q

2
−k (36)
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The inhomogeneous term can be written in the form of a vector with components

Θj
β,σ′(k

′) = F j
q

2
+k′

F j
q

2
−k′

D
(0)(β)
σ′,q (k′ : ω) (37)

The matrix equation can be solved to yield Φj
β,σ(k′)

Φβ,σ,σ′(k′) =
(
Ĩ − Π̃2(q, ω)

)−1
Θβ,σ′(k′) δσ,σ′ (38)

which can then be substituted into

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(α)
σ,q (k : ω)

+
2 I4
3 N

∑
i

F i ∗
q

2
+k

F i ∗
q

2
−k D

(0)(α)
σ,q (k : ω) Φi

β,σ,σ′(k′) (39)

thereby yielding the two-phonon propagator as

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(β)
σ′,q (k′ : ω)

+ δσ,σ′

∑
i,j

F i ∗
q

2
+k

F i ∗
q

2
−k D

(0)(α)
σ,q (k : ω)

× 2 I4
3 N

(
Ĩ − Π̃2(q, ω)

)−1
i,j

× F j
q

2
+k′

F j
q

2
−k′

D
(0)(β)
σ′,q (k′ : ω) (40)

It should be noted that the x− y polarized two-phonon propagator is diagonal in the com-

bined polarization indices σ and σ′, but p1 6= p2.

x-x Polarized Excitations

In this case p1 = p2, so the equations of motion only involve propagators which are diag-

onal in the polarization indices. Due to the Kronecker delta function in the inhomogeneous

term, one finds that the propagator is zero unless p′1 = p′2, so σ′ must also be diagonal. On

taking the trace of the equation of motion over the polarization indices σ, one obtains∑
σ

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β D
(0)(β)
σ′,q (k′ : ω)

+
5 I4
6 N

∑
δ

F δ ∗
q

2
+k

F δ ∗
q

2
−k

D(0)(α)
q (k : ω)

×
∑
k1

F δ
q

2
+k1

F δ
q

2
−k1

∑
γ,σ

D
(γ),(β)
σ,σ′;q (k1; k

′ : ω) (41)
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where we have used the fact that, because the polarizations are degenerate, the value of

D
(0)(α)
σ,q (k : ω) is actually independent of σ. The sum over δ can be written as twice the sum

over three orthogonal axes

∑
σ

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β D
(0)(β)
σ′,q (k′ : ω)

+
5 I4
3 N

3∑
i=1

F i ∗
q

2
+k

F i ∗
q

2
−k D

(0)(α)
q (k : ω)

×
∑
k1

F i
q

2
+k1

F i
q

2
−k1

∑
γ,σ

D
(γ),(β)
σ,σ′;q (k1; k

′ : ω) (42)

where the form factors only depend on the i-th coordinate of the wave vectors ki. This form of

the anharmonic interaction is recognized as being the sum over three separable interactions,

one for each Cartesian axis. On multiplying the equations by F j
q

2
+k

F j
q

2
−k

, summing over α

and then summing over k, one arrives at the equation

Φj
β,σ′(k

′) = F j
q

2
+k′

F j
q

2
−k′

D
(0)(β)
σ′,q (k′ : ω) +

3∑
i=1

Πj,i
0 (q, ω) Φi

β,σ′(k′) (43)

in which

Φj
β,σ′(k

′) =
∑
k,γ,σ

F j
q

2
+k

F j
q

2
−k

D
(γ),(β)
σ,σ′;q (k; k′ : ω) (44)

and

Πj,i
0 (q, ω) =

5 I4
3 N

∑
k,α

F j
q

2
+k

F j
q

2
−k

D(0)(α)
q (k : ω) F i ∗

q

2
+k

F i ∗
q

2
−k (45)

In the above, the sums over k run over both sectors and the sum over polarization index σ

only runs over the diagonal elements. Equation(43) is recognized as a three by three matrix

equation of the form (
Ĩ − Π̃0(q, ω)

)
Φβ,σ′(k′) = Θβ,σ′(k′) (46)

where the components of the vector Θ are given by

Θj
β,σ′(k

′) = F j
q

2
+k′

F j
q

2
−k′

D
(0)(β)
σ′,q (k′ : ω) (47)

The above matrix equation can be inverted

Φβ,σ′(k′) =
(
Ĩ − Π̃0(q, ω)

)−1
Θβ,σ′(k′) (48)
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and substituted into eqn.(41)

∑
σ

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β D
(0)(β)
σ′,q (k′ : ω)

+
5 I4
3 N

∑
i

F i ∗
q

2
+k

F i ∗
q

2
−k D

(0)(α)
q (k : ω) Φi

β,σ′(k′) (49)

to yield an expression for
∑

σ D
(α),(β)
σ,σ′;q (k; k′ : ω).

On substituting the above expression for the polarization trace of the two-phonon prop-

agator back into the equation for the xx-polarized two-phonon propagator, one obtains

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(β)
σ′,q (k′ : ω)

+
I4

3 N

∑
i,j

F i ∗
q

2
+k

F i ∗
q

2
−k D

(0)(α)
σ,q (k : ω)

(
Ĩ − Π̃0(q, ω)

)−1
i,j

× F j
q

2
+k′

F j
q

2
−k′

D
(0)(β)
σ′,q (k′ : ω)

+
2 I4
3 N

∑
i

F i ∗
q

2
+k

F i ∗
q

2
−k D

(0)(α)
σ,q (k : ω)

×
∑
k1

F i
q

2
+k1

F i
q

2
−k1

∑
γ

D
(γ),(β)
σ,σ′;q (k1; k

′ : ω) (50)

In the above expression, the second inhomogeneous term originates from the modes corre-

sponding to the trace over the polarizations. This set of equations can be solved leading to

the final result

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(β)
σ′,q (k′ : ω)

+
∑
i,j

F i ∗
q

2
+k

F i ∗
q

2
−k D

(0)(α)
σ,q (k : ω)

×
[ (

δσ,σ′ − 1

3

) 2 I4
3 N

(
Ĩ − Π̃2(q, ω)

)−1
i,j

+
(1

3

) 5 I4
3 N

(
Ĩ − Π̃0(q, ω)

)−1
i,j

]
× F j

q

2
+k′

F j
q

2
−k′

D
(0)(β)
σ′,q (k′ : ω) (51)

where, as before, the matrix elements of Π̃2(q, ω) are given in eqn.(36). In the above, it

should be noted that the joint polarizations σ and σ′ are both diagonal [i.e. σ = (p, p) and

σ′ = (p′, p′) ].
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EXISTENCE AND DISPERSION RELATIONS OF ILMS

The degeneracy of the phonon modes with respect to the polarization is a consequence of

the space group symmetry of the vector displacement field uq. The application of Noether’s

theorem with the discrete space group symmetry operations leads to conservation laws,

such as conservation of quasi-momentum (i.e. crystal or Bloch momentum), quasi-orbital

angular momentum and the existence of intrinsic quasi-spin [43]. In the above model,

the phonons with the different polarizations are degenerate which leads to their having

an intrinsic quasi-spin of S = 1 similar to the case of phonon excitations in the continuum

limit description of an isotropic material [40, 41]. Hence, the phonons excitations can be

expressed as linear combinations of the excitations with different polarization vectors, or

equivalently as a linear combination of excitations with different values of Sz. Since the

ILM excitations correspond to bound states of multiple numbers of phonons it is expected

that, when the ILMs exist, they should also have integer intrinsic quasi-spins. Indeed, the

lowest-energy excitations of this hierarchy have polarization indices that form a symmetric

second-rank tensor [44]. Furthermore, all the excitations are degenerate since they all are

determined from the solution of det[ Ĩ − Π̃2(q, ω) ] = 0, with the exception of the excitation

which corresponds to the trace of the polarization matrix. This last excitation has an energy

which is determined from the condition det[ Ĩ − Π̃0(q, ω) ] = 0. Thus, the five degenerate

excitations corresponding to the traceless symmetric second-rank tensor may be identified as

excitations with quasi-spin S = 2. These excitations can be expressed as linear combinations

of the five eigenfunctions of Sz. The remaining non-degenerate excitation corresponds to a

quasi-spin of S = 0. The above conclusions can also be deduced [36] by the application of the

Wigner-Eckhart theorem [44]. Since Π̃2(q, ω) and Π̃0(q, ω) have the same structure in that

they only differ by the strength of the interaction in their definitions, they can be treated

simultaneously. Below, we shall examine the energy spectrum and the spatial characters as

exhibited through the q dependence of these excitations along various high-symmetry lines.

We shall display formulae appropriate to the S = 2 excitations. The corresponding formula

for S = 0 are obtained by substituting Π̃0(q, ω) for Π̃2(q, ω) and replacing the explicit factor

of 2
3

in front of the anharmonic interaction by 5
3
.
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Momentum Transfers (q,q,q)

The body diagonal of the Brillouin zone is a three-fold rotation axis. Thus, for momentum

transfers along the body diagonal of the Brillouin zone qx = qy = qz = q, the matrix

Πi,j
2 (q, ω) is invariant under all the permutations of the summation indices kx, ky and kz.

Hence, Πi,j
2 (q, ω) has the symmetry

Π1,2
2 (q, ω) = Π1,3

2 (q, ω) = Π2,3
2 (q, ω) (52)

and

Π1,1
2 (q, ω) = Π2,2

2 (q, ω) = Π3,3
2 (q, ω) (53)

Therefore, the expression for the x− y two-phonon propagator simplifies to

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(α)
σ,q (k : ω)

+ δσ,σ′
2 I3
3 N

D(0)(α)
σ,q (k : ω)

1

1− Π1,1
2 (q, ω)− 2Π1,2

2 (q, ω)
D

(0)(β)
σ′,q (k′ : ω)

×
[ 1

3

∑
i,j

F i ∗
q

2
+k

F i ∗
q

2
−k F

j
q

2
+k′

F j
q

2
−k′

]
+ δσ,σ′

2 I3
3 N

D(0)(α)
σ,q (k : ω)

1

1− Π1,1
2 (q, ω) + Π1,2

2 (q, ω)
D

(0)(β)
σ′,q (k′ : ω)

×
[∑

i

F i ∗
q

2
+k
F i ∗

q

2
−kF

i
q

2
+k′
F i

q

2
−k′ −

1

3

∑
i,j

F i ∗
q

2
+k
F i ∗

q

2
−kF

j
q

2
+k′
F j

q

2
−k′

]
(54)

The poles of the two-phonon propagator yield the two-phonon excitation spectrum of the

system with momentum (q, q, q). In addition to the continuum of excitations associated with

the poles of the non-interacting propagators, there are poles associated with the zeros of the

denominators of the second term

1 − Π1,1
2 (q, ω) − 2 Π1,2

2 (q, ω) (55)

and the third term

1 − Π1,1
2 (q, ω) + Π1,2

2 (q, ω) (56)

The frequencies at which the denominators become zero are the frequencies of the collec-

tive excitations of the system. If the frequencies fall within the continuum of two-phonon

excitations (which represents the scattering states) such that

=m
∑
k,α

D(0),(α)
σ,q (k : ω) 6= 0 (57)
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then the collective are two-phonon resonances. Otherwise, if the frequencies are outside the

continuum, so that

=m
∑
k,α

D(0),(α)
σ,q (k : ω) = 0 (58)

then the collective excitations are two-phonon bound states. The weight of each of the two

modes can be found by Taylor expanding about the frequency of each mode to find the

residue. The frequency of the S = 2 mode originating from the divergence of the second

term in eqn.(54) is given by the frequencies at which the denominator expressed in eqn.(55)

vanishes. The frequencies are given by the solutions of

1 =
2 I4
3 N

∑
k,α

[ 1

3

∑
i,j

F j
q

2
+k

F j
q

2
−k

F i ∗
q

2
+k

F i ∗
q

2
−k

]
D(0)(α)
σ,q (k : ω) (59)

Since the product of the form factors in the denominator of the the second term in the

propagator is the same as in the numerator, which we will denote by M , the residue at the

pole is given by the ratio of

−

∑
k,α M

[
D

(0),(α)
σ,q (k : ω)

]2
∂
∂ω

[ ∑
k,α M D

(0),(α)
σ,q (k : ω)

] (60)

so one finds (at T = 0) that the pole has residue of strength of approximately one. It can

be seen that the expression for the form factor in the denominator is similar to the factor in

the numerator. Thus, any bound states associated with a zero of this denominator should

represent a non-degenerate mode.

We have evaluated the right-hand side of eqn.(59) for the temperatures kBT
~ω0

= 0, kBT
~ω0

=

2.5 and kBT
~ω0

= 5 with the q values (π/a), (39π/40a), (19π/20a), (7π/8a), (3π/4a) and with

I4
2
√
6~ω0

= 0.145. The theoretical results are shown in fig.(3). The figure shows the results

for a range of ω near the upper edge of the two-phonon continuum. The characteristic

frequencies appearing in the plots are related to the van-Hove singularities in the density of

two-phonon excitations with specified center of mass momentum q. The dispersion of the

van-Hove singularities is shown in the upper panel of fig.(4). The relation to the van-Hove

singularities is expected since the imaginary part of Π1,1
2 (q, ω) + 2 Π1,2

2 (q, ω) merely differs

from two-phonon density of states due to the presence of the form factors and since the

real and imaginary parts of the functions are related via a Hilbert transform. For each

temperature, the maxima are found at frequencies at the top of the two-phonon continuum
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and the maxima become more pronounced and diverge as q approaches (π/a). Furthermore,

the right-hand side increases with increasing temperatures due to the presence of the Bose-

Einstein distribution functions present in D
(0)(α)
σ,q (k : ω). Therefore, one concludes from

eqn.(59) that the minimal value of I4 required to produce a non-degenerate and symmetric

ILM at a fixed q value is smaller at an elevated temperature than the minimal value required

to produce the ILM at T = 0.
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FIG. 3. (Color on line) The frequency dependence of the real part of Π1,1
2 (q, ω) + 2 Π1,2

2 (q, ω)

for various temperatures and the q values along the body-diagonal given by (π/a), (39π/40a),

(19π/20a), (7π/8a), (3π/4a). (Top Left Panel) The results evaluated at kBT
~ω0

= 0. (Top Right

Panel) The results found with kBT
~ω0

= 2.5. (Bottom Panel) The numerical results evaluated with

kBT
~ω0

= 5.

The dispersion relation for the non-degenerate (symmetric) ILM with S = 0 is found

from the zeros of eqn.(55) by simply replacing the Π2’s by Π0’s. The value of the interaction
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I4 chosen as I4
2
√
6 ~ω0

= 0.145, but for this value of I4 the ILMs that form at T = 0 only

occur in the immediate vicinity of the point q = (π/a) and are only slightly separated

from the van-Hove singularity at the top edge of the two-phonon continuum. The top right

panel in fig.(4) shows the extrema of the two-phonon continuum at which one finds the van-

Hove singularities in the (non-interacting) two-phonon density of states. The continuum

is bounded from above by the van-Hove singularity denoted by the full blue line, and is

bounded from below by the phonon frequency (full red line). The positions of the other

van-Hove singularities are denoted by the dotted lines.

At the higher temperatures of either kBT
~ω0

= 2.5 or kBT
~ω0

= 5, one finds that the S = 0 and

S = 2 ILM dispersion relations have spread over significantly larger ranges of q. The branches

of the dispersion relations are shown in the bottom left and right panels of fig.(4), for both

the non-degenerate and the doubly-degenerate modes (which originate from the third term

of the two-phonon propagator). The non-degenerate mode has a higher energy than the

doubly-degenerate modes. Also, as q is reduced, the non-degenerate ILM approaches the

upper edge of the two-phonon continuum in an almost asymptotic manner but terminates

on it. Our results show that at a fixed value of q and with increasing temperature, first

the S = 0 ILMs form and then the S = 2 ILMs form at a higher temperature. This is

in qualitative agreement with the first set of experiments of Manley et al. [19] which only

found ILMs at elevated temperatures.

We now examine the collective modes which originate from the third term of the two-

phonon propagator given in eqn.(54). The frequencies of the (S=2) collective modes are

given by the frequencies at which the expression in eqn.(56) vanishes. The frequencies are

given by the solutions of

1 =
I4

3 N

∑
k,α

[∑
i

F i ∗
q

2
+k
F i ∗

q

2
−kF

i
q

2
+k
F i

q

2
−k −

1

3

∑
i,j

F i ∗
q

2
+k
F i ∗

q

2
−kF

j
q

2
+k
F j

q

2
−k

]
D(0)(α)
σ,q (k : ω) (61)

It should be noted that the products of form factors in the denominator of the third term

in the two-phonon propagator differ from the corresponding product in the numerator by

a factor of two. Therefore, any mode originating from the zero of the denominator of the

third term is expected to be doubly-degenerate. This is in accord with the expectations

for the excitations of a simple cubic system for wave vectors on a high-symmetry axis with

three-fold symmetry [45].

We have performed the same steps that were undertaken in the investigation of the
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FIG. 4. (Color on line) The positions of the van-Hove singularities for q values along the body

diagonal of the Brillouin zone (q, q, q) (Top Panel). The lower two panels show the dispersion

relations of the ILMs along the body diagonal of the Brillouin zone for the non-degenerate mode.

The dispersion relations for S = 0 are marked by open triangles while the S = 2 dispersion relations

are denoted by open squares. The branches of non-degenerate modes have higher energies than the

doubly-degenerate modes. (Bottom Left Panel) The dispersion relations calculated at kBT
~ω0

= 2.5.

(Bottom Right Panel). The dispersion relations evaluated with kBT
~ω0

= 5.

degenerate mode described by eqn.(61). The real part of Π1,1
2 (q, ω) − Π1,2

2 (q, ω) has been

evaluated at the same set of temperatures and q values as in fig.(3), i.e. kBT
~ω0

= 0, kBT
~ω0

= 2.5,
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and kBT
~ω0

= 5. Figure(5) shows the results for various q values given by (π/a), (39π/40a),

(19π/20a), (7π/8a), (3π/4a). It should be noted that the van-Hove singularity at the top

of the two-phonon continuum does not yield a peak, since the combination of form factors

vanish at the position of the highest van-Hove singularity. Hence, the top most peak is

generally at an energy below the upper edge of the continuum. It can be seen that the

magnitude of the function increases as the temperature increases. Furthermore, the peak

approaches the upper edge of the continuum and diverges when q approaches (π/a).
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FIG. 5. (Color on line) The ω dependence of the real part of Π1,1
2 (q, ω) − Π1,2

2 (q, ω) for q along

(q, q, q) with q values given by (π/a), (39π/40a), (19π/20a), (7π/8a), (3π/4a). (Top Left Panel)

The real part evaluated at kBT
~ω0

= 0. (Top Right Panel) The real part of the correlation function

evaluated at the temperature kBT
~ω0

= 2.5. (Bottom Panel) The real part evaluated with kBT
~ω0

= 5.

The ILM dispersion relation for the degenerate mode with q along the (q, q, q) direction

has been evaluated with the same value of the interaction strength I4
2
√
6~ω0

= 0.145 and for

the same set of temperatures as in fig.(3). At zero temperature, the branches of S = 0
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and S = 2 ILMs are ignorable since they only occur for an insignificant range of q values.

In contrast to the case of zero temperature, for the temperatures given by kBT
~ω0

= 2.5 and

kBT
~ω0

= 5 the branches of S = 0 and S = 2 ILMs are spread over significant ranges of q. The

results are shown in fig.(4). Generally, the doubly-degenerate modes have lower energies

than the non-degenerate modes. In contrast to the dispersion of the non-degenerate mode,

the dispersion relation for the doubly-degenerate ILM enters into the two-phonon continuum.

For q values where the dispersion relation extends inside the continuum, the ILM exists as

a narrow resonance.

The branch of degenerate ILMs has the same energy as the non-degenerate branch at the

point R where q = (π/a) since the off-diagonal matrix elements of Πi,j
S (q, ω) vanish at that

point. The vanishing of the off-diagonal matrix elements and the three-fold degeneracy at R

is expected since the point R is invariant under the entire cubic symmetry group, as is the Γ

point. The branch of doubly-degenerate modes separates from the non-degenerate mode and

drops to lower energies when q moves away from (π/a). As shall be seen when we examine the

ILM wave functions, in the continuum limit the non-degenerate ILM has a symmetric wave

function (x2 + y2 + z2) without nodes but the doubly-degenerate modes have nodes in their

wave functions. These textures of the wave functions are dictated by specific combinations

of the form factors. The existence of the nodes implies that the non-degenerate modes have

higher kinetic energies and, therefore, have smaller “binding energies” as measured from the

upper boundary of the two-phonon continuum. Thus, the existence of nodes accounts for

the difference in the energies of the two types of ILMs.

Our results for both the degenerate and non-degenerate modes, show that the ILMs form

preferentially for q values near the corner of the Brillouin zone, and they split off from

the upper edge of the two-phonon continuum. The reason for ILMs to preferentially form

near this q value can be traced back to the convergence of several van-Hove singularities

in the (non-interacting) two-phonon density of states at the upper-edge of the two-phonon

continuum. This confluence occurs when the center of mass momentum q approaches the

zone boundary. For the quantized lattice, the binding energy is defined as the energy splitting

of the ILM from the top of the two-phonon continuum. This is to be contrasted with the

definition used in classical theories where the “binding energy” is defined to be the difference

in the energies of the ILM and the largest acoustic phonon. Hence, we see that when an

quantum ILM first forms, it has a sizeable energy separation from the largest acoustic phonon
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frequency. Plus, as q moves away from the corner of the Brillouin zone, the binding energies

of the ILMs decrease and ILMs’ energies approach the upper boundary of the two-phonon

continuum. However, only the degenerate ILMs continue beyond the boundary where they

exist as resonances.

Momentum Transfers (q,q,0)

The axis qz = 0, qx = qy = q is a two-fold rotation axis. Thus, for momentum transfers

along the (q, q, 0) direction, the symmetry of the function Πi,j
2 (q, ω) is reduced from the

(q, q, q) case considered previously. The symmetry of Πi,j
2 (q, ω) results in

Π1,2
2 (q, ω) 6= Π1,3

2 (q, ω) = Π2,3
2 (q, ω) (62)

and

Π1,1
2 (q, ω) = Π2,2

2 (q, ω) 6= Π3,3
2 (q, ω) (63)

Due to this symmetry, the inverse matrix becomes

(
Ĩ − Π̃2(q, ω)

)−1
=

1

2

1

1 − Π1,1
2 (q, ω) + Π1,2

2 (q, ω)


1 −1 0

−1 1 0

0 0 0


+

1

2

1

Det2(q, ω)

×


1− Π3,3

2 (q, ω) 1− Π3,3
2 (q, ω) 2 Π1,3

2 (q, ω)

1− Π3,3
2 (q, ω) 1− Π3,3

2 (q, ω) 2 Π1,3
2 (q, ω)

2 Π3,1
2 (q, ω) 2 Π3,1

2 (q, ω) 2
(

1− Π1,1
2 (q, ω)− Π1,2

2 (q, ω)
)


(64)

where

Det2(q : ω) =
(

1 − Π3,3
2 (q, ω)

) (
1 − Π1,1

2 (q, ω) − Π1,2
2 (q, ω)

)
− 2

∣∣∣ Π1,3
2 (q, ω)

∣∣∣2 (65)

It should be noted that the two matrices on the right-hand side have elements (i, j) which are

simply related to the transpose of the matrix formed from the derivatives of the respective

denominators with respect to Πi,j(q, ω). Thus, the two-phonon propagator reduces to the
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form

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(α)
σ,q (k : ω)

+ δσ,σ′
2 I3
3 N

D(0)(α)
σ,q (k : ω)

1

1− Π1,1
2 (q, ω) + Π1,2

2 (q, ω)
D

(0)(β)
σ′,q (k′ : ω)

×
[ 1

2
( F x∗

q

2
+k
F x ∗

q

2
−k − F y∗

q

2
+k
F y ∗

q

2
−k

) ( F x
q

2
+k′
F x

q

2
−k′ − F y

q

2
+k′
F y

q

2
−k′

)
]

+ δσ,σ′
2 I3
3 N

D(0)(α)
σ,q (k : ω)

( M2(q, ω)

Det2(q, ω)

)
D

(0)(β)
σ′,q (k′ : ω) (66)

where

M2(q, ω) = F z ∗
q

2
+k
F z ∗

q

2
−k

(
1− Π1,1

2 (q, ω)− Π1,2
2 (q, ω)

)
F z

q

2
+k′
F z

q

2
−k′

+ ( F x ∗
q

2
+k
F x ∗

q

2
−k + F y ∗

q

2
+k
F y ∗

q

2
−k

)
1

2

(
1− Π3,3

2 (q, ω)
)

× ( F x
q

2
+k′
F x

q

2
−k′ + F y

q

2
+k′
F y

q

2
−k′

)

+ (F x ∗
q

2
+k
F x ∗

q

2
−k + F y ∗

q

2
+k
F y ∗

q

2
−k

) Π1,3
2 (q, ω) (F z

q

2
+k′
F z

q

2
−k′)

+ (F z ∗
q

2
+k
F z ∗

q

2
−k) Π3,1

2 (q, ω)∗ (F x
q

2
+k′
F x

q

2
−k′ + F y

q

2
+k′
F y

q

2
−k′

) (67)

Since the denominator of the second term in the two-phonon propagator

1 − Π1,1
2 (q, ω) + Π1,2

2 (q, ω) (68)

can be re-written as

1− 2 I4
3 N

∑
k,α

[ 1

2
( F x ∗

q

2
+k
F x ∗

q

2
−k − F y ∗

q

2
+k
F y ∗

q

2
−k

) ( F x
q

2
+k
F x

q

2
−k − F y

q

2
+k
F y

q

2
−k

)
]
D(0)(α)
σ,q (k : ω) (69)

it can be seen that the expression for the form factor in the denominator is similar to

the factor in the numerator. Therefore, any bound state associated with a zero of this

denominator would represent a non-degenerate mode. The denominator of the third term [

Det2(q : ω) ] may produce either zero, one or two modes.

Similar to our consideration of the (q, q, q) high-symmetry line, we have evaluated the

right-hand side of eqn.(69) for the same temperatures and the same set of q values (π/a),

(39π/40a), (19π/20a), (14π/16a), (6π/8a) used previously. The temperature dependence is

similar to that found for the (q, q, q) direction. The peaks of Π1,1
2 (q, ω) − Π1,2

2 (q, ω) located

near the upper edge of the continuum are shown in the bottom panel of fig.(6). It can be seen

that the peaks are non-dispersive, are generally within the continuum and increases slowly

as q approaches (π/a). However, the peaks are considerably lower and broader compared
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FIG. 6. (Color on line) The ω-dependence of functions in the denominators of the various parts of

the two-phonon propagators for various q along (q, q, 0) with q values given by (π/a), (39π/40a),

(19π/20a), (7π/8a), (3π/4a) and kBT
~ω0

= 5. The imaginary parts of Πi,j
S (q, ω) have been discarded.

(Top Left Panel). The frequency dependence of the denominator (Det2(q, ω)) for S = 2. (Top

Right Panel) The frequency dependence of the S = 0 denominator Det0(q, ω). (Bottom Panel).

The frequency-dependence of the real part of Π1,1
2 (q, ω) − Π1,2

2 (q, ω).

with the case when q is directed along the body-diagonal. For the value of the interaction

strength I4
2
√
6~ω0

= 0.145, we find that (x2−y2) ILMs do not form at the highest temperature

kBT
~ω0

= 5. The relatively small value of the maximum of Π1,1
2 (q, ω) − Π1,2

2 (q, ω) at the top

of the two-phonon continuum is attributable to the positions of the van-Hove singularities,

shown in fig.(7). Although the van-Hove singularities do coalesce at the Brillouin zone

boundary, they coalesce in two groups of four and so the degeneracy at the upper edge of

the two-phonon continuum is significantly reduced for the line (q, q, 0) as compared to the
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higher-symmetry line (q, q, q). The frequency dependencies of the DetS(q, ω) are shown in

the upper two panels of fig.(6). At the M point where q = (π/a), the off-diagonal matrix

elements Πi,j
S (q, ω) vanish, hence DetS(q, ω) factorizes. Therefore at the point q = (π/a),

the possible ILMs with quasi-spin S are restricted to the pair of degenerate (x2 + y2) and

(x2 − y2) modes and a non-degenerate z2 mode [45]. For other values of q, the off-diagonal

matrix elements on the line Σ are non-zero and so the degeneracy of the (x2 − y2) mode

and the mode which may evolve from the (x2 + y2) mode would be lifted. At our highest

temperature and with the chosen value of the interaction strength, only the ILM exist which

develops from the Πz,z
S (q, ω) mode at q = (π/a). The ILM dispersion relations are shown in

fig.(7). Other branches of ILMs do exist in our model at low temperatures if the interaction
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FIG. 7. (Color on line) (Left Panel) The (ω, q) phase space for the (q, q, 0) direction. The continuum

is bounded from above by the van-Hove singularity denoted by the full blue line, and is bounded

from below by the phonon frequency (full red line). The positions of the other van-Hove singularities

are denoted by dotted lines. (Right Panel) The dispersion relation for the mixed character ILMs.

strength is significantly higher, but values of the interaction strengths that are larger than

the Debye frequency should be regarded as unphysical.
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Momentum Transfers (q,0,0)

For momentum transfers (q, 0, 0) the symmetry of the function Πi,j
2 (q, ω) is reduced from

the case (q, q, q) considered earlier, so we have

Π1,2
2 (q, ω) = Π1,3

2 (q, ω) 6= Π2,3
2 (q, ω) (70)

and

Π1,1
2 (q, ω) 6= Π2,2

2 (q, ω) = Π3,3
2 (q, ω) (71)

This symmetry is similar to the symmetry found for (q, q, 0). Therefore, the form of the two-

phonon propagator along (q, 0, 0) when expressed in terms of Πi,j
2 (q, ω) reduces to the form

found for (q, q, 0), except that the indices x and z are interchanged. However, the functions

Πi,j
2 (q, ω) are expected to have quite different frequency dependencies when evaluated along

the two high-symmetry axes, as can be seen from the respective two-phonon density of states.

Due to the reduced symmetry, the two-phonon propagator reduces to the form

D
(α),(β)
σ,σ′;q (k; k′ : ω) = ∆k−k′ δ

α,β
σ,σ′ D

(0)(α)
σ,q (k : ω)

+ δσ,σ′
2 I3
3 N

D(0)(α)
σ,q (k : ω)

1

1− Π3,3
2 (q, ω) + Π3,2

2 (q, ω)
D

(0)(β)
σ′,q (k′ : ω)

×
[ 1

2
( F y∗

q

2
+k
F y ∗

q

2
−k
− F z∗

q

2
+k
F z ∗

q

2
−k ) ( F y

q

2
+k′
F y

q

2
−k′
− F z

q

2
+k′
F z

q

2
−k′ )

]
+ δσ,σ′

2 I3
3 N

D(0)(α)
σ,q (k : ω)

( M2(q, ω)

Det2(q, ω)

)
D

(0)(β)
σ′,q (k′ : ω) (72)

where, for this case, the determinant has the new form of

Det2(q : ω) =
(

1 − Π1,1
2 (q, ω)

) (
1 − Π3,3

2 (q, ω) − Π3,2
2 (q, ω)

)
− 2

∣∣∣ Π3,1
2 (q, ω)

∣∣∣2 (73)

and the matrix element also has a different form which is given by

M2(q, ω) = F x ∗
q

2
+k
F x ∗

q

2
−k

(
1− Π3,3

2 (q, ω)− Π3,2
2 (q, ω)

)
F x

q

2
+k′
F x

q

2
−k′

+ ( F y ∗
q

2
+k
F y ∗

q

2
−k

+ F z ∗
q

2
+k
F z ∗

q

2
−k )

1

2

(
1− Π1,1

2 (q, ω)
)

× ( F y
q

2
+k′
F y

q

2
−k′

+ F z
q

2
+k′
F z

q

2
−k′ )

+ (F y ∗
q

2
+k
F y ∗

q

2
−k

+ F z ∗
q

2
+k
F z ∗

q

2
−k) Π3,1

2 (q, ω) (F x
q

2
+k′
F x

q

2
−k′)

+ (F x ∗
q

2
+k
F x ∗

q

2
−k) Π1,3

2 (q, ω) (F y
q

2
+k′
F y

q

2
−k′

+ F z
q

2
+k′
F z

q

2
−k′) (74)
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Since the denominator of the second term in the two-phonon propagator

1 − Π3,3
2 (q, ω) + Π3,2

2 (q, ω) (75)

can be rewritten as

1− 2 I4
3 N

∑
k,α

[ 1

2
( F y ∗

q

2
+k
F y ∗

q

2
−k
− F z ∗

q

2
+k
F z ∗

q

2
−k ) ( F y

q

2
+k
F y

q

2
−k
− F z

q

2
+k
F z

q

2
−k )

]
D(0)(α)
σ,q (k : ω) (76)

it can be seen that the expression for the form factor in the denominator is similar to the

factor in the numerator. Thus, any bound states associated with a zero of this denominator

should represent a non-degenerate mode. Likewise, the vanishing of the denominator of the

third term Det2(q : ω) may lead to either, two, one or zero modes. If two modes are formed,

they are expected to be non-degenerate.

We have examined the condition necessary for ILMs to exist for q vectors along the

(q, 0, 0) direction. The frequencies of an ILM should given by the solution of either eqn.(75)

or the vanishing of the determinant given in eqn.(73). The results of the right-hand side
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FIG. 8. (Color on line) The frequency dependence of the denominators of the two-phonon propaga-

tor (discarding all imaginary parts) evaluated on the line (q, 0, 0) with the q values given by (π/a),

(39π/40a), (19π/20a), (7π/8a), (3π/4a) for kBT
~ω0

= 5. (Left Panel) The frequency dependence of

Det0(q, ω) for the S = 0 excitations in which all imaginary parts of Πi,j
0 (q, ω) have been neglected.

(Right Panel) The frequency dependence of the real part of Π3,3
2 (q, ω)−Π3,2

2 (q, ω).

of eqn.(75) are shown in fig.(8) for the same q values as considered previously. As can be
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seen, the maxima have very small values when compared with the maxima found for the

the high-symmetry lines (q, q, q) and (q, q, 0). This implies that a much stronger non-linear

interaction or higher temperatures would be needed to stabilize a branch of (y2− z2) ILMs.

The denominator Det0(q, ω) is also shown in the left panel of fig.(8) which shows that only

one branch of S = 0 ILMs form for this direction with the temperatures and strength of

I4 chosen. The reduction in number of branches of ILMs is attributed to the reduction in

the number of van-Hove singularities that coalesce at q = (π/a). Since Π3,1
S (q, ω) vanishes

at q = (π/a), the determinant factorizes and it can be recognized that at q = (π/a) the

mode has (y2+z2) character. The ILM dispersion relation and the positions of the van-Hove

singularities in the (ω, q) phase space are shown in fig.(9).
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The dispersion relation for the S = 0 ILM.

THE ILM WAVE FUNCTIONS

Quantized ILMs are described as many-body states | Ψq,σ >, so their wave functions are

linear superpositions of wave functions with different numbers of excitations. Here, we shall

determine the wave functions corresponding to the ILMs found in the Ladder Approximation.
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The ground state | Φ0 > satisfies the eigenvalue equation

Ĥ | Φ0 > = E0 | Φ0 > (77)

where E0 is the ground state energy. The ILM state | Ψq,σ > also satisfies the eigenvalue

equation

Ĥ | Ψq,σ > = Eq,σ | Ψq,σ > (78)

where Eq,σ is the energy of the ILM state.

The ILMs found in the Ladder Approximation are described as excitations based on

the ground state, but are linear superpositions which includes different numbers of phonon

excitations

| Ψq,σ > =
∑
α,k

C(α)
q,σ (k) aa1

a1(
q

2
+k),p1

aa2
a2(

q

2
−k),p2

| Φ0 > (79)

where α ≡ (a1, a2) and σ ≡ (p1, p2). The complex coefficients C
(α)
q,σ (k) can be found by

projecting the ILM state onto the components with fixed numbers of (harmonic) phonons

C(α)
q,σ (k) = < Φ0 | aa2 †a2(

q

2
−k),p2

aa1 †
a1(

q

2
+k),p1

| Ψq,σ > (80)

By taking the appropriate matrix elements of the eigenvalue equations, one can show that(
Eq,σ − E0 − a1 ~ω q

2
+k − a2 ~ω q

2
−k

)
C(α)
q,σ (k)

= < Φ0 | [ aa2 †
a2(

q

2
−k),p2

aa1 †
a1(

q

2
+k),p1

, Ĥint ] | Ψq,σ > (81)

The expectation of the commutator can be evaluated in the Ladder Approximation, to yield

(for p1 6= p2, i.e. S = 2)

C(α)
q,σ (k) =

2 I4
3 N

∑
i

F i
q

2
+k
F i

q

2
−k D

(0),(α)
q,σ (k : ω)

∑
k′,γ

F i ∗
q

2
+k′
F i ∗

q

2
−k′C

(γ)
q,σ (k′) (82)

where ω is the excited energy which is fixed by

~ ω = Eq,σ − E0 (83)

On defining the components of a vector Φi ∗
q,σ via

Φi ∗
q,σ =

∑
k′,γ

F i ∗
q

2
+k′
F i ∗

q

2
−k′C

(γ)
q,σ (k′) (84)
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one can find that the self-consistency condition is given by the homogeneous matrix equation[
Ĩ − Π̃∗2(q, ω)

]
Φ∗q,σ = 0 (85)

For the above equation to have a solution, the determinant of the matrix must vanish.

Therefore, the excitation energy of the ILM must satisfy exactly the same condition found

from considerations of the two-phonon propagator. Since the matrix equation is homoge-

neous, the eigenvector Φ∗q,σ is only defined up to a normalization and an arbitrary phase

factor. Once the eigenvector has been obtained, the un-normalized expansion coefficients

are given by

C(α)
q,σ (k) =

2 I4
3 N

∑
i

F i
q

2
+k
F i

q

2
−k D

(0),(α)
q,σ (k : ω) Φi ∗

q,σ (86)

Since the center of mass wave function is normalized to unity, the many-body relative wave

function is subject to the normalization condition∑
k,α

| C(α)
q,σ (k) |2 = 1 (87)

A measure of the reasonableness of the Ladder Approximation is given by the ratio of C−−q,σ

to C++
q,σ . The coefficient C−−q,σ can be considered as a measure of the fluctuations in the total

number of phonons and when it vanishes the Ladder Approximation reduces to the T -matrix

approximation which becomes exact.

Since ILMs preferentially form near the high-symmetry point (π, π, π), we have examined

the relative coordinate part of the two-phonon wave function for momentum transfers on

the high-symmetry line (q, q, q). For q on this high-symmetry line, we found that the ILMs

consist of a non-degenerate and a doubly-degenerate mode.

The excitation energy of the doubly-degenerate excitation is given by the solution of

1 − Π1,1
2 (q, ω) + Π1,2

2 (q, ω) = 0 (88)

These excitations correspond to linear combinations of the two eigenvectors
Φ1 ∗
q,σ

Φ2 ∗
q,σ

Φ3 ∗
q,σ

 =
1√
2


1

−1

0

 (89)

and 
Φ1 ∗
q,σ

Φ2 ∗
q,σ

Φ3 ∗
q,σ

 =
1√
6


1

1

−2

 (90)
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Thus, the un-normalized expansion coefficients for the two degenerate excitations are given

by

C(α)
q,σ (k) =

2 I4
3 N

D(0),(α)
q,σ (k : ω)

1√
2

(
F x

q

2
+k
F x

q

2
−k − F y

q

2
+k
F y

q

2
−k

)
(91)

and

C(α)
q,σ (k) =

2 I4
3 N

D(0),(α)
q,σ (k : ω)

1√
6

(
F x

q

2
+k
F x

q

2
−k + F y

q

2
+k
F y

q

2
−k
− 2 F z

q

2
+k
F z

q

2
−k

)
. (92)

The non-degenerate ILM with S = 2 has an excitation energy ω which is determined

from

1 − Π1,1
2 (q, ω) − 2 Π1,2

2 (q, ω) = 0 (93)

This eigenvalue corresponds to the eigenvector
Φ1 ∗
q,σ

Φ2 ∗
q,σ

Φ3 ∗
q,σ

 =
1√
3


1

1

1

 (94)

and so the un-normalized components of the (x2 + y2 + z2) wavefunction are given by

C(α)
q,σ (k) =

2 I4
3 N

D(0),(α)
q,σ (k : ω)

1√
3

(
F x

q

2
+k
F x

q

2
−k + F y

q

2
+k
F y

q

2
−k

+ F z
q

2
+k
F z

q

2
−k

)
(95)

We have evaluated the relative coordinate, two-phonon creation part of the S = 0 ILM

wave function given in eqn.(95) corresponding to the non-degenerate symmetric (x2+y2+z2)

mode. Figure(10) shows the results for T = 0 and for the value of I4 given by I4
2
√
6~ω0

= 0.7458.

We have chosen a very large value of the interaction strength in order to illustrate the

spatial dependence of the wave functions compactly. Even with this very large value of

the interaction, the ratio of C−−q,σ to C++
q,σ is only of the order of ∼ 3 × 10−2, indicating

that the resonant part of the anharmonic interaction still dominates over the non-resonant

part, so the Ladder Approximation is still expected to lead to reasonable results. The left

plot indicates the wave function at q = (π/a)(1, 1, 1). Similarly the right plot shows the

wave function at q = (38π/40a)(1, 1, 1). It is clearly seen that the wave function of this

non-degenerate mode is symmetric under rotations of π
4
. Furthermore, the amplitude of the

relative wave function has an envelope that decreases exponentially with distance from the

center. The localization length is of the order of a lattice spacing, since we have chosen a

very large interaction strength and since the localization length decreases as the interaction

strength is increased. The wave function with q = (π/a)(1, 1, 1) has a faster decay compared
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to q = (38π/40a)(1, 1, 1). We relate the q-dependence of the decay to the q-dependence of the

binding energy, since the localization length can be shown to go to infinity when the binding

energy approaches zero. For q = (π/a)(1, 1, 1), it is seen that the wave function goes to zero

at every alternate site, which is due to a complete destructive interference originating from

k values close to pairs of the degenerate van-Hove singularities. The destructive interference

is no longer complete when q is moved away from (π/a). The reason for the incomplete

interference is that the van-Hove singularities have their degeneracies lifted, therefore, the

amplitudes of Cα
q,σ(k) are no longer equal at the k positions of the singularities.
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FIG. 10. (Color on line) A contour plot of the (un-normalized) relative two-phonon creation part

of the symmetric (x2 + y2 + z2) ILM wave function Ψq
++(R) corresponding to eqn.(95) plotted at

lattice sites in the plane Rz = 0 for q = (π/a)(1, 1, 1) (Left) and for q = (38π/40a)(1, 1, 1) (Right).

We have evaluated the wave functions for the degenerate pair of S = 0 excitations cor-

responding to the S = 0 counterparts of eqn.(91) and eqn.(92). Figure(11) shows the

two-phonon creation part of the S = 0 ILM’s relative coordinate wave function Ψq
++(R)

corresponding to the antisymmetric (x2 − y2) mode given in eqn.(91) for T = 0 and a large

interaction strength I4
2
√
6~ω0

= 0.7458. The wavefunctions are plotted in the (x, y) plane.

The left plot shows the wavefunction for q = (π/a)(1, 1, 1) and similarly the right plot shows

the wave function at a smaller center of mass momentum q = (38π/40a)(1, 1, 1). It is seen

that this mode is antisymmetric under the interchange (x ↔ y) and, therefore, has a line

of nodes in the (x, y) plane. Furthermore, one sees that the wave function has an envelope

which decays more slowly when q is moved away from (π/a). Also, one sees that the inter-
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ference at the alternate sites becomes incomplete for q 6= (π/a), similar to the results for

the non-degenerate mode.
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FIG. 11. (Color on line) A contour plot of the (un-normalized) relative two-phonon creation part

of the S = 0 (x2 − y2) ILM wave function Ψq
++(R) corresponding to eqn.(91) plotted at lattice

sites in the plane Rz = 0 for q = (π/a)(1, 1, 1) (Left) and for q = (38π/40a)(1, 1, 1) (Right).

The degenerate partner S = 0 (x2 + y2 − 2z2) wavefunction [corresponding to eqn.(92)]

is plotted in the (x, y) plane in fig.(12) for T = 0 and I4
2
√
6~ω0

= 0.7458. The left plot shows

the ILM wavefunction Ψq
++(R) for q = (π/a)(1, 1, 1) and the right plot shows the wave

function for q = (38π/40a)(1, 1, 1). The (x2 + y2 − 2z2) wave function at q = (π/a), when

plotted in the (x, y) plane is identical to the (x2 + y2 + z2) wave function at q = (π/a). It

is seen that the wave function is symmetric under rotations through π
2

around the z-axis.

The only point in the (x, y) plane where the nodes are commensurate with the underlying

lattice is the point x = y = z = 0, so the (x2 + y2 − 2z2) wavefunction is always identically

zero at the origin. In addition to a discrete “ring” of commensurate points found on a plane

of constant z, the nodes of the (x2 + y2 − 2z2) wavefunction can be easily seen by plotting

the wave function in the plane x − y = 0. Since this is simply related to the projection

of the (x2 − y2) wave function on to the (x, y) plane, we shall not plot that here. The

wave function has an exponentially decaying envelope which, as explained previously, has a

q-dependent localization length that is governed by the binding energy. Likewise, the degree

of destructive interference is q-dependent and is governed by the relative energies of the

van-Hove singularities.
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FIG. 12. (Color on line) A contour plot of the (un-normalized) relative two-phonon creation part

of the S = 0 (x2 + y2 − 2z2) ILM wave function Ψq
++(R) corresponding to eqn.(92) plotted at

lattice sites in the plane Rz = 0 for q = (π/a)(1, 1, 1) (Left) and for q = (38π/40a)(1, 1, 1) (Right).

DISCUSSION

We have examined the lowest-energy members of the quantized ILMs of a generalization

of the Fermi-Pasta-Ulam Hamiltonian to three-dimensions. In the generalized Fermi-Pasta-

Ulam model, the acoustic phonons are degenerate with respect to the polarization index

so the phonons can be regarded as quasi-spin one excitations. The lowest energy ILMs are

similar in form to multi-phonon bound states [38], except that the number of phonons is not

conserved. A simple projection of the low-energy excitations on to manifold of states with

a specific number of phonons leads to a violation of Goldstone’s theorem [39]. In order to

avoid this violation, we found it is necessary to include states in which the total number of

phonons is allowed to either increase or decrease by two. We calculate the lowest members of

the ILM excitations using the Ladder Approximation. The Ladder Approximation augments

the space of a fixed number of phonons and, in this respect, is consistent with our treatment

of the Goldstone modes. The ILMs can be categorized as having a quasi-spin of either

S = 2 or S = 0 and have other internal quantum numbers. We find that ILMs can form

in three-dimensions at zero temperature, but only if the interaction exceeds a minimum

value. We find that, as the temperature is raised, the magnitude of the minimal interaction

required to stabilize the ILM is reduced. When the ILMs first form they split off from the
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top of the two-phonon continuum. The S = 0 ILMs form for lower values of the interaction

than the S = 2 ILMs. The ILMs form preferentially for center of mass momentum q at the

corner of the Brillouin zone. The tendency of ILMs to form at this momentum is traced to

a confluence of van-Hove singularities in the (non-interacting) two-phonon density of states

at the top of the two-phonon continuum for this q value. We have examined the ILM wave

functions and find that the relative coordinate part of the wave functions have symmetries

that are dictated by the internal quantum numbers. The (degenerate) asymmetric ILMs

wave functions exhibit nodes which have the effect of increasing their kinetic energies relative

to the (non-degenerate) symmetric (x2+y2+z2) ILM and, thus, the nodes are responsible for

the splitting between the branches of the ILM dispersion relations. This splitting vanishes

at q = (π/a) due to a destructive interference in the wave function which originates from

the k vectors associated with pairs of van-Hove singularities. As a result, for this particular

value of the center of mass momentum q, the symmetric and antisymmetric modes vanish

at every alternate site thereby obfuscating the nodes and eliminating the splitting between

the branches.

The results show a number of similarities with the early experimental results of Manley

et al.. First, NaI has a rock salt structure and the ILMs are only found in the vicinity of

q = (π/a)(1, 1, 1), whereas the theory for a simple cubic lattice shows that the ILMs prefer to

form at the same q value. Experimentally, it was found that the ILMs only occur at elevated

temperatures, i.e. the ILMs were observed at T = 555 K [19] but were not observed at 100

K [46]. This finding is consistent with our theory, if it is assumed that at low temperatures

the interaction is too weak to produce ILM but, due to the presence of a Bose-Einstein

function, is enhanced above the minimum value at T = 555 K. Experimentally, the ILM’s

energy is found to be in the gap between the optic and acoustic modes. As seen in fig.(1),

the energy separation between the ILM and the longitudinal or transverse acoustic modes

is already sizeable [20]. The magnitude of this separation is too large to be accounted for

by classical theories using standard two-body potentials [20]. Furthermore, the localization

length of 1.2 nm inferred from the measurements of Manley et al. would not be compatible

with a large binding energy. In our quantum theory, the existence of such a large energy

separation does not require an unusually large anharmonicity, since the binding energy of

the ILM should be measured from the top edge of the two-phonon continuum and not the

acoustic phonon energy as found in classical theories [17, 18, 20]. Also, the spatial extent of
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the ILM inferred from the measurements is consistent with that expected from our theory

with I4
2
√
6~ω0
∼ 0.1. The discrepancies between the first measurements of Manley et al. and

our theory are that our theory predicts that the ILM is dispersive whereas the measurements

show a flat branch which extends over a sizeable q range (∼ 1
3

of the Brillouin zone). One

may speculate that the flatness of the observed dispersion relation is an indication that

the measurements are sensitive to the asymmetric ILMs, which have a higher intensity

due to the degeneracy and for which the dispersion relations are flatter. However, the

large q range over which the ILM peak persists would have to be interpreted as indicating

the branch of long-lived ILM extends within the two-phonon continuum as a broadened

resonance. This interpretation in terms of a broadening of the feature could be consistent

with the observed loss of intensity that occurs as q is varied towards the zone center. It

should be noted that these speculations are based on the assumption that the features of

this calculation are robust and would survive in a more realistic description of the lattice

dynamics, which includes the optic modes, lifts the degeneracy between the phonons with

different polarizations and also includes cubic anharmonicity. A more serious challenge to

theory is presented by recent experiments [22, 23] which suggest that the ILMs are highly

sensitive to small changes in temperature and may act cooperatively. The experiments

suggest that small temperature changes produce symmetry-breaking dynamical structures

[22]. Furthermore, the experiments indicate that the ILMs form randomly stacked two-

dimensional structures [23], in contrast to the dilute gas of localized ILMs discussed here.
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[21] M. Kempa, P. Ondrejkovic, P. Bourges, P. Marton and J. Hlinka, Phys. Rev. B, 89, 054308

(2014).

[22] M.E. Manley, D.L. Abernathy, N.I. Agladze and A.J. Sievers, Sci. Rep. 1, 4 (2011).

[23] M.E. Manley, J.R. Jeffries, H. Lee, N.P. Butch, A. Zabalegui and D.L. Abernathy, Phys. Rev.

B, 89, 224106 (2014).

[24] R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D, 10, 4114-4129 (1974).

[25] R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D, 11, 3424-3450 (1975).

[26] L.D. Faddeev and V.E. Korepin, Phys. Rep. 42, 1-87 (1978).

[27] W.Z. Wang, J.T. Gammel, A.R. Bishop and M.I. Salkola, Phys. Rev. Lett. 76, 3598-3601

(1996).

[28] L. Proville, Phys. Rev. B, 71, 104306 (2005).

41



[29] E. Fermi, J. Pasta and S. Ulam, “Studies of Nonlinear Problems”, Los Alamos National

Laboratory, unpublished report, Document LA-1940 (May 1955).

[30] N.J. Zabusky and M.D. Kruskal, Phys. Rev. Lett. 15, 240-243 (1965).

[31] M. Jaworski, Physics Letters, 104 A, 245-247 (1984).

[32] P.S. Riseborough, Phys. Rev. E, 85, 011129 (2012).

[33] S. Basu and P.S. Riseborough, Phil. Mag. 92, 134-144 (2012).

[34] De-Jun Li and Bing Tang, Int. J. Mod. Phys. B, 28, 1450075 (2014).

[35] P.S. Riseborough, Int. J. Mod. Phys. CS, 11, 12-21 (2012).

[36] D. Kanbur and P.S. Riseborough, Phil. Mag. Letts, 94, 424-432 (2014).

[37] J. Goldstone, Nuovo Cimento, 19, 154-164 (1961).

[38] V.M. Agranovitch, Sov. Phys. JETP, 34, 350 (1972).

[39] Z. Ivic and G.P. Tsironis, Physica D-Nonlinear Phenomena, 216, 200-206 (2006).

[40] S.V. Vonsovskii and M.S. Svirskii, Sov. Phys. Solid State, 3, 1568-1570 (1962).

[41] A.D. Levine, Nuovo Cimento, 26, 190-193, (1962).

[42] P.S. Riseborough, Solid State Commun. 48, 901-905 (1983).

[43] J.B. Kobussen and T. Paszkiewicz, Helvetica Physica Acta, 54, 383-394 (1981).

[44] A.R. Edmonds, Angular Momentum in Quantum Mechanics, (Princeton University Press,

Princeton), (1985), pp68-77.

[45] L.P. Bouckaert, R. Smoluchowski and E. Wigner, Phys. Rev. 50, 58-67 (1936).

[46] A.B.D. Woods, B.N. Brockhouse, R.A. Cowley and W. Cochran, Phys. Rev. 131, 1025-1029

(1963).

42


