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We show that bilayer graphene (BLG) exhibits magneto-electric (ME) effects that are formally
similar to those commonly seen in band insulators with broken inversion and time-reversal sym-
metries. Three unusual features characterize the ME responses exhibited by BLG: (i) unlike most
other ME media, BLG is a conductor, (ii) BLG has a non-quantized ME coupling even though its
electronic structure does not break parity and time-reversal symmetry, and (iii) the magnitude of
the ME coupling in BLG is determined by the valley-isospin density, which can be manipulated
experimentally. This last property also enables a purely electric measurement of valley-isospin den-
sities. While our theoretical arguments use BLG as an example, they are generally valid for any
material with similar symmetries.

PACS numbers: 73.22.Pr, 75.85.+t, 03.50.De, 14.80.Va

I. INTRODUCTION AND OVERVIEW OF

RESULTS

Ordinarily when matter is exposed to an electric field
E (a magnetic field B), an electric polarization P (mag-
netization M) is generated.1 The magneto-electric (ME)
effect2–4 refers to phenomena where these common re-
lations between applied field and resulting response are
crossed; i.e., when an applied electric field produces a
finite magnetization and a magnetic field results in an
electric polarization of the medium. The constitutive
relations between the microscopic fields E , B and the
macroscopic (induced) fields D, H are then of the gen-
eral form

D ≡ ǫ0 E +P = ǫ0 ǫ · E + α ·B , (1a)

µ0 H ≡ B− µ0 M = µ−1 ·B− µ0 α · E . (1b)

Here ǫ, µ, and α are tensors describing the dielectric,
magnetic, and ME response, respectively. The ME tensor
is usefully written as5–7

α =
θ

2π

e2

h
11 + α̃ , (2)

where α̃ is traceless (and, in general, the sum of a sym-
metric and an antisymmetric part), e denotes the ele-
mentary charge, and h is the Planck constant.
Materials exhibiting ME coupling are currently at-

tracting significant interest,3–9 due to their unconven-
tional basic properties and also because the additional
versatility that comes from connecting electric and mag-
netic phenomena in new ways may become the basis for
useful device applications.4 Due to the different sym-
metry properties of electric and magnetic fields, ME

coupling generally appears in materials in which time-
reversal and inversion symmetries are broken.3,4 Recently
it was realized6 that topological insulators show a quan-

tized ME response (θ ≡ π, α̃ ≡ 0). The analogies be-
tween the electrodynamic phenomena in topological in-
sulators6,10,11 and those arising in the context of axion
field theory12 have opened up an intriguing link between
condensed-matter and elementary-particle physics.13

Here we consider the electromagnetic properties of bi-
layer graphene (BLG), which is an atomically thin con-
ductor with unusual electronic structure.14–16 One of the
interesting features of charge carriers in BLG is that, in
addition to their ordinary (intrinsic) spin, electrons in
BLG carry an orbital pseudo-spin-1/2 degree of freedom
that is rigidly locked with their linear crystal momen-
tum. Furthermore, states near the Fermi energy exist in
two valleys labelled K and K′ that are conveniently rep-
resented by a valley-isospin degree of freedom. Several
mechanisms have been proposed to separately address
states from the two valleys in BLG17–23 as part of the
recent drive to establish a valleytronics paradigm.24–26

Our theoretical study reveals the existence of an un-
usual ME coupling in BLG that is of the form

θ = 2π
nv

n̄
, (3a)

α̃ =
e2

h

nv

n̄
η





1 0 0
0 1 0
0 0 −2



 , (3b)

where nv is the valley-isospin density (i.e., the differ-
ence of sheet densities for electrons from the two val-
leys). Having a finite valley-isospin density corresponds
to a non-equilibrium many-particle state that has bro-
ken parity and time-reversal symmetry, which enables
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FIG. 1. Basic structural and electronic properties of bilayer
graphene. (a) Honeycomb structure of a bilayer stack of
graphene. Atoms in sublattice A (B) are marked in grey (red).
A yz plane is marked in light grey. (b) Brillouin zone and its
two inequivalent corner points K and K′. The remaining cor-
ners are related with K or K′ by reciprocal lattice vectors.
(c) Dispersion E(k) near the K point. We have k ≡ κ−K.

the ME effect in a system whose band structure has not
broken these symmetries.27 Values for the BLG-specific
parameters n̄ and η are given below. The dependence on
nv establishes an intrinsic link between ME effects and
valleytronics in BLG, creating the possibility for elec-
tronic control of the generic ramifications of ME cou-
pling6,12,13,28,29 that is not available in other magneto-
electrics. It is also remarkable in the case of BLG that α̃
is finite and θ non-quantized even though time reversal
and parity are proper symmetries of this material’s bulk
electronic structure. As shown by a recent symmetry
analysis,30 the possibility for unconventional couplings
between electronic degrees of freedom and electromag-
netic fields in BLG arises due to an unusual interplay of
time-reversal and spatial symmetries.
Using the well-understood electronic structure of BLG

as a specific example, our work establishes a more gen-
eral paradigm of novel ME phenomena. Indeed, our
symmetry-based approach is valid beyond BLG for any
materials with similar symmetries. It may guide future
research to identify, or even design, materials exhibiting
these symmetries that will then also display the ME ef-
fects discussed here.

II. MAGNETO-ELECTRIC COUPLING IN BLG

BLG consists of two layers of graphene stacked as
shown in Fig. 1(a). Near the K point in the Brillouin
zone [cf. Fig. 1(b)], the low-energy band structure is de-
scribed by an effective Hamiltonian14–16

HK(k) =
~
2

2m0

[

−u
(

k2+ σ+ + k2− σ−

)

+ w k2σ0

]

− ~v (k− σ+ + k+ σ−) , (4)

where ~ ≡ h/(2π), k ≡ (kx, ky) is the electrons’ wave
vector measured from K, the Pauli matrices σx,y,z are

associated with the sublattice (or, equivalently, the layer-
index) pseudospin degree of freedom, σ0 is the 2× 2 unit
matrix, σ± = (σx±iσy)/2, and k± = kx±iky. Numerical
values for the effective-mass parameters u, w and the
speed v are well known.14–16 Very close to the K point,
the energy dispersion resulting from Eq. (4) mimics that
of massless Dirac electrons, as is the case in single-layer
graphene. However, as u ≫ w, the dominant behavior of
electrons in BLG is captured by the quadratic dispersion
shown in Fig. 1(c). To obtain the corresponding effective
Hamiltonian for electrons in the K′ = −K valley, we use
the relation31 HK

′

(k) = HK(R−1
y k), where Ry denotes

a mirror reflection at the yz plane [see Fig. 1(a)].
The band structure of BLG turns out to be strongly

affected by electric and magnetic fields.14,30,32–39 Com-
bining the electronic degrees of freedom from the two
valleys and using a straightforward notation in terms
of valley-isospin Pauli matrices τ0 and τz, the effective
Hamiltonian becomes H = Horb +Hpss +HME, with

Horb =
∑

τ=±1

τ0 + τ τz
2

HτK(k+ eA)− eΦ τ0 , (5a)

Hpss =

(

ge
2

Ez

c
τ0 −

gm
2

Bz τz

)

µB σz , (5b)

HME =
(

ξ‖ E‖ ·B‖ + ξz EzBz

)

e τz . (5c)

Here E‖ = (Ex, Ey) and B‖ = (Bx, By), and c is the
speed of light in vacuum. The part Horb contains the
coupling of planar electron motion in the BLG sheet to
the electromagnetic scalar and vector potentials Φ(r) and
A(r), respectively, which satisfy ∇Φ + ∂tA = −E‖ and
∇×A = Bz ẑ. The effect of external fields on the pseudo-
spin degree of freedom is captured, in lowest order, by
Hpss, which accounts for the pseudo-spin Zeeman split-
ting39 and electric-field-induced bandgap.14,32–36 In the
following, we focus on the ramifications of HME.
The term ∝ EzBz has been discussed previously37–39

in the context of valley-contrasting magnetic moments.
The existence of the complementary coupling of in-plane
electric and magnetic field components ∝ E‖ · B‖ was
recently established by an invariant expansion for the
BLG band structure,30,40 which also revealed the ori-
gin of such unconventional terms. Firstly, as in single-
layer graphene,31,41 the two valleys are linked by time-
reversal and spatial symmetries in a combined way,40

which results in an unusual constraint on the Hamilto-
nian describing the intravalley dynamics. From a sym-
metry perspective, this is the origin for the emergence
of massless-Dirac-fermion-like charge carriers in graphitic
materials.31,41 This constraint is likewise satisfied by the
terms appearing in HME. Secondly, and unlike single-
layer graphene, the K point in BLG is characterized by a
point group (D3) that does not distinguish between polar
and axial vectors as it only contains rotations as symme-
try elements. As a result, components of the electric and
magnetic fields are not distinguishable by symmetry and
can therefore couple in normally forbidden combinations
to electronic degrees of freedom and to each other.30
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III. LAGRANGIAN FOR ELECTROMAGNETIC

FIELDS IN BLG

The terms appearing in HME of Eq. (5c) are reminis-
cent of the E ·B contribution to the axion Lagrangian.6,12

They also have a valley dependence. Assuming indepen-
dent dynamics for electrons from the two valleys, we can
define the total sheet density ns = nK+nK

′

and particle-

current density js = jK + jK
′

for electrons from the two

valleys as well as the differences nv = nK − nK
′

and

jv = jK − jK
′

as relevant variables.42 They satisfy the
continuity equations

∂t ns/v +∇ · js/v = 0 . (6)

Application of the usual formalism43 yields the elec-
tromagnetic part of the BLG Lagrangian density as

Lelm = LMaxwell + Lmin + LME . (7a)

Here

LMaxwell =
ǫ0
2
E · ǫ · E −

1

2µ0
B · µ−1 ·B (7b)

is the familiar Lagrangian for 3D Maxwell electrodynam-
ics in an ordinary medium with, in general, spatially
varying dielectric and magnetic tensors ǫ and µ, and

Lmin = −e
(

js ·A− ns Φ
)

δ(z) (7c)

is the minimal coupling of the electromagnetic vector and
scalar potentials to the electric charge and current den-
sities for electrons in BLG. The part

LME = −e nv

(

ξ‖ E‖ ·B‖ + ξz Ez Bz

)

δ(z) (7d)

contains the axion-like ME coupling arising from the un-
conventional contribution (5c) to the BLG Hamiltonian.
The fact that the valley-isospin density nv couples to
the field combinations in Eq. (7d) is reasonable as nv

is odd under both time-reversal and parity transforma-
tions. The terms shown in Eq. (7d) are therefore allowed
by the symmetry operations applicable to the Lagrangian
for the electromagnetic field.

The existence of LME leads to modifications of the
inhomogeneous Maxwell’s equations12 (i.e., Gauss’s and
Ampère’s laws), resulting in constitutive relations of the
form given in Eq. (1) with Eq. (2). Straightforward cal-
culation yields θ and α̃ as given in Eqs. (3), with

n̄ =
e

h

3 deff
ξz + 2ξ‖

, η =
ξ‖ − ξz

ξz + 2ξ‖
. (8)

Here deff denotes the effective electronic width of BLG
in the perpendicular (z) direction.

v > 0n−ev > 0n−e

Ez(a) (b)

−ejn−e s,MEs,ME

B||

FIG. 2. Illustration of magneto-electric effects in BLG. If the
valley-isospin density nv is finite, application of an in-plane
magnetic (perpendicular electric) field as shown in panel (a)
[(b)] induces charges (currents) at the sample boundary.

IV. MAGNETO-ELECTRIC RESPONSE IN BLG

The modified constitutive relations (1) imply the exis-
tence of extra contributions to the total sheet density ns

and current js.
44 In terms of the parameters governing

ME responses in BLG, these can be written as

ns,ME = −∇ ·
[

nv

(

ξ‖ B‖ + ξz Bz ẑ
)]

, (9a)

js,ME = ∇×
[

nv

(

ξ‖ E‖ + ξz Ezẑ
)]

+ ∂t
[

nv

(

ξ‖ B‖ + ξz Bz ẑ
)]

. (9b)

Obviously, these are nonzero only in case of spatial or
temporal variations of the quantities appearing in square
brackets in Eqs. (9). For example, the BLG material
parameters ξ‖ and ξz are nonzero within BLG but they
vanish outside the sample. Thus both their change at
the sample boundary as well as any spatial variations of
nv, E or B result in an induced charge density and/or
current. We then have

ns,ME = −
[

∇‖

(

nv ξ‖
)]

·B‖ − nv ξ‖ ∇ ·B‖ − nv ξz ∂zBz.
(10)

Using the homogeneous Maxwell equation ∇ ·B = 0, the
magnetic-field-induced charge density is found to be

ns,ME = −B‖ ·∇
(

nv ξ‖
)

− nv

(

ξ‖ − ξz
)

∇‖ ·B‖ . (11)

Similarly, inserting the homogeneous Maxwell equation
∇× E = −∂tB into Eq. (9b) yields45

js,ME =
[

Ez∇ (nv ξz) + nv

(

ξz − ξ‖
)

∇Ez
]

× ẑ

+B‖ ∂t
(

nv ξ‖
)

. (12)

Equations (1), (11) and (12) summarize the ME effects
in BLG. Charge densities are induced by in-plane mag-
netic fields where nv varies spatially, especially at the
BLG sheet’s boundaries in the xy plane; and a perpen-
dicular electric field generates in-plane currents flowing
perpendicular to the spatial gradient of nv, especially at
the system’s boundaries in the xy plane. See Fig. 2 for
an illustration. Furthermore, in the likely case46 that
ξ‖ 6= ξz, currents (charge densities) are induced in the
bulk of BLG by spatial inhomogeneity of the perpendicu-
lar electric (in-plane magnetic) field component(s) wher-
ever nv is finite, and bulk currents are generated by an
in-plane magnetic field when nv ξ‖ is time-dependent.
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Formally, the ME response of BLG turns out to be
analogous to that of a uniaxial ME medium such as
Cr2O3.

5,29 In particular, the features arising from spa-
tial inhomogeneity of the quantities nv ξ‖ and nv ξz are
similar to those associated with axion electrodynamics in
3D.6,12 Given that BLG and ordinary magnetoelectrics
belong to very different materials classes (Cr2O3 is an
antiferromagnetic insulator), this phenomenological sim-
ilarity is quite surprising. The crucial difference be-
tween the two cases is illustrated by the ME parameters.
Whereas θ and α̃ are fixed in typical ME materials, their
values depend on the valley-isospin density nv in BLG.
Generation of a finite nv is possible by various

means, including valley-filter contacts,18–24 optical exci-
tation,17,47 or using the ME coupling as a source for val-
ley polarization18,38,39 (cf. discussion below). In the ex-
perimentally accessible situation where inter-valley scat-
tering in the relevant part of the sample is weak, the
resulting non-equilibrium state with nv 6= 0 will be long-
lived and enables the observation of ME effects even non-
locally (i.e., away from the region where nv is created).

V. MAGNITUDE AND APPLICATION OF

MAGNETO-ELECTRIC RESPONSES

The Slonczewski-Weiss-McClure (SWM) model48 ap-
plied to BLG yields in terms of the SWM tight-binding
parameters (see also Refs. 38 and 39)

ξz =
γ2
0

γ2
1

3 ge
8

e

~

~a2

m0c
. (13)

Recent experiments36 demonstrated that a vertical elec-
tric field of ∼ 1 V/nm generates a bandgap of ∼ 0.1 eV in
BLG, implying ge ≈ 500 consistent with first-principles
calculations.49 Using the values γ0 = 3.0 eV, γ1 =
0.32 eV, and a = 0.245 nm, we find ξz ≈ 6× 10−4 nm/T.
Assuming furthermore ξ‖ ≈ ξz and deff = 0.1 nm,49 the

parameter n̄ ≈ 4 × 1012 cm−2 is obtained from Eq. (8).
Thus valley-isospin densities nv & 1010 cm−2 are ex-
pected to generate observable ME effects.
To estimate the magnitude of boundary charges and

currents arising from ME coupling in BLG, we use
Eqs. (11) and (12) to find

ns,ME = −B
(⊥)
‖

d(nv ξ‖)

dr⊥
, (14a)

js,ME = Ez
d(nv ξz)

dr⊥
, (14b)

IME ≡ −e

∫

dr⊥ js,ME = −e Ez ξz nv . (14c)

Here r⊥ is the in-plane coordinate perpendicular to a

chosen boundary of the BLG sample, B
(⊥)
‖ denotes the

in-plane magnetic-field component in that perpendicular
direction, and IME is the total charge current flowing
parallel to the boundary. Denoting by l the length scale

over which the quantity nv ξ‖ changes at the BLG-sample

boundary and assuming ξ‖ ≈ ξz ∼ 6 × 10−4 nm/T, we
find

ns,ME ∼ B
(⊥)
‖

ξ‖

l
nv ∼ 6× 10−4

B
(⊥)
‖ [T]

l[nm]
nv , (15a)

IME ∼ 10 nA Ez

[

V

nm

]

nv

[

1010 cm−2
]

. (15b)

According to Eq. (15a), magnetic-field-induced boundary
charges are very small for realistic field magnitudes and
valley-isospin densities. In contrast, the boundary cur-
rents that can be created via the ME effect are definitely
measurable, according to Eq. (15b). Detection of these
boundary currents can thus be used as a direct measure-
ment of a finite valley-isospin density.

VI. MAGNETO-ELECTRIC COUPLING AS A

SOURCE OF VALLEY-ISOSPIN DENSITY

As shown above, charges (currents) are induced in the
presence of a finite valley-isospin density and a magnetic
(electric) field by virtue of the ME coupling. In short, a
finite nv plus one type of field give rise to a total-charge
or current response. These effects embody the emergent
electromagnetism in BLG. Conversely, the ME coupling
affects the electronic structure of a BLG sample in the
simultaneous presence of parallel electric and magnetic

fields , introducing a uniform energy shift for electron lev-
els that is opposite in the two valleys. It is clear that such
an effect must introduce a valley-isospin density, as elec-
trons redistribute from one valley to the other in order
to keep a constant Fermi energy throughout the system.
Initially, only the term ∝ Ez Bz was known, and a care-
ful treatment of it (taking account of the orbital effects
of Bz, i.e., Landau quantization) indeed found that a
valley-isospin density is generated.18,38,39

The term ∝ ξ‖ E‖ ·B‖ imposes the same type of energy
shift and thus also induces a valley-isospin density, which
we can estimate to be50

nv =
2

π

em0

~2

ξ‖

u
E‖ B‖ ∼ E‖

[

V

mm

]

B‖[T ]× 1012 cm−2.

(16)
Here we assumed ξ‖ ∼ ξz ≈ 6 × 10−4 nm/T to obtain
the numerical value given on the r.h.s. of Eq. (16). In
contrast to the situation involving field components per-
pendicular to the sheet, the magnetic field B‖ has no
orbital consequences. However, E‖ couples electrostati-
cally to the total charge density and gets screened from
the interior of a conducting BLG sample. Thus, it will at
most induce a finite nv at the boundary over a distance
of the screening length.
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VII. CONCLUSIONS

Fundamental symmetry considerations reveal the pres-
ence of a valley-contrasting magneto-electric coupling
(5c) for electrons in bilayer graphene.18,30,38,39 As a re-
sult, the Lagrangian governing the co-operative dynam-
ics of electrons and electromagnetic fields has a contri-
bution where the valley-isospin density couples to the
parity- and time-reversal-odd terms ∝ E‖ ·B‖ and EzBz

[cf. Eq. (7d)]. The resulting non-quantized magneto-
electric response of bilayer graphene mirrors that of con-
ventional uniaxial magneto-electric media, which is un-
usual because the latter are typically insulating materials
whose electronic degrees of freedom exhibit broken par-
ity and time-reversal symmetry.27 The unexpected be-
havior of electrons in graphene bilayers arises because
constraints due to invariance under time reversal and
parity involve the two valleys, rendering the dynamics
of electrons within individual valleys qualitatively differ-
ent from that of ordinary charge carriers. In particu-
lar, the intra-valley dynamics in bilayer graphene cannot
distinguish between polar and axial vectors30 and, as a
result, supports the magneto-electric coupling discussed
here. As the validity of our symmetry-based approach is

not restricted to bilayer graphene, other materials with
similar properties are likely to exist or become available
in the future.

Linking valleytronics with magneto-electric effects es-
tablishes new pathways for each of these fields. For exam-
ple, the dependence of the magneto-electric effects in bi-
layer graphene on the valley-isospin density allows one to
detect such charge imbalances between the valleys, e.g.,
via the boundary currents generated by a perpendicular
electric field. Also, the unusual electrodynamic proper-
ties exhibited by magnetoelectrics28,29 become tunable in
bilayer graphene by controlling its valley-isospin densities
and currents.

ACKNOWLEDGMENTS

This research was supported by the NSF under Grant
No. DMR-1310199 and, at KITP, by Grant No. PHY11-
25915. Work at Argonne was supported by DOE BES
under Contract No. DE-AC02-06CH11357. Useful dis-
cussions with J. J. Heremans, A. H. MacDonald, and
I. Martin are gratefully acknowledged.

1 J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
Hoboken, NJ, 1999).

2 T. H. O’Dell, The Electrodynamics of Magneto-electric Me-

dia (North-Holland, Amsterdam, 1970).
3 M. Fiebig, J. Phys. D 38, R123 (2005).
4 R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
5 F. W. Hehl, Y. N. Obukhov, J.-P. Rivera, and H. Schmid,

Phys. Lett. A 372, 1141 (2008).
6 X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B
78, 195424 (2008).

7 A. M. Essin, A. M. Turner, J. E. Moore, and D. Vander-
bilt, Phys. Rev. B 81, 205104 (2010).

8 R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Nat. Phys. 6,
284 (2010).

9 H. Ooguri and M. Oshikawa, Phys. Rev. Lett. 108, 161803
(2012).

10 J. E. Moore, Nature (London) 464, 194 (2010).
11 X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057

(2011).
12 F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987).
13 M. Franz, Physics 1, 36 (2008).
14 E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805

(2006).
15 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.

Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

16 E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503
(2013).

17 W. Yao, D. Xiao, and Q. Niu, Phys. Rev. B 77, 235406
(2008).

18 D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809
(2007).

19 I. Martin, Y. M. Blanter, and A. F. Morpurgo, Phys. Rev.

Lett. 100, 036804 (2008).
20 D. S. L. Abergel and T. Chakraborty, Appl. Phys. Lett.

95, 062107 (2009).
21 H. Schomerus, Phys. Rev. B 82, 165409 (2010).
22 G. Y. Wu, N.-Y. Lue, and Y.-C. Chen, Phys. Rev. B 88,

125422 (2013).
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