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Disorder scattering and spin-orbit coupling are together responsible for the diffusion and relaxation
of spin-density in time-reversal invariant systems. We study spin-relaxation and diffusion in a two-
dimensional electron gas with Rashba spin-orbit coupling and spin-independent disorder, focusing

on the role of Rashba spin-orbit coupling in transport.

Spin-orbit coupling contributes to spin

relaxation, transforming the quantum interference contribution to conductivity from a negative weak
localization (WL) correction to a positive weak anti-localization (WAL) correction. The importance
of spin channel mixing in transport is largest in the regime where the Bloch state energy uncertainty
i/ and the Rashba spin-orbit splitting Aso are comparable. We find that as a consequence of this
spin channel mixing, the WL-WAL crossover is non-monotonic in this intermediate regime, which
can be related to recent experimental studies of transport at two-dimensional oxide interfaces.

PACS numbers: 73.20.Fz,71.70.Ej,72.25.Rb,71.10.Ca

I. INTRODUCTION

Spin-orbit coupling, present whenever electrons move
in a strong electric field, has recently been playing a more
prominent role in electronics. When spin-orbit coupling
is present, broken inversion symmetry lifts the two-fold
spin-degeneracy of Bloch states in a crystal. For ex-
ample, as pointed out by Rashbal, spin-orbit coupling
produces spin-splitting at surfaces and at interfaces be-
tween different materials. In spintronics, Rashba spin-
orbit coupling can provide a handle for electrical con-
trol of spin since its strength and character depends not
only on atomic structural asymmetry but also on exter-
nal gate voltages?, allowing for the possibility of a spin-
based field-effect transistor.® Alternately, spin-splitting
due to Rashba spin-orbit coupling in proximity coupled
nanowires can lead to topological superconductivity and
Majorana edge states*, which can provide an attractive
Hilbert space for quantum state manipulation for the
purpose of quantum information processing.

Because spin-orbit coupling does not conserve spin,
one of its most important consequences in spintronics is
its role in providing a mechanism for relaxation of non-
equilibrium spin densities. In the absence of spin-orbit
coupling, total charge and all three components of total
spin are conserved. Spin relaxation mechanisms due to
spin-orbit coupling can be classified into two types: the
Elliott-Yafet (EY) mechanism,>® where skew-scattering
due to spin-orbit interactions with scattering centers
is the the most obvious spin-relaxation process, and
the more subtle but equally important Dyakonov—Perel
(DP) mechanism,” in which the momentum-dependent
spin-orbit effective magnetic fields responsible for spin-
splitting of the Bloch states cause spin-precession be-
tween collisions. The DP spin relaxation mechanism is
often dominant in spintronics, and can cause subtle in-
terplays between charge and spin transport.®?

Spin relaxation has an important indirect effect on the
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FIG. 1: (Color online) A schematic illustration of the the
quantum correction to conductivity. Quantum interference
between a closed electron path (red) and a nearly time-
reversed counterpart (blue), alters the backscattering rate
when q, the sum of the two incoming momenta, is close to
zero. The interference is constructive in the absence of spin-
orbit coupling, enhancing back scattering and suppressing the
diffusion constant and the conductivity, but can be destruc-
tive and enhance the conductivity when spin-orbit is present.

quantum contribution to the conductivity. In weakly
disordered metallic systems with no spin-orbit coupling,
backscattering is enhanced by constructive interference
between time-reversed paths (see Fig.1) yielding a nega-
tive quantum correction to the classical conductivity cal-
culated from Drude’s formula. This effect is referred to
as weak localization (WL).1%13 In two-dimensional sys-
tems, WL acts as a precursor to the transition into the
Anderson insulator state in which disorder is sufficiently
strong to localize electrons. When the spin degree-of-
freedom is accounted for in the absence of spin-orbit cou-
pling, spin-degeneracy multiplies the conductivity correc-
tion by a factor of two. In general there are four two-
particle spin states which contribute to the interference.
When parsed in terms of total spin eigenstates, inter-
ference between time-reversed paths is constructive for



the three triplet channels, but destructive for the sin-
glet channel because of the Berry phase contributed by
rotation of the spin wave function along the path, re-
covering the factor of two enhancement. Spin relaxation
changes this situation. Because the spin-density present
in the triplet channels relaxes their contribution to the
conductivity, the correction is reduced when spin-orbit
coupling is present, whereas the singlet channel is unaf-
fected due to charge conservation. When this effect is
strong, either due to strong spin-orbit coupling or due
to long phase coherence times, the quantum contribu-
tion becomes positive. In this case the quantum correc-
tion is referred to as weak antilocalization (WAL). WL
and WAL can be identified by studying the temperature
and magnetic field dependence of the conductivity, since
these parameters limit the phase coherence length L, the
characteristic length within which electrons can propa-
gate without losing their phase coherence. The theory
of WAL onset was developed microscopically by Hikami,
Larkin and Nagaoka (HLN) using a model with EY spin-
relaxation,'® and later macroscopically using a nonlinear
o-model approach!® which demonstrated that the effect
depends mainly on global symmetries and not on micro-
scopic details. Tordanskii, Lyanda-Geller and Pikus (ILP)
later were the first to point out that DP spin relaxation
also leads to WAL, and that the triplet channels contri-
bution is modified compared to that implied by the EY
mechanism.'® WAL induced by DP spin relaxation has
been identified as responsible for negative magnetocon-
ductivity in quantum wells'™'® and in topological insu-
lator surface states.’® 2! A recent experiment on trans-
port at the interface between LaAlO3 (LAO) and SrTiO3
(STO) has demonstrated that a WL-WAL crossover can
be induced by gate voltage modulation.?2.

Motivated partly by the experiments in LAO/STO het-
erostructures, we attempt to investigate in detail the
dependence of WL and WAL transport contributions
on spin-orbit coupling strength across the crossover be-
tween resolved spin-splitting (where disorder broaden-
ing is much smaller than spin-orbit coupling) and spin-
splitting obscured by disorder, by tuning the Rashba
spin-orbit coupling strength in a two-dimensional elec-
tron gases (2DEG). This crossover is controlled by a com-
petition between two energy scales: the Bloch state spin-
splitting Ago induced by spin-orbit coupling in systems
without inversion symmetry, and the Bloch state energy
uncertainty 1 due to the finite lifetime of Bloch states
in a disordered system. The asymptotic behavior in the
extreme cases is obvious from the arguments we have
summarized briefly above. In the band-unresolved limit
(Aso < 1) we can apply ILP’s analysis'® by taking spin-
orbit coupling into account perterbatively. In this limit
WAL emerges from WL behavior in the long-phase coher-
ence limit. On the other hand, in the band-resolved limit
(Aso > 1), only the spin singlet channel contributes to
quantum interference and we obtain perfect WAL behav-
ior. What we intend to investigate here is the behavior in
the intermediate regime (Ago & 7). For this purpose, we

have developed tools which enable us to investigate spin-
relaxation and diffusion, and to evaluate quantum correc-
tions to Boltzmann transport at any value of Ago/n. We
have found that for a two-dimensional electron-gas model
with Rashba spin-orbit interactions, spin relaxation in
the intermediate regime cannot be simply described by
ILP’s picture. Spin relaxation is partially suppressed by
interference between channels, leading to a new plateau
on which the WL/WAL behavior is relatively insensitive
to spin-orbit coupling strength. We suggest that such a
behavior can be confirmed experimentally by tuning the
spin-orbit coupling with gate voltage and fixing other pa-
rameters.

This paper is organized as follows. In Section II, we
explain how we evaluate the low-energy long-wavelength
limit of the electron-pair (Cooperon) propagator treating
spin-orbit coupling and spin-relaxation it producees non-
perturbatively. In Section III, we discuss our numerical
results for the Cooperon of the Rashba model, and cal-
culate the spin relaxation lengths for each triplet channel
in order to characterize spin relaxation behavior across
the crossover between the spin-resolved and unresolved
limits. Using the spin-relaxation characteristics we have
calculated, we summarize the WL-WAL crossover in Sec-
tion IV, constructing a phase diagram in the Agp-7 plane
which identifies three regimes: perfect WL, perfect WAL,
and an intermediate plateau regime. Finally, in Section
V, we briefly summarize our findings and present our
conclusions.

II. MICROSCOPIC THEORY OF WL AND WAL

As a typical example of a system with broken inversion
symmetry, we consider an isotropic 2DEG band Hamil-
tonian with a Rashba spin-orbit interaction term,

H(k) =k + 6;h(k), (1)

where we have set h = 1 so that wave vector can be
identified as momentum and for simplicity rescaled mo-
mentum to set 2m = 1. We distinguish 2 x 2 matri-
ces in the spin-up/down representation by a hat accent.
The second term in Eq. 1 allows for arbitrary spin-orbit
coupling given a model with a single spin-split band.
(6; (i = m,y,z) are Pauli matrices.) For the Rashba
model, the effective magnetic field is perpendicular to
momentum k. and has a coupling strength characterized
by the parameter a: h(k) = a(k,, —ks,0). Rashba cou-
pling is symmetry-allowed in systems in which inversion
symmetry is broken because the two-dimensional system
is not a mirror plane. For example Rashba coupling can
be induced by a gate-induced electric-field perpendicu-
lar to the two-dimensional electron gas plane. It leads
to spin-splitting 2ak at momentum k, where the band
energies are

E, (k) = k* + nak, (2)



with band index n = 4+1. Limiting the Fermi energy
er to be positive, the two bands have Fermi surfaces
with different Fermi radii kr, = (vp — na)/2, but equal
Fermi velocities vp = v/a? + 4ep. In this article we de-
fine Ago = 2akp and use this number to characterize
the strength of spin-orbit coupling at the Fermi energy.
Here kr = (kpy +kr_)/2 = vp/2 is the typical value of
the Fermi momentum, independent of n.

We assume a disorder model with randomly-
distributed, spin-independent, d-function scatterers:

Hdlb VZ(S r—r;), (3)

where N is the total number of impurities. After disor-
der averaging disorder vertices are linked in pairs with
four-point vertex amplitude NV2/Q? = ~/€Q, where
Q is the volume of the system. Thus, the disor-

der unaveraged one-particle Green’s function Ga[ =

. . -1
[e F—H — Hgs =+ iO} reduces to a translationally in-
variant one,

A+ _ /AL _ 1
G (k) - <GO (k7k)>dis - € —f{(k) :|:Z'777 (4)

in the Born approximation, where + distinguishes re-
tarded and advanced Green’s functions, (-)gis represents
the average over disorder configuration, and

_1_ 7 ) = 1
n=5-= lezk:G (k) = (5)

The spectral weight of the Green’s function is spread
over the energy interval 7, corresponding to the finite-
lifetime energy uncertainty of the Bloch states. When
Ago < 1, the two bands are degenerate to within en-
ergy resolution and the role of spin-orbit interactions is
simply to cause spin-precession between collisions. When
Ago > n, on the other hand, the two-band energies are
well resolved and coherence between bands is negligible.
In our analysis we assume that Aso,n < €p, the nor-
mal experimental situation, but allow the ratio Ago/n
to vary. In our discussion section, we comment briefly
on the Agop,n > ep case, which corresponds closely to
the circumstance achieved in topological insulator surface
states.
In general, the longitudinal conductivity at zero tem-
perature is given by the Kubo—Streda formula,
k)>dis’

(6)

7L o AN+ AN NA— 1,/
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where the current matrix is defined by j, (k) = et, (k) =

e[0H(k)/dk,].  For d-function scatterers the semi-
classical Boltzmann theory result for the conductiv-
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FIG. 2: (Color online) Feynman diagrams for the dominant
quantum correction to the conductivity. (a) The upper line
and lower lines represent the retarded and advanced Green’s
functions éi7 respectively. The maximally crossed diagrams
can be reorganized into a particle-particle ladder-diagram
sum. (b) Graphical representation of the ladder diagram sum
for the Cooperon which can be performed by solving a Bethe—
Salpeter equation.

ity, namely Drude’s formula, is recovered by disorder-
averaging the two Green’s functions separately:

70 = 27TQ e Z Tr [jz

SR KG W) (7)

oo is proportional to the density of states at the Fermi
energy. Since the total density of states at fixed ep is
independent of «, the classical conductivity og is inde-
pendent of « provided that Ago is small compared to
the Fermi energy ep.

The leading quantum correction to the conductivity
comes from the interference between a closed multiple-
scattering path and its time-reversed counterpart, as il-
lustrated in Fig.1. In its diagrammatic representation,
the sum of this interference over all classical paths is
captured by summing the diagrams in which disorder
interaction lines connecting the retarded and advanced
Green’s functions are maximally crossed, as illustrated
in Fig. 2(a). The particle-particle ladder diagram sum is
referred to as the Cooperon I'(q), with q = k+k’ the to-
tal momentum flowing into the Cooperon, or equivalently
the deviation from the perfect backscattering which oc-
curs for ¢ = 0. In the following we distinguish matri-
ces in the 4 x 4 tensor product space, with the basis
{| TT>5 | /N/>a | J/T>7 | J/J/>}7 by a check accent over the let-
ters as in O. The contribution of the Cooperon to the
conductivity is

Re A A oA . N N
Ao = oo 3 (GGG (T (@) (GT oG ) (K)

27)

K,k
e? < .
= 5-ReTr Wy T(a)], (8)
q

where p, i, v, 1’ take the spin indices 1 or |. We will as-

v
sume that I'(q) has a peak at backscattering q = 0, and



that it is large only for small total momentum q = k+k’.
The area of summation by q is limited by the character-
istic length scales of the system. The lower cutoff is given
by the inverse of a large length scale L, within which the
electron can move without losing its phase coherence. L
acts like the (effective) size of a phase coherent system.
The length scale L decreases with increasing temperature
due to increased inelastic scattering by phonons or other
electrons, or with an increase of magnetic field due to
the cyclotron motion of the Cooper pair center of mass.
In our analysis, we represent both effects by the length
L. The upper wave vector cutoff is given by the inverse
of the elastic mean free path [ = v2D7, above which
electron dynamics is ballistic rather than diffusive. Here
D = v%7/2 is the diffusion coefficient.

The weight factor (W) in Eq. 8 specifies how each
Cooperon channel contributes to the conductivity, and
is defined by

Wi = QZ

Since the original Hamiltonian is isotropic, the matrix
structure of W is not changed by coordinate rotations
which replace v, by velocity in some other direction.

The Cooperon factor (I'(q)) in Eq. 8 is defined as an
infinite sum of ladder diagrams,

(k) (GF 0,67 ) (k). (9)

+ Lap(q

D(a) = & + 5P + 5P

ato QP(q)

I
(10)

2=

The structure factor P associated with a single rung of
the ladder, is given by the tensor product

5(q) = é ijé+(k+ HYeG(-k+9). (1)

Eq.(10) can be summed analytically by solving an alge-
braic equation as illustrated in Fig. 2(b), to obtain

(12)

Thus the matrix structure of P(q) determines which
Cooperon channel contribute to the conductivity correc-
tion. Eigenvalues of P(q) that are close to v~! lead to
large contributions to the conductivity. In the next sec-
tion, we investigate the matrix structure of Cooperon
in detail, and calculate the conductivity correction as a
function of the Rashba coupling constant a both analyt-
ically and numerically.

III. EVALUATION OF THE CHARACTERISTIC
FACTORS

A. Cooperon

Since we expect the Cooperon to be large only in the
vicinity of backscattering, we set q = ¢(cos#,sinf) and

expand P(q) in powers of ¢ up to order O(g?):

P(q) = PO 1 ¢PV + 2P +0(¢%).  (13)
We obtain the following expressions for the expansion
coeflicients:

PO — % Z(;+ el (14)

(1) — 2QZ[G+ G oG +Gt e (G %QW]

(%) _ E zk: (GToGT) @ (G 0G|

where the underlined matrices are evaluated at momen-
tum —k, and other matrices are evaluated at k. oy
denotes the velocity projected onto the direction of q
Ug = Oy cos@ + Uy sinf. In the spinless (or oo = 0) case
the expansion simplifies to P(q) = v~ ![1 — D7¢?]. The
Cooperon therefore has a pole at ¢ = 0 and this leads to
the well-known WL correction to the conductivity. Our
goal here is to investigate the deviation from conventional
Cooperon structure due to Rashba spin-orbit coupling.
The matrix structure of P(q) can be understood
through the symmetries of the Hamiltonian. Consider
a spin rotation by 7 around the in-plane axis perpendic-
ular to the g-direction generated by the Pauli matrix

L o 0 e—i(G—Tr/Z)
69 = 6y cosl — o, sinf = pi(0—7/2) 0 .

(15)

The unitary transformation 64 transforms the Rashba
Hamiltonian ;h;(k) to &;h;(k’), where k' is the mirror
reflection of k in a plane perpendicular to q. Thus, the
Green’s function G*(+k + ) gets rotated to G*(+k’ +

3). By replacing the summation over k by one over k’

2
we can conclude that P(q) in Eq. (11) is invariant under
Yo = 69 ® Gp. It follows that P( ) and ¥y can be diag-
onalized simultaneously. Since the eigenstates of g are
twofold degenerate, with the eigenvalues +1 respectively,
P(q) is at least block diagonal in this basis.

Next consider spin rotation by 7 around the z-axis
which is generated by .. Since this operation trans-
forms the Rashba term &;h;(k) to 6;h;(—k), P(q) goes to
P(—q) under the unitary transformation Y., =6,Q6,.
Although P(q) is not invariant under this transforma-
tion, even-ordered expansion terms like P(©) and P
are invariant. It follows that these terms are diagonal in
the representation formed by the mutual eigenstates of

Yy and 3,:

9Y oo (TN (1

Xg L 11

IS w1 I R 11 |- (19
1) i i ) \|11)

This argument does not rule out off-diagonal elements in
each block of P(M). In fact as we emphasize later these
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FIG. 3: (Color online) Matrix elements of I'"*(q) = v~ * —
I:’(q) at zeroth, first, and second order in a wave vector mag-
nitude (q) expansion. The illustrated calculation was for
n/er = 0.01. The horizontal axis is the Rashba band split-
ting Aso = 2akr normalized by 7. The plotted quantities
are defined in Eq.(18).

terms do appear in P(") and are responsible for anoma-
lous spin relaxation behavior. We will refer to this rep-
resentation as the “singlet-triplet basis”, since |x3) cor-
responds to the spin singlet state. and the other three
states span the three triplet states. Note that this two-
particle basis depends on the direction of q.

We now discuss the numerical evaluation of the P(q)
wave-vector-magnitude expansion coefficients defined in
Egs. (14) as a function of the Rashba coupling strength
a. We make all physical quantities dimensionless by
invoking scale transformations which reduce the Fermi
energy ep and the mass 2m to unity. As explained in
more detail in Appendix A, the momentum integrations
can be performed analytically by using a gradient ex-
pansion around the Fermi level and extending the inte-
gration contour to a closed path in the complex plane.
We calculate the structure factor matrix P(q) in the
singlet-triplet basis motivated above. The Cooperon,

I(q) = Q7' [y~' = P(q)] ' has the block-diagonal ma-

trix structure

Q 0 TI's4(q)
with
. A(O) + q2A(2) iqA(l)
T 1 — 1 1 12 18
12 (9) ( —iqA%) Ago) i qug2) (18)

. 2A(2) A(l)
F3£<q>—<q 3 0% .
4

The definitions of the coefficients A, AM and A®) are
given in Appendix A. In Fig.3 all distinct expansion co-
efficients are plotted as a function of the Rashba coupling
strength a. (Since A is zero for o = 0, we normalize
it by v~ 1v/ D7, which is comparable to v A(0) A(2)))

For orientation we first comment on the characteristic
behavior of these coefficients under some extreme condi-
tions:

e When the spin-orbit coupling is switched off (o =
0), all the constant A(®) and linear A™) coefficients
vanish, and the quadratic coefficients A®) reduce
to D7/7. This result for the Cooperon leads to
the conventional WL expression for the maximally-
crossed diagram correction to the conductivity of a
2DEG that is free of spin-orbit coupling.

e When Ago < 71, A® and A®) depart from their
degenerate values by O(a?), while A is O(al).
These findings agree with results obtained by ILP¢
by treating Rashba spin-orbit coupling as a pertur-
bation.

e In the strong (Ago > 1) spin-orbit coupling limit,
A and A® reach asymptotic values with the ra-
tios

Ago) : Aéo) :Ago) :Aio) =1:2:0:1 (19)
A§2):A§2) :AgQ) :A§2)2110:4:3,

which coincides with the behavior of the Cooperon
coefficients of the massless Dirac Hamiltonian. The
Rashba and massless Dirac models agree in this
limit because the eigenstates of the two models have
the same structure. The agreement occurs even
though the Rashba model normally has two Fermi
surfaces, whereas the massless Dirac model always
has a single Fermi surface.

Fig.3 describes the crossover behavior of the Cooperon
from the weak spin-orbit coupling regime captured by
ILP’s analysis,'® to the strongly spin-orbit coupled limit
with partial equivalence between massless Dirac and
Rashba models. Since the spin singlet channel is un-
affected by the Rashba internal magnetic field h(k), the

coefficients Ago) and Agz) for the singlet channel are in-
dependent of a.



It is important here to note the behavior of the O(q")
term, which is absent in the spinless model. Its off-
diagonal components give rise to mixing between differ-
ent spin channels. Although the mixing between the sin-
glet channel and one of the triplet channels, specified by
A&), is weak provided only that Ago < €p, the mix-

ing between two triplet channels, specified by A%) shows
quite a nontrivial behavior. It vanishes in both strong
and weak spin-orbit coupling limits: A§12) x e}/ *Aso /8P
in the band unresolved limit, and A%) o 26};/ *n/ A3y
in the resolved spin-splitting limit. In the intermedi-
ate regime (Ago = 1), on the other hand, it is ~
O(VAOAR). The Cooperon behavior shown here is
the time-reversal counterpart of the spin diffusion under
the Rashba spin splitting®. Spin relaxation is no longer
described by simple exponential decay, but rather like a
damped oscillation in which spins precess as they relax.
We elaborate on this point in the next subsection.

B. Spin relaxation

Using the symmetry-dictated block-diagonal structure
of the P(q) matrix in the singlet-triplet basis, we can
express the Cooperon in terms of its non-zero matrix el-
ements,

X Xi2 00

= 1| Xo1 Xo2 O 0

T = _ 20
0 0 X3 Xua.

The elements X;;(g) are determined by inverting
Eqs.(18). Since the singlet-triplet basis depends on the
direction of the momentum q, we need to change the ba-
sis back to a momentum independent form before taking
the sum over q in Eq. (8). Going back to the tensor prod-
uct basis and integrating out the angular dependence we
obtain

- Xl(‘l) 5 5
Zf(q):/ dq q Xa(q) Xs(q)
. L 2w Xs(q) Xa(q) ’
X1(q)
(21)
where
o Xt Xy 5 Xoo+Xsz o Xog— X3
Xi = — 5 o X2= 5 , X3 = 5 -
(22)

Thus we need to calculate only the diagonal elements
of the Cooperon matrix in Eq.(20). When there is no
linear term in ¢, as in the spin-orbit decoupled limit, each
diagonal element has a diffusion peak; for example X1, =
[Ago) + q2A§2)]_1. The O(q) terms in the inverse matrix
mix contributions from the two channels in each block.

2.0
Triplet(1)
15 Triplet(g)w_w_'_'_:
/' I“ ................... .
l 1.0 Tu:‘ <l ,,/" RS Trlplet(4)
|l |
05 7
0
e
2 b
arg(/ll ) 2 —
0 ; i ‘ | | ‘ ‘
0 0.2 04 0.6 - - ) 14
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FIG. 4: (Color online) Upper panel: Inverse relaxation length
|\i| for each channel, normalized by the mean free path [. The
triplet channels 1,2 and 4 belong to the eigenstates of I'(¢) in
Eq. (17), which are linear combinations of the triplet basis in
Eq.(16). Lower panel: The argument of )\172 normalized by 7.
The values plotted in this figure were calculated for n/er =
0.01. Tt should be noted that A; 2 is complex for Ago < 0.87,
where the O(g") channel mixing effect is dominant.

The diagonal elements are then conveniently expressed in
terms of partial fraction decompositions with the form:

c11 C12 C21 C22
X1 =— + — , Xog = — + — ;
AN24+q2 NP+ ¢? M2+ N2 +¢?
C33 C34 C44
X = — + > T—— X4 = ~——s 4 23
VRS e TN (23)

The wavelengths A\ in the denominators, whose depen-
dence on spin-orbit coupling strength is plotted in Fig. 4,
determine the characteristic length scales within which
particle-hole pairs in different channels can propagate
without loss. Aj24 are the ‘“relaxation lengths” for
triplet channels, which correspond to g-dependent lin-
ear combinations of |x1), |x2) and LX4). Recall that A is
infinite in the spinless case, i.e. A5 * = 0.

The maximally crossed diagram contribution to the
conductivity is proportional to an integral over wave vec-
tor magnitude of the diagonal elements of the Cooperon
matrix. When corrections to the conductivity are sub-
stantial this integral is dominated by contributions from
small ¢ where our wave vector expansion is valid. These
considerations lead to a sum over channels of the familiar
logarithmic integral:

=t 2
/ dag__c _ ¢ 1+N)° (24)
-1 2m A72+¢2  4dm 1+ (\/L)?

The quantum correction to the conductivity is deter-
mined by three length scales: the mean free path [, the
phase length L, which has simple power law dependences
on temperature and magnetic field, and the spin relax-
ation length A\. We note that

e (i) When the spin relaxation length A is long com-
pared to L, i.e. for | < L < A, the quantum inter-



ference is proportional to In(L/l), leading to its fa-
miliar simple logarithmic temperature dependence.

o (ii) In the intermediate regime I < A < L, the quan-
tum interference correction from a particular chan-
nel is logarithmically dependent on its spin relax-
ation length A, i.e. it is proportional to In(\/1).

e (iii) When A is comparable to or even shorter than
the mean free path [, i.e. for A <1, the quantum in-
terference correction is absent. Eq.(24) approaches
zero for A™! — oo.

As we increase the spin-orbit coupling strength «, the
relaxation length for the spin singlet channel A3 remains
infinite (i.e. A\3? = 0), which implies that the logarith-
mic contribution from X33 is unchanged by spin-orbit
coupling. The behavior of A\; for the other channels is
illustrated in Fig.4. Since A; 24 are comparable to the
mean free path when Ago is sufficiently large compared
to 1, we can see that only the spin singlet channel con-
tributes to the quantum interference in this region. Since
we are interested in the crossover between WL and WAL
behavior, the region of a (or Agp) that we need to in-
vestigate lies below this value.

We should note that A; 2 can take imaginary values
at small «, because of the strong mixing between chan-

nels proportional to qA%). Up to the first order in «,

1‘; = ay/(=14++/7i)/2. In the context of spin diffu-
sion, this imaginary spin relaxation implies damped os-
cillations in the spin density distribution®. In our calcu-
lation, especially in case (ii) in the above classification,
it leads to a deviation from the simple logarithmic be-
havior ~ In|A/l|, which comes from the argument angle
of A™!. An imaginary A suppresses the spin channel con-
tributions to the quantum transport corrections to some
extent compared to the case of real A.

C. Weight factor

The quantum transport correction contributed by each
channel is also influenced by the weight factor factor ma-
trix W, defined in Eq. (9). Its evaluation is closely analo-
gous to that required for the O(g?) term of the Cooperon.
The matrix structure in the tensor product basis is,

—Ry
5 Ri+ R3
—R,

—R,
~R,
R+ R3
—Ry

(25)
—R;

Detailed expressions for Ry, Rg, R, and Rj are provided
in Appendix A.

So far we have explained the matrix structure of the
Cooperon and the weight factor. Using Eqgs.(21) and (25)
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FIG. 5: (Color online) Behavior of the weight factors Wi 23
as a function of Ago/n. The results illustrated here were
calculated at n/er = 0.01.

we find that

€2 i d
£19 (W1 (X171 + Xa4) + WaXao + W3 X33]

AU - % L1 2
(26)

where the scalar weight factors

Wi =—Ry, Wo=Ri+ Rs — Ry, W3 =Ry + R3 + R),
(27)

are plotted in Fig.5. When there is no spin-orbit cou-
pling, all the weight factors have the same absolute val-
ues, Wi = Wy = —W3 = Wy, where Wy = —2D7/7 is
the WL weight factor in the spinless case. The minus
sign in W3, which is the weight factor for the spin-singlet
channel, comes from the Berry phase due to spin rotation
along the closed path. The weight for the singlet chan-
nel, W3, is essentially constant for @ # 0 and gives rise
to WAL, while the other weight factors which contribute
to WL are suppressed. Since the contribution from the
WL channels vanishes at large spin-orbit coupling due to
the spin relaxation, only the WAL channel contributes to
the quantum correction, in agreement with conventional

arguments concluding that the EY mechanism gives rise
to WAL,

IV. TOTAL CORRECTION TO THE
CONDUCTIVITY

Finally we use Eq.(26) to calculate the conductivity
correction Ao as a function of the disorder amplitude
7, the spin-orbit coupling strength «, and the phase co-
herence length L (determined by temperature, magnetic
field, etc.). In the spinless case, we have the conventional
logarithmic WL behavior, Acg(L) = —(e?/2m) In(L/I).
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FIG. 6: (Color online) The quantum correction ratio r(a, L)
as a function of the band splitting Aso = 2akr, where the
scattering amplitude and the phase coherence length are fixed
at n/er = 0.01 and L/l = 100, respectively. The dashed
lines show the contributions from the singlet and the three
triplet channels X;;, while the black bold line shows the total
contribution. The triplet channels 1,2 and 4 belong to the
eigenstates of I'(¢) in Eq. (17), which are linear combinations
of the triplet basis in Eq.(16). Note that the WL initially
strengthens, then weakens and changes to WAL. There is a
plateau in the Aso dependence of r at intermediate values.

In our calculation we calculate the ratio r of the quan-
tum correction amplitude to that of the spinless model:

Ao(a, L)
r(a, L) = ———~ 28
N ] %)
When there is no spin-orbit coupling, r = —2, i.e. two de-

generate modes contribute to WL. When the band split-
ting Ago is large enough, r = 1, i.e. only the spin singlet
mode contributes and it leads to WAL. Here we calcu-
late the detailed behavior of the ratio r(a, L) as Ago/n
is varied to crossover between these two extreme limits.

First, we fix the scattering amplitude n and the coher-
ence length L, and vary the Rashba coupling strength «,
to investigate the crossover behavior going from full WL
(a ~ 0; r = =2) to the full WAL (Ago > n; r = 1).
This type of behavior is similar to that which might be
expected experimentally when gates are used to vary the
Rashba coupling strength at fixed temperature. In Fig.6
the ratio r(a, L) is plotted as a function of «, with the
other parameters fixed at /e = 0.01 and L/l = 100.
We can see from this figure that an unexpected plateau-
like structure appears in the intermediate region below
Ago =~ n, in addition to the expected perfect WAL
plateau at Ago > 7. Interestingly this double-plateau
structure cannot be described in the simple spin relax-
ation picture, obtained for the extreme cases by HLN
and ILP'6. To find the origin of this structure, we also
plot the separate contributions from individual channels
(1e W1X11,W2X22,W3X33,W1X44 - see Eq 26) As
explained in the previous section, Channel 3 yields a

-0.5
-1.0
-1.5
-2.0
-2.5
-3.0

0 0.002

0.004 0.006

Aso/er

0.008 0.010

FIG. 7: (Color online) The quantum correction ratio r(a, L)
vs. the band splitting Aso = 2akr and the scattering lifetime
energy-uncertainty 7. The phase coherence length is fixed at
L = 2 x 10*, which is about 10-100 times larger than the
mean free path ! (depending on n). The black dashed line is
Aso = n. Note that weak-localization is initially enhanced
(r < —2) by very weak spin-orbit coupling.

conventional logarithmic contribution to WAL, since this
channel corresponds to the spin singlet which is unaf-
fected by spin-orbit coupling. The other three channels
give a-dependent negative contributions. We can see that
the intermediate plateau structure comes from Channels
1 and 2, which have imaginary relaxation lengths in the
intermediate regime. Comparing this structure with the
behavior of the complex coherence lengths illustrated in
Fig.4, we conclude that the crossover from the interme-
diate plateau to the perfect WAL plateau occurs when A
becomes real. This occurs around Agp ~ 7. For larger
values of Ago the two-channel coupling O(q!) contribu-
tion is relatively less important. The evolution of this
plateau region with 7 is illustrated in Fig.7. Here we can
clearly see that the transition between the intermediate
plateau and the perfect WAL plateau occurs around the
line Ago = 7, specified by the black dashed line in the
Fig.7. Note that for very weak spin-orbit coupling, WL
behavior is initially enhanced. The sense of the change
produced by spin-orbit coupling then changes and the
crossover to WAL begins.

Quantum corrections to transport are normally studied
experimentally by measuring the conductivity vs. tem-
perature and external magnetic field. Both tempera-
ture and external magnetic field result mainly in mod-
ulation of the phase coherence length L. We therefore
plot the L-dependence of the quantum correction ratio
r in Fig.8. In this figure we see that the weak Ago-
dependence of r in the intermediate region commented
on previously appears as a crossover from WL to WAL
with increasing L that is more rapid than in the standard
simplified model with phenomenological triplet channel
spin-lifetimes. The L-dependence of the conductivity
corrections is plotted explicitly in Fig.9 for a series of
equally spaced Agp values. The intermediate and per-
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FIG. 8: (Color online) The quantum correction ratio r(a, L)
as a function of the band splitting Agso = 2akr and the coher-
ence length L. In this plot the scattering energy uncertainty
is fixed at n/er = 0.01. All quantities are made dimensionless
by setting er = 2m = 1.
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FIG. 9: (Color online) The behavior of the quantum cor-
rection amplitude A(a, L) as a function of the coherence
length L, with the spin-orbit coupling taken at Aso/n =
0.08,0.16,0.24, - -- ,1.60. The scattering amplitude is fixed
at n/erp = 0.01. All quantities are made dimensionless to
setting ep = 2m = 1.

fect WAL plateaus appear in this illustration as regions
with densely packed lines. The slope as a function of
L turns from negative (WL) to positive (WAL) around
L ~ )\, and the behavior at that length scale is uncon-
ventional for intermediate spin-orbit coupling strength.
However, we should note that it could be difficult to dis-
tinguish the intermediate plateau from the perfect WAL
plateau by performing magneto-resistance/conductance
measurements, since these measure the difference be-
tween Aco(Ly) and Ac(Ly = L), where the latter is
the value of L in the case with no magnetic field. Such
an L -dependence agrees with the previous magnetocon-
ductivity calculation for an arbitrary strength of mag-
netic field?®. Note however that the WAL differential
behavior is conventional for L > A, so that a relatively

strong magnetic field might be necessary to observe un-
conventional magneto-resistance and this might give rise
to other effects, such as classical magnetoresistance or
Shubnikov—de Haas oscillation. Since the classical con-
ductivity is insensitive to the spin-orbit coupling strength
as long as Agpo < €p, measurements of the a-dependence
at fixed temperature and magnetic field might be able to
distinguish the two plateaus and might be possible if « is
tuned by varying the electric field at fixed carrier density
in a two-dimensional sample with both front and back
gates.

V. CONCLUSION

In this paper, we have examined the crossover behav-
ior between WL and WAL in a two-dimensional electron
gas that is triggered by variation of the Rashba spin-orbit
coupling strength. We have used a numerical approach
to evaluate the Cooperon contribution to the conductiv-
ity, assuming only that the energy-uncertainty of Bloch
states 1 due to disorder scattering is small compared to
the Fermi energy and treating spin-orbit coupling in a
non-perturbative fashion. For this reason we are able
to evaluate quantum corrections to the conductivity for
any value of the ratio of the Rashba spin-splitting to dis-
order broadening 7; an approach applicable beyond the
band-unresolved limit when Ago < 1. When Ago > 7,
there is no trace of the double degeneracy and each band
contributes independently to the conductivity. In this
limit, the system exhibits perfect WAL behavior, where
the quantum interference for spin triplet combinations
quickly vanishes within the order of the mean free path.
In the strong spin-orbit coupling limit, the Cooperon has
the same structure as that for the 2D Dirac Hamilto-
nian, since the band eigenstates of the two models are
identical. On the other hand, when Ago < 7, a mixing
between two spin triplet particle-hole channels at first
order in a long-wavelength expansion is present, which
has been previously identified as an important feature of
spin diffusion®. Here we show that this coupling has pro-
found effect on quantum corrections to conductivity. In
this regime the spin relaxation length becomes imaginary
when different channels are strongly coupled, suppress-
ing the damping of quantum interference corrections to
conductivity. As a result, a new plateau-like region ap-
pears near the Ago = 7 line when the maximally crossed
diagrams are evaluated as a function of spin-orbit cou-
pling strength at fixed phase coherence length. Although
it seems difficult to identify these two plateaus by the
investigation of the differential behavior by L, like the
magneto-resistance/conductance measurement under a
finite magnetic field, we suggest that they can be dis-
tinguished by tuning the spin-orbit coupling strength by
an external gate voltage and fixing the coherence length
(temperature and magnetic field).

Although we have limited our attention here to a sim-
ple model with spin-independent disorder scattering and



a single spin-split band that has circularly symmetric
Fermi surfaces, the numerical approach we have taken
is readily generalized to an arbitrary band model and to
models with spin-dependent disorder scattering. Deal-
ing with anisotropy requires only that an angular aver-
age over the Fermi surface be added to sums over band
state labels. Qualitative aspects of the Rashba model
results reported on here apply to other two-dimensional
electron systems with broken inversion symmetry. For
two-dimensional electron systems, inversion symmetry
can usually be varied in situ by tuning gate voltages.
For any two-dimensional electron system without inver-
sion symmetry, the double spin-degeneracy of the Bloch
bands is lifted by spin-orbit coupling. When the spin-
splitting Ago is larger than the Bloch state energy
uncertainty n, the spin-split bands can be viewed as
distinct independent bands with momentum-dependent
spin-orientations. It follows that in this regime, the spin-
relaxation length is on the order the mean-free path,
i.e. spin-memory is lost at every collision. Once this
occurs we do not expect to see a crossover from WAL to
WL when the phase length L is decreased by increasing
the magnetic field or decreasing temperature. At weaker
spin-orbit coupling strengths we do expect to see WL at
some temperatures and fields. However, our study shows
that the way in which a WL regime emerges at weaker
spin-orbit coupling can be nontrivial and is determined
by specific features of the band structure of a particular
system.

One potentially interesting application of our approach
is to two-dimensional electron gases formed at oxide het-
erojunctions, for instance to the ts, electron-gas sys-
tems at the interface between LaAlOs and SrTiO5%.
It is known that Rashba spin-orbit splitting in these
systems?%26 is strongest near the avoided crossing be-
tween two higher energy (lower density) elliptical zz,yz
subbands and a lower energy (higher density) zy sub-
band. The current analysis is relevant for the xy sub-
bands away from these avoided crossings. In gen-
eral, however, the Fermi surface of the electron gas at
the LaAlO3/SrTiO3 interface is multi-band and multi-
orbital. There are indeed indications that magnetoresis-
tive transport anomalies occur when the Fermi level is
near these weakly avoided crossings?’, suggesting that
detailed analysis may reveal rich spin-relaxation physics.
While it is beyond the scope of the present paper, our
approach can straightforwardly be applied to the mixing
of multiple orbital degrees of freedom.

Another potentially interesting system is two dimen-
sional electron gases formed in the layers of transition
metal dichalcogenide two-dimensional materials. Spin-
orbit coupling and band spin-splitting is particularly
strong in the valence bands of this class of materials.
Coupling between spin and other degrees of freedom
MoS228, may give rise to interesting complex behavior??,
although we note that studies of transport in these ma-

terials are at a very early stageC.
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Appendix A: Calculating the Cooperon and the
weight factor by contour integration

In this section, we discuss in detail the procedure we
use to obtain Cooperon and weight factor matrices. The
key ingredient here is to split the Green’s function into a
sum of contributions from each band:

(1) = 3 LnOVh ()
GHl) =3 =

n

(A1)

where ¢, (k) is the eigenfunction for band n(= +£1) in
momentum and spin representation, and g (k) = ep —
E, (k) £in. In our 2DEG model, the Green’s function
simplifies to,

- 1 1  —ine
+ _

n

(A2)

Since the band structure is isotropic, the denominator
is independent of ¢, the direction of the wave vector k.
Similarly, the velocity matrix 99 = 9, cos 0 + ¥, sin 6 can
be written as

ine”"

vp(k) =) UWT(k) ( Coi(ii;f) cos(f — ¢) ) - W

n

Using these expressions, the sum over k in Eq.(14) can
be separated into integrations over the orientation ¢ and
the modulus k of band wave vector. The phase inte-
gration eliminates elements which vary like exp(im¢) for
some non-zero value of m and hence determines the ma-
trix structure. The integrations over k have the general
form

[ n (k) |
o G R) gt () g (R) g, (F)

They can be completed by extending the path of integra-
tion into a large contour in the complex plane and using
Cauchy’s theorem. If we choose to close the contour in
the upper half complex plane, the poles k,, are given by
the solutions of the equations g} (k,) = 0. As long as
we limit the disorder strength to lie within the diffusive
regime 1 < ep, we can solve this equation by using a
gradient expansion around the Fermi surface,

(A4)

gi(l}n) ~ vp(kp — kpp) + in. (A5)



By summing over the band indices, we determine the
values of the matrix elements. Because the resulting ex-
pressions are extremely cumbersome, we have evaluated
the residues and summed over band indices numerically.
In the following subsections, we show how the matrix el-
ements can be constructed at each order in g-expansion.

1. 0O(¢")

To leading order in the g-expansion, we obtain the form

1 0
PO :pg()) ! 1 _péO) 1 ! (AG)
1 0
in the tensor product basis, where
Z 9., p Z IO nm, (A7)
1 k
’ 2w 4gn gm

The coefficients in the singlet-triplet basis are

AP = AP =7 = p{”, AP =471 = pl” 4.
(A9)

We can show analytically that Aéo) =71 - pgo) — péo)

vanishes at any value of o Since pgo) —l—pgo) => 1+

nm)L(B,)n vanishes when nm = —1, only particle-hole
pairs with band indices n = m contribute to Ago)' Taking
the residual value, we obtain
ik, krn 1
O=—""n oo (A10)
’ —dvpgn (k,)  8ven 4y
where we have used g (k,) = g (k,) — 2in = —2in.

O 4 p =~

Therefore, p 1 which leads to Ago) = 0.

2. 0O(q")

At linear and the quadratic orders in the g-expansion,
we should note that GFoyG* in Eq.(14) can be decom-
posed as

(GF0eGF) (k) =

vn2 ni + ns
Z n2 — 2

nanans 89n1 gns

X [( —7,(3319 'e(_)ie ) — (n1 + n3) cos(6 — @) ((1) (1))

0 iei(0—29)
_iei2e—0) : (A11)

+ nins (
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Substituting this decomposition to Eq.(14) and integrat-
ing out the phase ¢, we obtain the matrix decomposition

of Pe(l) in the tensor product basis,

oY = (A12)

) o

with the shorthand notation © = —ie®. Here the factor

p) is defined by

1 *
p(l) = 5 Z |:(If(1];7)11m2m3) - nm117(117)11m2m-g:| )
nmimsaams
(A13)
o oo L g fome (m2 _ m) ,
2m 16gn gm, Gms 2
(A14)

Applying the unitary transformation by Ty, we obtain the
correspondence to the coefficients in the singlet-triplet
basis,

A§12) = Re p, Ag? = —TIm pM. (A15)

It should be noted that the linear term in ¢ is not diago-
nal even in the singlet-triplet basis, and accounts for the
coupling between different channels at finite momentum.

3. O(q)

Substituting the decomposition in Eq.(A11l) to

Eq.(14), we obtain the matrix decomposition of P(,(Q) in

the tensor product basis,
_6—21'9 1

5(2 2 1 2 1
9():_1)5) 1 +p§) 1

(A16)

with the coefficients

= > Iy

2 2
p =37 eI (A17)

{n,m} {n,m}
(2) Z nlngmlmglfn m}s
{n,m}
@ / % kvn, U, (212 — n1 —n3)(2ma —my — mg3)
) 2m 512G13, Gra Gms Grma

(A18)



where {n,m} = {n1,n2,n3,m1,ma, mz}. This can be di-
agonalized by the unitary transformation Ty, which leads
to the following connection to the singlet-triplet basis:

AP = —p? +07, AP = P+ -, (A19)
Af) _ p§2) +p52)7 A§,2) _ p§2) + pg2) . pg2)'

4. Weight factor

The decomposition in Eq.(A11) can also be applied to
the calculation of the weight factor matrix. Substituting
the decomposition to the definition of weight factor ma-
trix in Eq.(9) and integrating out the phase ¢, we obtain
the form in Eq.(25), with

Ry = Z J{n,m}; Ry = Z (nlmS +n3ml)J{n,m}7

{n,m} {n,m}
(A20)
RIQ = Z (nlml + n3m3)‘]{n,m}7
{n,m}
Rs = Z n1n3mimsd i, my,
{n,m}
Jnmy =

dk kUny U, nidn
- 2 Nng — 1 3 Mo — mi+ms .
/ 27T 6497219:39"197”3 ( 2 ) ( 2 )

2)

n,m}’
the difference appears in the retarded/advanced indices
in the denominator. We should note that (ni,ng) and

(m1,m3) cannot be exchanged here, respectively.

The definition of Jy,, ,,) looks similar to IE while
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