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Abstract 

The valence band of Bi2Se3 is investigated by measuring Shubnikov-de Haas effect as well as 

galvanomagnetic and thermoelectric transport.  At low hole concentration, the hole Fermi 

surface is closed and box-like, but at higher carrier concentrations it develops tube-like 

extensions that are open, in general agreement with our theoretical calculations.  However,   

the experimentally determined density-of-states effective mass is smaller than density-

functional theory calculations predict; while we cannot give a definitive explanation for this, we 

suspect that the theory may lack sufficient precision to compute room-temperature transport 

properties, such as the thermopower, in solids with interlayer Van der Waals bonds. 

 

 

 

  



2 
 

I. Introduction 

Bi2Se3 has the same  crystal structure as Bi2Te3, the thermoelectric semiconductor that is at 

the basis of commercial Peltier coolers. Bi2Se3 and Bi2Te3 form solid solutions1, and the 

optimization studies2 aimed at obtaining high thermoelectric figure-of-merit (zT) values in the 

Bi2TexSe3-x alloy system have been focused on the Te-rich (x ≥1.5) region.  Where Bi2Te3 can be 

easily doped either p-type or n-type, the defect chemistry of Bi2Se3 is such that material 

prepared at thermodynamic equilibrium is always n-type.3,4 The only report5on p-type Bi2Se3 

before this decade has not been repeated. The nature of native defects in Bi2Se3 is still an open 

debate; there are two opinions: Analytis et al.6 argue that the defects are Se vacancies, while 

Huang et al.7 claim that there are BiSe anti-site defects and additional layers. The band structure 

features and strong spin-orbit interactions of Bi2Se3 are favorable for the development of 

topologically protected surface states, which has been the basis behind recent efforts to make 

intrinsic and/or doped p-type Bi2Se3.  Several new acceptor impurities have been discovered for 

Bi2Se3, including Ca,8Mn,9Mg,10 and Pb (this work). Yet, it is suspected that the native defects of 

Bi2Se3 still exist even in the presence of these chemical acceptors, and we do not know if the p-

type material is compensated, or if the acceptor impurities alleviate the donor action of the 

native defects. 

It was recently predicted by calculation that the valence band of Bi2Se3 could be 

favorable to produce a high-zT thermoelectric material.11  The existence of high-mobility p-type 

Bi2Se3 now makes it possible to study the valence band of p-type Bi2Se3 experimentally, and to 

compare the results with the calculations. The electronic band structure of Bi2Se3 is very 

m3



3 
 

different from Bi2Te3, which has 6-fold band degeneracy (equivalent bands in Brillouin zone) 

near the band gap and the Fermi level, whereas Bi2Se3 has only one in the center (Γ point) of 

the Brillouin zone.  Higher band degeneracy improves zT because it increases density of states 

effective mass, which allows the  material to have a higher carrier concentration and therefore 

better electrical conductivity without affecting the thermopower.  The conduction band of 

Bi2Se3 has a low effective mass (∼ 0.21 me, where me is the free electron mass)3,4, therefore is a 

poor candidate material for high zT.  The valence band, however, is more complex.11  We show 

in Fig. 1 the hole Fermi surface (generated from data in Ref [11] using code in Ref [12]) for hole 

concentrations of 6x1018cm-3 and 4x1019cm-3 respectively. The Fermi surface in Fig. 1(a) has a 

“bag”-shape pocket centered around Γ-point. In Fig.1 (b) there are six additional topologically 

open pieces, “pipes”, which connect to the adjacent Brillouin zones.  At lower carrier 

concentrations, the pipes separate from the bag.  The bag now becomes a topologically closed  

surface, and the pipes transform into small, ellipsoidal, and separated pockets that are also 

topologically closed.  At lower concentrations still, only the central bag remains.  

The purpose of the present paper is to show these features experimentally using 

Shubnikov-de Haas (SdH) band structure measurements on a series of single crystal samples 

with different doping levels.  From a Dingle analysis of the data13 we derive values for the 

cyclotron effective mass, which are at odds with the calculated11 values.   We complement the 

SdH experiment with a series of transport measurements made on polycrystalline samples 

prepared with different acceptor impurities and different doping levels. Measurements of the 

Hall effect and thermopower are used to construct the hole concentration dependence of the 

thermopower (the “Pisarenko” plot).  This can give an estimate of the density-of-states 
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effective mass.  While the density of states mass and the cyclotron mass are not the same, the 

relatively cubic shape of the “bag” in Fig. 1 (a) shows that they are not expected to differ by 

much. Experimentally, the value of the valence band effective mass obtained from the 

Pisarenko plot is consistent with that obtained from SdH measurements.  The valence band 

mass is only about 20% heavier than the conduction band mass,3,4 and significantly smaller 

than predicted by the calculations.11 A first conclusion of this paper is that p-type Bi2Se3 is not 

likely to be a significantly better thermoelectric semiconductor than any n-type variant of this 

material. This paper further concludes by presenting a rationale for the discrepancy in 

calculated properties11 and the experimental measurements, and then suggest a more 

fundamental explanation related to the presence of Van der Waals interlayer bonds in Bi2Se3 

material.  The density functional theory used in Ref [11] is  less accurate in solids with such 

weak bonding, and in fact the development of new Van der Waals energy functionals is an 

active and ongoing area of research.14 This second conclusion is likely to have implications for 

band structure calculations of many of today’s bulk 2-dimensional-like solids. 

II. Experiment 

We prepared a series of 4 single crystals and 6 polycrystalline samples: sample identification 

and properties are summarized in Table 1.  For the single crystals, 99.999% pure Bi and Se were 

weighted into quartz ampoules and acceptor impurities Ca or Mn and were added in 

appropriate amounts to dope Bi2Se3 p-type. The ampoules were evacuated to 10-6 Torr, sealed, 

and the elements were then melted and reacted at 1073 K. Single crystals of Bi2Se3 were grown 

by slow cooling using a modified horizontal Bridgman method described in Ref [8]. The single 

crystals cleave easily perpendicularly to the c axis. We limit our discussion to self-consistent 
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data on small individual cleaved samples with a characteristic size of 0.2mm×1mm×4mm, in 

which we were able to confirm sufficient homogeneity via the presence of quantum oscillations 

in the resistivity measurements.  The polycrystalline samples were prepared by ball milling and 

spark plasma sintering. Stoichiometric and off-stoichiometric Bi2Se3 doped with Mg or Mn (see 

Table 1 for detail) were weighted and loaded into a quartz ampoule. The ampoule was 

evacuated to 10-6 Torr, sealed, and then heated to 1073K where it was kept overnight to ensure 

homogeneity. The furnace was turned off and the ingot was allowed to gradually cool to room 

temperature.  The sample was removed from the ampoule and ground by hand. The resulting 

powder was then formed into a pellet by Spark Plasma Sintering (SPS) at 623K under 50MP of 

pressure. The sintered pellet was cut into a 6mm×2mm×2mm rectangular parallelepiped for 

transport measurements. The electrical and thermal properties of the disks cannot be expected 

to be isotropic, since the process favors the alignment of the c-axis of the Bi2Se3 polycrystals 

with the pressing direction. To account for this, small parallelepipeds were cut out, and the 

thermopower and Hall coefficients were measured with the heat and charge currents in the 

plane of the pressing, i.e. preferentially aligned in the basal plane of the crystallites. 

The resistivity, ρ, and low-field Hall coefficient, RH, of the single crystals were measured 

in a Quantum Design PPMS from 2K to 300K. Shubnikov-de Haas (SdH) oscillations were 

measured in the same instrument on the same sample from 2K to 12K in magnetic fields up to 

140 kOe. The cleaved single crystal samples were mounted on a horizontal rotator, and the 

angular dependence of the SdH oscillations was measured by varying the orientation of the 

sample relative to the applied magnetic field (the elevation angle, set at π/2 when the applied 

field is aligned with the trigonal axis).  No attempt was made to align the electrical current with 
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the azimuthal angle in the basal plane.  The thermopower S and the Hall coefficient of the 

polycrystalline samples were measured in a Janis cryostat from 77K to 300K in magnetic fields 

up to 13 kOe. 

 

III. Results 

The hole concentration, p, is obtained using ( )eRp H/1= , where e is the elementary 

charge, assuming that the Hall prefactor is unity. The hole concentrations of the single crystals 

are shown in Fig. 2(a). Temperature dependence of thermopower is measured on the same 

samples and shown in Fig. 2(b). The Drude mobility is calculated using and shown in 

in Fig. 2(c), while the temperature dependence of resistivity is shown in Fig. 2(d). All of the 

samples show metallic behavior, with the carrier concentration being temperature independent 

from 2K to 200K and varying little with temperature above that. Some of this temperature 

variation may be due to variation of the Hall prefactor. The hole concentrations (Table 1) were 

calculated from the low-temperature (T ≤ 100 K) value of RH. The mobility decreases 

monotonically with temperature, indicating that the charge carriers are scattered  

predominantly by phonons. The measured carrier concentrations and the mobilities both have 

an error bar of 5%, mostly from sample geometry measurement (error bars are not shown in 

the figures to improve readability). The p-type Bi2Se3 single crystals have a room temperature 

mobility ~500 cm2V-1s-1, less than the electron mobilities in  typical n-type Bi2Se3 single crystals, 

which can reach above 1000 cm2V-1s-1 around room temperature. 

 Raw traces of the SdH oscillations observed in the resistivity as a function of elevation 

angle on the samples S1-S4 are shown in Fig. 3: the main period as function of the inverse of 

ρμ /HR=
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the field is obvious and periodic, and  Fourier transforms of these traces have been determined. 

The accuracy (std. dev.) on the main oscillation period is ∼3%. Other minor peaks also appear in 

the Fourier transforms, but they are likely to be artifacts, as they are not robust enough vis-à-

vis changes in the numerical treatment to be identified as real SdH periods: in the analysis we 

consider only the main period, which is the one visible to the naked eye in Fig. 3. The cross-

section of the Fermi surface, aF, in the plane normal to the applied magnetic field can be 

directly calculated from the period of the oscillation13 by the following equation:  

   [ ]B
eaF /1

2
Δ

=
h

π
.    (1) 

We identify the main period to be associated with the Fermi surface centered at Γ point in Fig. 1.  

Polar plots of the periods [ ]{ } 1/1 −Δ B as a function of elevation angle are shown for all samples 

(identified by their hole concentration as measured by the Hall effect) in Fig. 4.  The polar plots 

show how the Fermi surface cross-sectional area increases with increasing carrier concentration. 

Anomalies in cross-sectional area appear in the more highly doped samples in the vicinity of  

105 deg, which we associate with appearance of the open orbits, as illustrated in Fig. 1(b).  

 We now discuss the comparison between the shapes and sizes of the Fermi surfaces as 

calculated (Fig. 1) and the cross-section measured in Fig. 4.  Starting with sample S1, and using 

the crude assumption that the Fermi surface is spherical at this concentration, the SdH 

oscillations period at 0 deg (950 kG) would correspond to a hole concentration of 5.2×1018 cm-3, 

while and the period at 90deg (1220 kG) corresponds to 7.6×1018 cm-3. These values bracket the 

measured hole concentration obtained from Hall measurements of 5.7×1018 cm-3: it is thus 
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reasonable to conclude that the holes occupy a Fermi surface with relatively little anisotropy, 

which is most likely the central “bag” at the Γ point in Fig. 1(a). Additional bands are not 

expected at this concentration, and are indeed not seen.  

Sample S2 (1.4×1019 cm-3 holes) shows a bump at a 120 deg angle, which indicates the onset of 

an extension of the “bag-shaped” Fermi surface in that direction and the beginning of the 

formation of the “pipe-like” structures.   Applying the same spherical Fermi surface 

approximation used above to sample S2 (which is a clearly unrealistic model for describing the 

behavior of this sample), the corresponding oscillation period at 0 deg (123 kOe) would yield 

p=7.7×1018 cm-3.  In reality, the Hall measurement gives 1.4×1019 cm-3. While Hall 

measurements are less accurate than SdH measurements because they involve a measurement 

of the sample geometry and an assumption about the Hall prefactor, we conclude from this 

discrepancy that the shape of the Fermi surface must deviate considerably from spherical. This 

behavior becomes even more pronounced in samples S3 and S4, where the oscillation period 

disappears completely near 105 deg. This, in turn, implies that the cross-section of Fermi 

surface normal to that direction is open: it reaches the boundary of the first Brillouin zone and 

connects to the Fermi surface of the next Brillouin zone, such that the carrier orbits encompass 

all Brillouin zones and the holes never complete a cyclotron orbit.  

 SdH measurements also make it possible to measure the holes’ cyclotron effective mass 

by the Dingle analysis method,13 based on the temperature dependence of the amplitude of the 

SdH oscillation. The amplitude of the SdH oscillation is reduced by a reduction factor, RT,  given 
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as a function of the average carrier effective cyclotron mass, m*,  on the orbit and applied 

magnetic field H:13 
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where me is the free electron mass. This analysis is carried out for each sample, at multiple 

values of the field and the temperature, using two fitting parameters: the cyclotron mass m* 

and the Dingle temperature, which is a function of the sample defect density.  Fig. 5 illustrates 

how all T-dependences of the amplitudes taken at various values of the applied field aligned 

along the c-axis (normalized to the value at 2K and 1.36 x 106G) fit Eq. (2) well for one single 

value for all samples of the valence band effective mass m* = 0.25±0.05 me.   Furthermore, 

values for the average in-plane effective mass are the same for all 4 samples of different carrier 

concentrations, and for those doped with two different acceptor impurities (Ca and Mn).  The 

Dingle temperatues do vary from sample to sample (30 K for the Mn-doped sample, 9 – 17 K for 

the Ca-doped ones), but yield no information beyond the observation that Mn doping affects 

the phase coherence length of the electrons on Landau levels more than Ca-doping, 

presumably because of the d-electrons in Mn2+.   

To verify this value for m* independently, we prepared the polycrystalline samples and 

measured their hole concentration, p, and thermopower, S, in order to construct the Pisarenko 

plot S(p). This plot gives an independent evaluation of the experimental effective mass, albeit 

one that depends on an assumption about electron scattering.  The results, taken on samples 
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P1-P6, are shown in Fig. 6, in which the data are shown as points, and calculated curves as lines.  

The calculations must assume a value for the energy dependence of the relaxation time, which 

is customarily taken as a power law , with λ being the scattering parameter.  

Schematically, λ=-1/2 is indicative of carrier scattering on acoustic phonons, λ=1/2 of scattering 

on polar optical phonons, and λ=3/2 of scattering on ionized impurities, such as acceptor 

impurities.  Because the latter is mostly a low-temperature effect, we show a few possibilities in 

Fig. 6: m*=0.25 me with λ=-1/2 and λ=1/2, and m*=0.4 me with λ=-1/2.  The samples with p< 

1019cm-3 fall on the lowest curve (m*=0.25 me with λ=-1/2), which is consistent with the mass 

from the SdH data.  Some deviation is observed for p > 1019 cm-3, but it is not large enough to 

explain the discrepancy between theory and experiment described underneath.  It is also not 

possible to ascertain whether this is due to an increase in effective mass or a change in 

scattering mechanism.  Moreover, the SdH mass reported here is average cyclotron mass in the 

basal plane, whereas the Pisarenko plot measures the total density-of-states mass; those two 

quantities are equal only for a spherical Fermi surface, but, as discussed above, the “bag” in the 

Fermi surface does not depart appreciable from spherical. Fig. 4 shows that the hole Fermi 

surface departs only slightly from spherical when p≤ 6x1018 cm-3, so that the fact that a mass of 

0.25 me explains the S(p) results well in that concentration range shows that transport and SdH 

results are consistent. When the carrier concentration reaches above about 1.4x1019cm-3, the 

Fermi surface deviates from spherical and the average DOS mass increases above the basal-

plane cyclotron mass.  This is again also consistent with the results in Fig. 6 at higher hole 

concentrations.  Nevertheless, the main conclusion holds: all the experimental S(p) data points 

in Fig. 6 are significantly below the theoretical calculated values of Ref. [11], but are compatible 

λττ EE 0)( =
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with the values for the effective mass observed in the SdH measurements.  This  independently 

confirms  the already mentioned discrepancy between calculated and measured effective 

masses. The difference in the experimental result and the theoretical calculation is shown in Fig. 

7. Similar results were also reported by Cava’s group9.  

IV. Theoretical Calculations and Discrepancy with Experimental Data 

The Fermi surface plot presented in Fig. 1 was derived from well-converged band 

structure calculations, as described in Ref. [11].  These calculations were performed using the 

plane-wave code WIEN2K15 within the generalized gradient approximation of Perdew et al.,16 

with spin-orbit coupling included for all calculations excepting the internal coordinate 

optimization.  The Fermi surface plot is based on a very dense k-point mesh of approximately 

75,000 points in the full rhombohedral Brillouin zone. In addition, effective planar cyclotron 

masses were generated from the band structure calculations using the program SKEAF17 at 

various doping levels: these are presented as lines in Fig. 7, where they are compared to the 

experimental masses from the Dingle analysis of the SdH oscillations above. The effective 

masses vary somewhat with doping level, and are comprised of two main sequences. The first, 

heavier mass is in the range of m*
H∼0.4 – 0.6me  and corresponds to the central “bag” feature, 

while the lighter mass of m*
L∼0.15 – 0.17 mecorresponds to the “pipe” feature.  Note that the 

“pipe” mass is not shown for doping levels less than 1.44 x 10-3 holes per unit cell, as at this 

doping any “pipe” features are beyond the resolution of our calculations. In any case, as was 

noted earlier in this manuscript, the observed masses, even excluding entirely the “pipe” 

features, are considerably larger than those inferred from the experimental data, and it is this 
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discrepancy in effective masses that appears to be responsible for the lower thermopower in 

the experiment relative to the theoretical predictions in Ref. [11].  Note that an earlier paper 

from the Cava group (Ref. [9]) also showed thermopower smaller than the predictions of Ref. 

[11]. Therefore, it appears likely that the theoretical calculation does not accurately represent 

the valence band effective mass, and consequently the room temperature Seebeck coefficient.  

Since the calculation and even prediction of thermopower levels is a subject of substantial 

interest to the thermoelectrics community, with numerous recent successes in PbSe18 and 

SnTe19, it is important to attempt to determine the origin of the discrepancy between theory 

and experiment. 

One possibility that can be immediately discarded is the use of the “constant scattering 

time approximation” in the Boltzmann transport calculation20 of the thermopower, because the 

masses derived here come from quantum oscillations, and not just from Pisarenko relations.  

The discrepancy in effective masses, entirely sufficient to explain the thermopower differences, 

is a comparison of ground state properties completely unrelated to any assumptions made 

regarding the diffusive carrier transport. 

While it is not possible to state with confidence the reason for the discrepancy, we can 

hazard a possible explanation. Consider the three plots taken from literature calculations in 

references [11], [21] and [22] of the band structure of Bi2Se3. At first sight, they appear fairly 

similar in their appearance, but a closer examination reveals important differences. For 

example, in the  plot in Ref. [22] the valence band maximum is not at Γ as in the other two plots, 

but rather at an off-symmetry location.  While the other two plots have a subsidiary valence-
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band extremum at this same location, even these two differ as to the precise location of the 

extremum, with the top plot placing this extremum just 30 meV from the band edge and the 

middle plot approximately 85 meV from the band edge. Note that in the bottom plot this 

extremum is the band edge.  Given that the thermopower data presented in this paper were 

measured at room temperature, for which the thermal energy kBT is just 25 meV, a 55 meV 

difference in the location of a subsidiary band extremum would have substantial effects on 

transport properties. Another area of disagreement is the location in energy of the valence 

band Z point, where the respective values are (from Ref. 11, 21 and 22, in order) -0.25 eV, -0.6 

eV, and -0.5 eV. 

With regards to calculated dispersions and band masses, in Table 2 we present Γ-Z-point 

valence band masses inferred from the calculations published in Refs. [9,19,20,24]. Note that 

for two of these calculations – the work of Zhang et al Ref. [22] and Larson et al Ref. [24] – the 

Γ point is not calculated to be the valence band maximum, contrary to present experimental 

fact, but we present the results for purposes of illustration. 

The calculated results depict a wide disparity in masses, with as much as a factor of 6 

separating the heaviest and lightest masses.  These masses were calculated by assuming a Γ-

centered parabolic band dispersion and using a point halfway from Γ to Z as the dispersion, so 

some variance with values presented elsewhere in this report is inevitable. Nevertheless, the 

wide ranges in values calculated is strong evidence of the challenge to electronic structure 

calculations posed by the valence band of Bi2Se3.   
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Given that published band structure calculations disagree on such fundamental matters as the 

location of the VBM, and the energies of subsidiary band extrema, as well as band masses, it 

appears that Bi2Se3 is an unexpectedly difficult material in which to accurately depict the 

detailed electronic structure.  For transport properties and SdH in the temperature range of 2K 

to 300K, these features are of great importance. While one cannot give a definitive explanation 

for the disagreements, we suggest that the answer may lie in the status of Bi2Se3 as a Van der 

Waals bonded material (for interlayer bonding).  Such weak bonding presents density functional 

theory with more difficulties than with more ionic or covalently bonded materials, and in fact 

the development of new Van der Waals energy functionals is an active area of research.23  We 

think it plausible, though unproven, that such is the origin of the discrepancies between theory 

and experiment identified in the present work. 

V. Summary and Conclusion 

In summary, we observe that the value of the density-of-states effective mass for the 

valence band of Bi2Se3 is significantly smaller than had been theoretically predicted.  This in 

turn affects the calculated theoretical thermopower.  From this, we conclude that the prospects 

of p-type Bi2Se3 as a thermoelectric material are not as promising as originally predicted, and 

that density functionals may need to be critically evaluated before use in band structure 

calculations for room temperature transport properties in solids with Van der Waals bonds.   
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Tables 

Sample  

No 

Nominal 

composition 

Hole concentration

(1018 cm-3) 

Thermopower

@300K (µV/K)

Symbol in  

this paper 

S1 Bi1.97Mn0.03Se3 5.7@100K 146  

S2 Bi1.95Ca0.05Se2.975 14@100K 140  

S3 Bi1.98Ca0.02Se3.03 14@100K 144  

S4 Bi1.99Ca0.01Se3.03 16@100K 134  

P1 Bi1.98Pb0.02Se3.01 9.3@100K 109  

P2 Bi1.96Pb0.04Se3.01 9.8@100K 93  

P3 Bi1.96Mg0.02Se3 8.5@100K 131  

P4 Bi1.99Mg0.01Se3.06 13@300K 131  

P5 Bi1.98Mg0.02Se3.03 14@100K 114  

P6 Bi1.96Mg0.04Se3.06 18@300K 116  

 

Table 1 Summary of the samples used in this study. Sample numbers starting with S identify single 

crystals, and P for polycrystals. The acceptor impurities used, Mn, Ca, Pb or Mg, are shown in the 

nominal composition. The hole concentrations are derived from Hall effect measurements at 100 K.  The 

symbols in the last column are consistent with the figures throughout this article. 

Publication Calculated mass (units of m0)

Mishra et al [21] 0.36 

Parker et al [11] 0.80 

Zhang et al [22] 2.20 

Larson et al [24] 0.56 

Table 2: Calculated Bi2Se3 valence band masses for the Γ – Z direction 
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Figure Captions 

Fig. 1 (color online) Calculated hole Fermi surface of Bi2Se3 at hole concetration of 6x1018cm-3 

(top) and 4x1019cm-3(bottom), using the methods developed in Ref [11], (a) has the “bag” region 

whereas (b) has both “bag” and “pipes” region. The pipes are connected to the adjacent 

Brillouin zones. 

Fig. 2  (color online) Experimental temperature dependence of (a) the carrier concentration as 

measured by Hall effect,  (b) the thermopower, (b)  the mobility, and (c) the resistivity of the 

single-crystal p-type Bi2Se3 samples studied here.  The insert in (a) shows the field-dependence 

at 10 K of the Hall resistivity, illustrating a simple linear relation indicative of single-band 

conduction. 

Fig. 3  (color online) Angular dependence of Shubnikov – de Haas oscillations trace for all single 

crystal sample measured.   The angle is elevation angle between the direction of applied magnet 

field and the basal plane: (1) 0° (2) 30° (3) 60° (4) 90° (5) 120° (6) 150° (7) 180°.  The frames (a)-

(d) are for samples S1-S4  (see Table 1). 

Fig. 4    (color online) Polar plot of the cross-sectional area of the Fermi surface,  as a function of 

the elevation angle from the basal plane  (0o) toward the c-axis (90o). The plots are shown for 

different doping levels, as indicated. 

Fig. 5  (color online) Characteristic temperature dependence of SdH oscillation amplitude. The 

symbols are the experimental data points, plotted for different values of the magnetic field as 
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indicated.  All solid lines are fits to Eq. (2) with a single parameter, an effective mass m*= 

0.25me.The Dingle temperatures vary from sample to sample. 

Fig. 6  (color online) Thermopower at 300 K versus hole concentration as measured by the Hall 

effect at 100 K, for p-type Bi2Se3, following the symbol and color conventions given in Table 1 

Fig. 7  (color online) Measured (data points) and calculated (lines) density-of-states hole 

effective mass vs. doping level.  The heavy hole mass m*
H corresponds to the central “bag” in 

the Fermi surface shown in Fig. 1, the light mass m*
L  to the “pipes”, as illustrated in Fig. 1. 
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