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Abstract

We present a systematic study of strain effects on the electronic band structure of the group-

III-nitrides (AlN, GaN and InN) in the wurtzite phase. The calculations are based on density

functional theory (DFT) with band-gap-corrected approaches including hybrid functional (HSE)

and quasiparticle G0W0 methods. We study strain effects under realistic strain conditions, hydro-

static pressure and biaxial stress. The strain-induced modification of the band structures is found

to be nonlinear; transition energies and crystal-field splittings show a strong nonlinear behavior

under biaxial stress. For the linear regime around the experimental lattice parameters, we present a

complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that allows us to predict

the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain

conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate

that HSE provides an appropriate description for the band structures of nitrides. We present a

systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN,

GaN and InN). We quantify the nonlinearity of strain effects by introducing a set of bowing pa-

rameters. We apply the calculated deformation potentials to the prediction of strain effects on

transition energies and valence-band structures of InGaN alloys and quantum wells grown on GaN,

in various orientations (including c-plane, m-plane, and semipolar). The calculated band gap bow-

ing parameters including the strain effect for c-plane InGaN agrees well with the results obtained

by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (2021), (3031), and

(3031) orientations, our calculated deformation potentials have provided results for polarization

ratios in good agreement with the experimental observations, providing further confidence in the

accuracy of our values.

PACS numbers: 71.20.Nr, 72.20.Jv, 78.20.Bh, 85.60.Bt
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I. INTRODUCTION

The group-III nitride semiconductors AlN, GaN, InN, and their alloys are already ex-

tensively used in light emitting diodes1 and laser diodes2 from the visible spectrum to the

deep ultra-violet(UV). The electronic structure of these wide-band-gap semiconductors also

enables high-power and high-frequency devices.3 However, the application of nitride semi-

conductors are currently still limited by several factors. For solid-state lighting, one of the

most serious limitations is the droop problem, which is believed to be related to the Auger

recombination process.4–6 In addition, in traditional c-plane (polar) quantum wells (QWs)

the electron and hole wavefunctions are separated by polarization fields, which lowers the

radiative recombination rate. To overcome this problem, and allow wider QWs that would

also mitigate Auger losses, semipolar and nonpolar InGaN/GaN QWs have been proposed,

where the polarization fields can be greatly reduced or even eliminated.7 Several experimen-

tal groups have reported nitride-based light emitting devices grown on these nonpolar and

semipolar planes.8–12

One effect of forming an interface between dissimilar nitride materials is the development

of strain. The active regions in nitride-based light emitting devices consist of heterostructures

such as InGaN/GaN (in light-emitting devices) or AlGaN/GaN (in power electronic devices)

MQW structures. Due to the large lattice mismatch (2.5% between AlN and GaN and 11.0%

between InN and GaN), strain is present in alloy layers that are pseudomorphically grown

on thick GaN layers or substrates. Strain affects the device properties in several ways: (a)

It changes the absolute positions of the valence-band maximum (VBM) and the conduction-

band minimum (CBM), and hence modifies the QW depth and the confinement of electrons

and holes in the active region. (b) It induces piezoelectric polarization in InGaN or AlGaN

QWs,7,13,14 thus lowering the electron-hole overlap and hence the radiative recombination

rate. (c) It may also modify the effective masses of carriers and the density of states.15,16

(d) In polar (c-plane) QWs, the in-plane strain is isotropic.17–19 In nonpolar and semipolar

QWs, on the other hand, the biaxial stress induces anisotropic strain, which drastically

modifies the subband structures and wavefunction character20–22 and induces polarized light

emission.11,12,14

The effects of strain on the band structures of semiconductors can, to first order, be

described by deformation potentials. These are the linear coefficients in the response of
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the band structure to a strain perturbation. The applicability of such a description has

been demonstrated in measurements of the optical transition energies for GaN epilayers

with residual strain.23–25 To quantify the strain effects for InGaN or AlGaN alloys, accurate

deformation potential parameters for all three nitrides are needed.

So far, most of the experimental data on deformation potentials of GaN25–27,40 and InN28

have been obtained by a combination of x-ray and optical measurements from the change of

optical transition energies under the biaxial stress induced by the c-plane substrate. How-

ever, the accurate determination of deformation potentials by this experimental approach

is difficult. Indeed, as shown in Table I, the experimental deformation potential data of

GaN scatter over a very large range. One of the main problems is that the uniaxial and

biaxial strain components cannot be applied separately and the measurement only provides

results for a combination of several deformation potentials. The quasicubic approximation29

is then needed to extract the deformation potentials from these data—and as we will discuss

in Sec. III D this approximation is not valid in the wurtzite nitrides. Uncertainties in the

results of the studies that use this approximation are thus to be expected.25–27,40 Another

complication is that the determination of the out-of-plane strain component depends on the

numerical values of the elastic stiffness constants. The values of these constants also exhibit

a lot of scatter.

A fairly unique approach was reported in Ref.42, where uniaxial strain along the c axis

of GaN was applied by shock compression. However, the acz −D1 value obtained using this

approach is larger in magnitude than any of the other results, while the D3 and D4 values

are much smaller in magnitude. This might possibly be due to the biaxial strain components

not being exactly zero during the shock compression.

The most reliable experimental approach may be to carry out optical measurements under

various types of static uniaxial stress. Such techniques have recently been used to obtain the

deformation potentials of GaN30 and AlN.31 The advantage of this approach is that various

strained environments can be introduced in the system of interest, and therefore deformation

potentials are obtained without needing to rely on the quasicubic approximation. Overall,

as shown in Table I, the experimental results measured using this approach show better

agreement with the most recent theoretical predictions.

Theoretical values are also available for GaN, but they similarly are spread over a large

range, as shown in Table I. The large deviations in the band-gap related deformation po-
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tentials (acz−D1, act−D2) can be attributed to the band-gap problem of density functional

theory (DFT) in the local density approximation (LDA) or generalized gradient approxi-

mation (GGA). Although DFT with present-day exchange-correlation functionals performs

exceptionally well in predicting the ground-state properties of materials, it was not intended

to describe properties that involve electronic excitations. One of the most serious draw-

backs of traditional DFT functionals, in particular LDA and GGA, is that the band gaps of

Kohn-Sham band structures are severely underestimated (typically by 50%). For InN, this

would be an even worse problem, since LDA or GGA calculations give a negative band gap

and hence incorrect interactions between bands, prohibiting a determination of deformation

potentials of InN with those techniques. Recently, several schemes have been developed to

address this problem, including the incorporation of exact exchange in hybrid functionals

and applying many-body perturbation theory on top of traditional DFT calculations. De-

formation potentials calculated with these advanced methods show better agreement with

experiment.38

In addition, it has been shown that the relaxation of the internal displacement parameter

u is critical in determining the crystal-field splitting and the related deformation potentials

(D3 and D4).35 Some earlier work that did not include this internal relaxation is there-

fore not reliable.33 Furthermore, due to the sensitivity of the deformation potentials to u,

the results may not be accurate unless convergence is explicitly verified. Finally, as we

will demonstrate in Sec. III B, the equilibrium lattice parameters around which the linear

expansion is constructed also has a large effect on the deformation potentials, due to the

pronounced nonlinear dependence of some of the transition energies on strain. Different

theoretical approaches may yield different equilibrium lattice parameters.

In the present work, all of these shortcomings of previous theoretical approaches have

been addressed. We study the strain effects on the band structure of wurtzite AlN, GaN,

and InN using band-gap-corrected first-principles approaches including hybrid functionals43

and the quasiparticle G0W0 method.44 We show that the strain-induced modification of the

band structures is nonlinear, and quantify this nonlinearity by introducing a set of bowing

parameters. By applying different strains to wurtzite nitrides, we obtain a complete set

of deformation potentials for the linear regime around the experimental lattice parameters.

These results will be reported in Sec. III.

In Sec. IV we then use the semi-empirical k ·p method to explore the strain effects in

5



InGaN alloys by applying our consistent set of deformation potentials. This allows us to

predict the band-structure modifications due to strain in polar c-plane and nonpolar m-

plane InGaN/GaN systems: (a) the effect of biaxial stress on band gaps of InGaN alloys

grown on c-plane GaN substrates; (b) the relation between anisotropic in-c-plane biaxial

strain on valence-band structures and the optical anisotropy of the light emitted from m-

plane InGaN/GaN devices45; and (c) the role of strain in the valence-band structure and

polarization of semipolar InGaN alloys.

II. MODEL AND COMPUTATIONAL DETAILS

A. k·p perturbation approach

We employ the k ·p perturbation approach of Bir and Pikus29 to obtain the analytical

solutions of strain-induced band-structure modifications in the vicinity of the Γ point. These

solutions are then used to fit the first-principles band structures to extract the deformation-

potential parameters. The strained Hamiltonian of the topmost three valence bands is given

by the following 6×6 matrix:

H =



F 0 −H∗ 0 K∗ 0

0 G ∆ −H∗ 0 K∗

−H ∆ λ 0 I∗ 0

0 −H 0 λ ∆ I∗

K 0 I ∆ G 0

0 K 0 I 0 F


, (1)
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where

F = ∆1 + ∆2 + λ+ θ,

G = ∆1 −∆2 + λ+ θ,

H = i(A6kzk+ + A7k+ +D6εz+),

I = i(A6kzk+ − A7k+ +D6εz+),

K = A5k
2
+ +D5ε+,

∆ =
√

2∆2,

λ = A1k
2
z + A2k

2
⊥ +D1εzz +D2(εxx + εyy),

θ = A3k
2
z + A4k

2
⊥ +D3εzz +D4(εxx + εyy),

ε+ = εxx − εyy + 2iεxy, εz+ = εxz + iεyz,

k+ = kx + iky, k
2
⊥ = k2

x + k2
y.

Here kx, ky, and kz are the electron wave vectors along x, y, and z directions. The x,

y, and z directions are defined as the [1010], [1100], and [0001] directions of the hexagonal

lattice, respectively. εxx, εyy, and εzz are the strain components along x, y, and z directions

respectively. εxz and εyz are shear-strain components in xz and yz planes. ∆1 is the crystal-

field interaction and ∆2 is the spin-orbit interaction. Note that the element H in this

Hamiltonian is different in sign and by a factor i from that in the approach of Chuang and

Chang.33 However, these differences do not produce any observable physical effect; previous

work has shown that the same band structure is obtained from both approaches.46 We have

also checked that such a difference in the Hamiltonian does not affect the dependence of

the band energies at the Γ point on the strain components, which is used to extract the

deformation potentials. Therefore, the Chuang-Chang33 and Bir-Pikus29 approaches are

equivalent.

For an unstrained wurtzite system, the top three valence bands correspond to the heavy

hole (HH), light hole (LH), and crystal-field split-off band (CH). The transition energies

from the CBM to these three bands are denoted EA, EB, and EC , respectively. Here we do

not consider the spin-orbit interaction (∆2 = 0), which is very small in the nitrides.47 In this

case the HH and LH band become doubly degenerate (Γ6) in the absence of strain and the

CH band (Γ1) is split off by the crystal-field splitting.

We first focus on those strain components that do not break the wurtzite symmetry,

including biaxial strain in the c plane (εxx = εyy) and uniaxial strain along the c axis (εzz).

Such strain perturbations to the 6 × 6 k ·p Hamiltonian do not split HH and LH bands,

7



although they induce an energy shift of the conduction and the three valence bands at the

Γ point:

∆ECB = aczεzz + actε⊥,

∆EHH/LH = (D1 +D3)εzz + (D2 +D4)ε⊥,

∆ECH = D1εzz +D2ε⊥,

(2)

yielding the following transition energies:

EA/B = EA/B(0) + (acz −D1)εzz + (act −D2)ε⊥

−(D3εzz +D4ε⊥),

EC = EC(0) + (acz −D1)εzz + (act −D2)ε⊥.

(3)

Here ε⊥ (defined as εxx + εyy) and εzz are the strain components in and out of the c

plane. EA/B(0) and EC(0) are the corresponding transition energies at equilibrium lattice

constants. From the slopes of the transition energies under biaxial strain in the c plane

(εxx = εyy 6= 0, εzz = 0) we obtain the deformation potentials act − D2 and D4, while

acz −D1 and D3 can be obtained from the slope of transition energies under uniaxial strain

along the c-axis (εxx = εyy = 0, εzz 6= 0).

The strain components mentioned above preserve the symmetry of the wurtzite crystal.

The hexagonal symmetry can be broken by anisotropic strain in the c plane, which is present

in nonpolar and semipolar nitride alloys. For example, uniaxial strain in the c plane (εyy =

εzz = 0, εxx 6= 0) changes the crystal symmetry from C6v to C2v. Without spin-orbit

splitting, the original 6× 6 Hamiltonian reduces to a 3× 3 matrix. Anisotropic strain in the

c plane lifts the degeneracy of the Γ6 states and yields the three eigenenergies:

E1 = EA/B(0) + (D2 +D4)εxx +D5εxx,

E2 = EA/B(0) + (D2 +D4)εxx −D5εxx,

E3 = EC(0) +D2εxx.

(4)

Correspondingly the three eigenstates are:
1

1

0

 ,


−1

1

0

 ,


0

0

1

 . (5)
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The basis of the eigenvectors is:

|1〉 = |X + iY 〉 ,

|2〉 = |X − iY 〉 ,

|3〉 = |Z〉 ,

(6)

where the characters X/Y /Z indicate that the corresponding wavefunction has px/py/pz

character. The first eigenvector in Eq. (5) has px character while the second eigenvector has

py character. We obtain the magnitude of the deformation potential D5 from the slope of

the energy splitting between the top two valence bands under anisotropic strain:

∆E = |EX − EY | = 2 |D5εxx| . (7)

In order to determine the sign of D5, we need to explore the symmetry character of the

valence bands. Figure 1 shows the partial charge density of the topmost two valence bands of

wurtzite GaN under uniaxial compressive strain along the x direction. The highest valence

state exhibits px character, while the second highest state exhibits py character. This implies

that D5 is negative in GaN, in agreement with experimental observations.40 Based on the

calculated partial charge densities of AlN and InN (not shown here), we find that the D5

values in AlN and InN are also negative.

Another strain component that is present in semipolar nitride materials is shear strain

(εxz and εyz). The corresponding deformation potential is D6. By applying only the shear

strain εxz in the wurtzite system, neglecting the spin-orbit interaction, the topmost three

valence-band eigenenergies at the Γ point are:

E1 = ∆cr,

E2 = ∆cr

2
+

√
∆2

cr+8D2
6ε

2
xz

2
,

E3 = ∆cr

2
−
√

∆2
cr+8D2

6ε
2
xz

2
.

(8)

We obtain the valence-band structures of the shear-strained wurzite GaN system from

first-principles calculations. The energy separation between E2 and E3 is defined as

∆E23 =
√

∆2
cr + 8D2

6ε
2
xz. The energy of one of the doubly degenerate valence-bands (E1,

with py character) stays constant while the other one (E2, with px character) goes up. Corre-

spondingly, the crystal-field split-off band (E3, with pz character) goes down with the same

magnitude.
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Above we have presented the definitions of all deformation potentials that are needed

to describe the modification of the band structure with strain at the Γ point. In order to

determine these deformation potentials from first-principles calculations, we apply different

strain components in the wurtzite nitride systems and then fully relax the structure including

the internal structural parameter u (which sensitively affects the magnitude of the crystal-

field splitting). By fitting the analytical expressions for the k ·p eigenenergies at the Γ

point to the calculated band structures with different strain components, the deformation

potentials are obtained.

B. First-principles calculations

The DFT calculations are carried out using the plane-wave projector augmented-wave

(PAW)48 method as implemented in the VASP code.49 We use the Heyd-Scuseria-Ernzerhof

(HSE)43,50 hybrid functional to carry out the structural optimization as well as band-

structure calculations, which gives band gaps and equilibrium lattice parameters in bet-

ter agreement with experiment for nitrides than LDA and GGA, as shown in our previous

work.38 The screening parameter µ in HSE is fixed at a value of 0.2. With the default mixing

parameter (25%), the obtained band gap of InN (0.68 eV) agrees pretty well with experiment

( 0.7 eV). For AlN and GaN, the mixing parameter α is modified (34% for AlN, 30% for

GaN) to reproduce the experimental band gaps (6.13 eV for AlN, 3.48 eV for GaN). We treat

the semi-core d electrons of Ga and In as valence electrons (also in the G0W0 calculations).

We use a plane-wave energy cutoff of 600 eV, which is necessary for the accurate determina-

tion of the internal displacement parameter u, and a 6×6×4 Γ-point centered k-point mesh.

Our quasiparticle G0W0 calculations were based on exact exchange in the optimized effective

potential approach (G0W0@OEPx).44

III. COMPUTATIONAL RESULTS

A. Equilibrium lattice parameters and band gaps

The lattice parameters of the wurtzite crystal structure for AlN, GaN, and InN are shown

in Table II. LDA underestimates the equilibrium lattice parameters of AlN, GaN, and InN,

while GGA overestimates these parameters compared with experimental data. The devi-
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ations are on the order of 1%, which is typical of these functionals. The HSE results for

structural properties with the default mixing parameter are typically closer to experiment.

The HSE band structures obtained in Ref. 38 were obtained with the default mixing param-

eter α = 25%. Although a better agreement with experiment compared with LDA or GGA

was achieved, the calculated band gaps for the three nitrides were still smaller than exper-

iment. Better agreement with experimental band gaps can be achieved by modifying the

mixing parameter. The mixing parameters needed to reproduce the experimental band gaps

of group-III nitrides at the experimental lattice parameters are 34% for AlN and 30% for

GaN. As shown in Table II, the modified mixing parameter also provides a good agreement

with experiment for the structural properties.

The band structures of group-III nitride semiconductors AlN, GaN, and InN obtained

with the hybrid functional approach with modified mixing parameters are shown in Fig. 2.

These band structures show good agreement with results obtained with the quasiparticle

G0W0@OEPx method,51 which serves as a validation of the use of HSE as a reliable method

to obtain accurate band structures.

B. Transition energies in GaN under realistic strain

Optical transitions from the lowest conduction band to the topmost three valence bands

are dominant for optical emission processes in nitride materials. In GaN these transitions

have also been used as a characterization tool to evaluate the effects of strain on the electronic

properties. In this section, we will analyze the strain dependence of these transition energies

in c-plane GaN by computing the band structures of GaN for two types of realistic strain

conditions: biaxial stress and hydrostatic pressure.

Wurtzite c-plane GaN thin films grown on sapphire or SiC experience biaxial stress in-

duced by the substrate. Under such stress, the wurtzite system exhibits biaxial strain in the

c plane accompanied by out-of-plane strain along the c axis:

εzz = −2C13
C33

εxx, εxx = εyy 6= 0. (9)

Here we use the elastic constants C13 and C33 obtained by DFT calculations performed

within the LDA54 to determine the strain components and lattice parameters under biaxial

stress.
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Figure 3(a) shows the transition energies between the lowest conduction band and the

topmost three valence bands (HH, LH and CH) of GaN under biaxial stress in the c plane

for the strain range ±3%. Interestingly, the transitions between the CB and HH or LH

bands show a strong nonlinear behavior. Such nonlinearity is also evident in the crystal-

field splitting (∆cr) in Fig. 3(b), which can be described by a quadratic dependence as

demonstrated by the fitted curve. This implies that the slope (which defines the deformation

potentials) differs for different lattice parameters.

Another realistic strain condition can be induced by hydrostatic pressure, where the stress

components along three directions are the same (σxx=σyy=σzz). The in-c-plane strain and

out-of-c-plane strain now have the same sign but these strain components are not isotropic:

εzz = C11 + C12 − 2C13
C33 − C13

εxx,

εxx = εyy = C33 − C13

C33(C11 + C12)− 2C2
13

σzz.
(10)

Under hydrostatic pressure, as shown in Fig. 4, both the transition energies and the

crystal-field splitting change almost linearly in the strain range ±3%.

C. Results for deformation potentials

We have seen that the dependence of the band energies on strain in general is nonlinear.

However, over a small range of strains around a given lattice parameter, the variation can be

regarded as linear. It is therefore still possible to define a single set of deformation potentials,

choosing the experimental lattice parameters as the point of reference. By constraining the

strain range to realistic strain conditions in the linear regime around the experimental lattice

parameters, we derive a consistent and complete set of deformation potentials for all three

nitrides. The resulting values are listed in Table III. The recommended values are those

obtained with DFT-HSE, with the mixing parameter α adjusted to obtain a band gap that

matches experiment. For comparison, for GaN and AlN, we also list results obtained with

other exchange-correlation functionals and with HSE using the standard (α=0.25) mixing

parameter. For InN, LDA and GGA results are not available since these functionals produce

a negative band gap.

Table III shows that the calculated deformation potentials are sensitive to the choice

of exchange-correlation functional. LDA and GGA-PBE data agree well with each other,
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but both of them show appreciable deviations from HSE results. The band-gap-related

deformation potentials acz−D1 and act−D2 obtained by HSE calculations are considerably

larger in magnitude than those from LDA and GGA-PBE results. The HSE calculations

with modified mixing parameters, which yield both very good structural properties and band

structures, are expected to also provide a reliable description of the change of band gaps

under strain. The deformation potentials D3, D4, D5, and D6, which relate to the splitting

of valence bands, are less sensitive to the choice of exchange-correlation functional. With

the exception of acz − D1, the deformation potentials decrease in absolute value from AlN

to GaN to InN.

D. Deformation potentials: validity, reliability, and comparison with experiment

We checked the validity of the HSE hybrid functional results by performing quasiparticle

G0W0 calculations based on OEPx.44 The comparison (included in Table III) shows that, the

deformation potentials of GaN obtained with DFT-HSE calculations are in good agreement

with those obtained from G0W0 calculations (within 0.5 eV). Among these deformation

potentials, acz − D1 and act − D2 are more sensitive to the gap and hence present the

most important test. The agreement with G0W0 data for these two deformation potentials

validates the reliability of the HSE method in determining deformation potentials of nitrides

and oxides.55 Although both HSE and G0W0 calculations properly address the band-gap

problem, here we recommend HSE, since the HSE calculations can self-consistently provide

accurate results for both structural properties and band structures. Table III also shows that

results obtained from HSE with modified mixing parameters are generally very close (within

0.3 eV) to the HSE results obtained with the default mixing parameter (25 %). For GaN

and AlN, we recommend HSE data obtained with the modified mixing parameters, since

this approach provides more accurate atomic and electronic structures. Table III also lists

the range of experimental data for deformation potentials of GaN, as reported in Ref. 52;

we note that our HSE results all fall within this (very wide) range.

Our deformation potential data also allow us to assess the accuracy of the quasicubic

approximation. This approximation assumes a correlation of the physical properties of

the wurtzite structure with those of the zinc-blende structure along the <111> direction

due to the similarity of the local atomic bonding environment between wurtzite and zinc-
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blende structures. In the quasicubic approximation, the deformation potentials are related

as follows: D3 = −2D4, D1 + D3 = D2 and D3 + 4D5 =
√

2D6. As a test, we checked

the value of D3 + 2D4 (which should be zero in the quasicubic approximation), finding 1.43

eV for AlN, -0.52 for GaN and -0.88 eV for InN. Clearly, neglecting the anisotropy of the

wurtzite phase by applying the quasicubic approximation introduces significant inaccuracies

in the determination of deformation potentials.

In Table III we also list the deformation potentials suggested for GaN by Vurgaftman

and Meyer,52 which are obtained by averaging available data. Our HSE calculations for

GaN yield systematically smaller absolute values than the Vurgaftman and Meyer numbers,

with the exception of acz − D1. For InN, Vurgaftman and Meyer recommended to use the

same deformation potentials as for GaN due to the lack of data. Our HSE values show that

the deformation potentials of InN are much smaller than those of GaN, with differences in

magnitude as large as several eV; use of the GaN values would therefore lead to significant

errors.

E. Nonlinear effects on transition energies

To quantify the nonlinearities in the effect of strain on transition energies, we introduce

a set of bowing parameters, b1 to b4. Assuming that the bowing parameters for the strain

components along the x and y direction are equal to each other, the dependence of the

transition energies (EA/B and EC) on strain can be expressed as:

EA/B = EA/B(0) + (acz −D1)εzz + (act −D2)ε⊥

−(D3εzz +D4ε⊥) + (b1 + b3)ε2
zz + (b2 + b4)ε2

⊥,

EC = EC(0) + (acz −D1)εzz + (act −D2)ε⊥

+b1ε
2
zz + b2ε

2
⊥.

(11)

EA/B(0) and EC(0) denote the transition energies at experimental equilibrium lattice pa-

rameters, while EA/B and EC are the transition energies when strain is applied. We obtain

the bowing parameters for GaN by performing a quadratic fit of our transition-energy-strain

data shown in Fig. 3 and Fig. 4. Similar calculations were performed for AlN and InN and

the resulting bowing parameters are listed in Table IV. This set of bowing parameters is an

essential input to model the optical transitions in highly strained nitride heterostructures.
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IV. STRAIN EFFECTS IN INGAN ALLOYS

Now that we have a complete set of deformation potentials for GaN and InN, we can

study the effects of strain on the band structure of InxGa1−xN alloys. InxGa1−xN layers

grown pseudomorphically on GaN are under large biaxial stress due to the lattice mismatch.

The resulting strain strongly affects the band structure. In addition, for c-plane-grown

devices the strain causes piezoelectric polarization, which induces electron-hole separation

and lowers the radiative recombination rate and hence the efficiency. For this reason, growth

in nonpolar and semipolar orientations, which avoid the polarization fields, has been pursued

to improve the device efficiencies.8,9,56 In such nonpolar and semipolar InxGa1−xN layers,

strain plays a crucial role in determining the polarization character of the emitted light. In

this Section we explore the effects of strain on InxGa1−xN alloys in detail.

A. Band gap of c-plane InGaN alloys

The incorporation of In into GaN lowers the band gap and allows tuning the emis-

sion wavelength of InxGa1−xN-based devices over a wide spectral range from red to blue.58

InxGa1−xN epilayers grown on GaN are pseudomorphically strained, which affects the band

gap. In addition, even in the absence of strain, the band-gap variation with In concentration

is nonlinear, an effect known as band-gap bowing. For InxGa1−xN a surprisingly wide range

of bowing parameters has been reported in the literature.17–19,57,59,60 Moreover, the bowing

parameter was found to dependent on the In composition.57,59,61 Here we aim to obtain a

more accurate value for the bowing parameter by using our calculated deformation poten-

tials to determine the effects of strain on the gap. These effects need to be subtracted from

the experimental band-gap data before the effect of bowing can be determined.

It has been verified using hybrid functional calculations that the equilibrium lattice pa-

rameters of the InxGa1−xN alloy can be obtained by linear interpolation between GaN

and InN: aInGaN = aInN × x + aGaN × (1 − x) (Ref. 61). Similarly, the elastic con-

stants and deformation potentials of the alloy systems can be determined from those of

the pure nitrides by linear interpolation: CInGaN = CInN × x + CGaN × (1 − x) and

DInGaN = DInN×x+DGaN× (1−x). For these physical quantities, treating the dependence

on alloy composition up to linear order is sufficient. Any nonlinearities would have negligible
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effects on the relevant observables. The band gap of a free-standing alloy is calculated using

the equation: Eg = EInN × x+EGaN × (1− x) + b× x(1− x) with the bowing parameter b.

Assuming that the InxGa1−xN epilayer is pseudomorphically strained to match the in-

plane latttice constant of GaN, the in-c-plane biaxial strain components are determined by

the lattice mismatch between InGaN and GaN: εxx = εyy = (aGaN − aInGaN)/aInGaN. The

corresponding out-of-plane strain component is related to the in-plane strain by a combi-

nation of elastic constants of the alloy: εzz = −2C13

C33
εxx. In the following we use the elastic

constants calculated by Wright et al.54 We use Eq. (2) to calculate the strain effects on the

band gap of an InGaN alloy as a function of In compositon. In previous work17,57,59 strain

effects on the band gap were assumed to be a linear function of the In fraction x. However,

as shown in Fig. 5(a), such a linear relation does not hold true. The nonlinearity arises

because the deformation potentials of InGaN alloys are not constant, i.e., they cannot be

taken to be equal to those of GaN, but depend on the In composition. Since the difference in

deformation potentials between GaN and InN is quite large, the changes in band positions,

which are products of deformation potentials and strains, exhibit distinct nonlinearities.

Using this more accurate treatment of strain effects, we can now rederive the bowing

parameter of unstrained InxGa1−xN alloys by fitting the experimental data of band gaps

measured by McCluskey et al.17,57 As shown in Fig. 5(b), from our calculations, the three

transition energies of the c-plane InGaN system decrease with increasing In composition,

while the energy separation between HH/LH bands and the CH band increases with increas-

ing In composition. The band gap of an InxGa1−xN alloy as a function of In composition

is shown in Fig. 5(c), for both a free-standing (unstrained) alloy and an alloy strained due

to pseudomorphic growth on GaN. By fitting our calculated band gap (solid curve) to the

experimental data [solid dots in Fig. 5(c)], a bowing parameter of 2.0 eV is derived for

InxGa1−xN alloys within the composition range 0 < x < 0.1. Strictly speaking, the bowing

parameter depends on alloy composition, but the experimental data set is obviously not rich

enough to address this additional complication, and the use of a fixed bowing parameter

over this relatively narrow composition range is justified. The value b=2.0 eV is smaller

than the result derived by McCluskey et al.,57 but agrees very well with the result obtained

by recent first-principles hybrid functional calculations.61,62
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B. Strain effects on the polarization character of nonpolar m-plane InGaN

Nonpolar InGaN/GaN QWs have been proposed and fabricated as promising candidates

for high-efficiency light emitters8,63,64 because polarization fields in such devices are expected

to be greatly reduced, resulting in enhanced efficiency. The lack of polarization fields, in

turn, allows the use of wider QWs, which reduce the carrier density in the active layer for a

given amount of injected current. These lower carrier densities are beneficial because they

reduce losses due to Auger recombination, a loss mechanism that scales as the third power

of the carrier density.6,65

Light emitted from nonpolar InGaN/GaN QWs has been found to be polarized.9,14,56,66,67

The emitted light has a preferential polarization along the [1120] (x) direction, while the

weaker transition has a polarization along the [0001] (z) direction (i.e., along the c axis, which

lies in the plane of the active layer in these nonpolar devices). Defining the polarization ratio

as ρ = (Ix − Iz)/(Ix + Iz), Masui et al.14 further found that the polarization ratio increases

with increasing In composition, and correspondingly the energy separation between the

valence bands with x character and z character increases. Here we explore how strain affects

the band ordering and polarization characteristics of the optical transition in such m-plane-

oriented InxGa1−xN alloys.

For InxGa1−xN alloys grown on m-plane GaN substrates, the two principal directions in

the m plane are [1120] (x) and [0001] (z), while the direction normal to the m plane is [1100]

(y). The in-m-plane strain components are determined by the lattice mismatch between the

InGaN alloy and the GaN substrate, while the out-of-plane strain component (along the y

direction) is determined by the relation: εyy = −C11
C33

εxx−C12
C33

εzz. Assuming that the InGaN

film is perfectly strained by the underlying GaN without any strain relaxation, the strain

components in the alloy are calculated from the lattice mismatch and elastic constants, as

shown in Fig. 6(a). The strain component along the x direction εxx is compressive while that

along the y direction εyy is tensile. This difference between εxx and εyy (which is absent in

InxGa1−xN alloys grown along the polar c direction) plays a crucial role in the modification

of the band structure of m-plane InxGa1−xN alloys by splitting the HH and LH bands and

leading to polarized light emission.

With our deformation potentials and the expressions for band energies in Eq. (4), we

calculate the transition energies of an InxGa1−xN alloy as a function of In composition,
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as shown in Fig. 6(b). The difference between εxx and εyy lowers the symmetry of the

wurtzite system from C6v to C2v and splits the HH and LH bands. These two bands are

denoted now as E1 and E2, respectively, since the strain perturbation breaks the original

two |X ± iY 〉 states into px-like and py-like states. By solving the strained k·p Hamiltonian,

we find that the eigenstate of the E1 band has px character while that of the E2 band has

pz character. Furthermore, at a very low In composition (x=0.04) the E2 valence band

crosses the CH band, which is pz-like and denoted as the E3 band. This indicates that in

m-plane InxGa1−xN alloys with In compositions higher than 4%, the band ordering near the

valence-band edge is E1, E3, and E2 in order of decreasing electron energy. The dominant

optical transition is therefore from the conduction band to the E1 band and the emitted light

from this transition has polarization mainly along the x direction. The next possible but

much weaker transition is from the CBM to the E3 band, leading to polarization along the z

direction. Such a band ordering and polarization character of the emitted light is consistent

with recent experimental observations.9,14,67

As shown in Fig. 6(c), the energy separation between the E1 and E3 valence bands

increases with increasing In composition. This implies that the relative hole occupation

of the lower band decreases and the polarization ratio increases, in agreement with the

experimental observations of Ref. 14 at low In compositions. A discontinuous change in

the experimental data occurs around an In composition of 0.2. This variation cannot be

explained if we assume that the alloy is perfect and fully strained by the underlying GaN.

The discrepancy is possibly due to In segregation, or to strain relaxation in these nonpolar

InxGa1−xN alloys with high In fraction.

C. The role of strain in the valence-band structure of semipolar InGaN alloys

Semipolar QW orientations have been proposed to increase the efficiency of light emitters.

In these orientations the effect of spontaneous and piezoelectric polarization fields is reduced

and thereby the carrier overlap is increased.8,11,63,64 Similar to the nonpolar case, growth of

InGaN on GaN along semipolar directions leads to strain conditions different from those

in conventional growth along the c direction. Strain in semipolar InGaN grown on GaN

is characterized by the shear strain and anisotropic strain in the c plane. This affects

the splitting of the uppermost valence bands and hence the polarization of the emitted

18



light. Optical anisotropy has been observed for semipolar devices.11,12,45,68,69 In addition, in

semipolar (1122) InGaN QWs grown on GaN the dominant polarization direction was found

to switch from [1100] (perpendicular to the c-axis) to [1123] when the In concentration was

increased above 30%.70,71

Three factors critically influence the band structure of InGaN QWs and therefore the

polarization of the emitted light: indium concentration, strain, and quantum confinement.

Based on k ·p modeling Yamaguchi predicted that the QW thickness strongly affects the

polarization.72 This seems qualitatively consistent with the results of Masui et al., who

observed an enhancement in optical polarization for thinner QWs.71 However, in Yamaguchi’s

work the magnitude of this quantum confinement effect is very sensitive to the choice of

Luttinger parameters51 and can range from 2 to 20 meV for 2nm thick QWs. Ueda et al.,

on the other hand, found no appreciable QW thickness effect.70 They proposed strain to be

the dominant factor, and derived a large shear-strain deformation potential of D6=-8.8 eV

from their measurements.70 Our own study of quantum confinement73 also produced very

small differences compared to bulk calculations; the main cause of polarization switching

must therefore be the strain.

In previous work,21 we found that anisotropic strain (through the deformation potential

D5) and shear strain (through the deformation potential D6) have opposite effects on the

valence-band separation. A switch in the band ordering may occur if the shear strain and/or

the deformation potential D6 are large enough. However, using our consistent set of defor-

mation potentials we found no evidence of any switch in band ordering with increasing In

concentration.21 Note that the D6 value derived by Ueda et al.70 is much larger than any of

our calculated values. We conclude that the underlying cause of the polarization switching

remains unresolved. One possible explanation is that the switching is due to inhomogeneities

of In concentrations and strain distributions in InGaN alloys with high In content. A recent

theoretical work supports our conclusion that the polarization switching with increasing car-

rier density may be attributed to inhomogeneous strain distribution in the InGaN quantum

wells.74

Polarized light emission has also been observed in semipolar InGaN QWs grown in

(2021), (3031), and (3031) orientations, and in all cases our calculated deformation poten-

tials have provided results for polarization ratios in good agreement with the experimental

observations,11,12 providing further confidence in the accuracy of our values.
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V. CONCLUSION

We have studied strain effects on the band structure of wurtzite AlN, GaN, and InN using

a first-principles approach based on density functional theory with a hybrid functional.

We observed nonlinearities in the strain dependence and obtained a set of strain bowing

parameters that can be used to account for nonlinear effects on band structure in highly

strained nitrides. For the linear regime around the experimental lattice parameters, we

have presented a complete and consistent set of deformation potentials for the three nitride

materials. Examples of how our deformation potentials can be used in the interpretation

of experimental data on InGaN alloys and quantum wells were provided. Together with

the Luttinger band parameters,51 the deformation potentials constitute essential input for

device modeling, and they will allow accurate predictions of band positions under realistic

strain conditions.
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TABLE I: Literature results for deformation potentials (eV) of wurtzite GaN.

Method acz −D1 act −D2 D3 D4 D5 D6

Calc.a - - 2.99 -1.50 -2.04 -

Calc.b -4.78 -6.18 1.40 -0.70 - -

Calc.c -3.10 -11.2 8.20 -4.10 -4.70 -

Calc.d - - 5.80 -3.25 -2.85 -

Calc.e -6.11 -9.62 5.76 -3.04 - -

Calc.f -9.47 -7.17 6.26 -3.29 - -

Calc.g -6.02 -8.98 5.45 -2.97 -2.87 -3.95

Exp.h - - 8.82 -4.41 - -

Exp.i -6.50 -11.80 5.30 -2.70 - -

Exp.j - - 6.80 -3.40 -3.30 -

Exp.k -5.32 -10.23 4.91 -2.45 - -

Exp.l - - - - -3.60 -

Exp.m -9.60 -8.20 1.90 -1.00 - -

Exp.n -6.50 -11.20 4.90 -5.00 -2.80 -3.10

a Ref. 32

b Ref. 33

c Ref. 34

d Ref. 35

e Ref. 36

f Ref. 37

g Ref. 38,39

h Ref. 27

i Ref. 26

j Ref. 40

k Ref. 25

l Ref. 41

m Ref. 42

n Ref. 30
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TABLE II: Equilibrium lattice parameters (a and c) and band gaps (Eg) obtained with LDA, GGA,

HSE (with different mixing parameter α), and the G0W0 quasiparticle approach. For the cases

with modified mixing parameter α, the band gaps are obtained at experimental lattice parameters.

The experimental lattice parameters at which the G0W0 band gaps are obtained are listed in the

G0W0 rows. Experimental lattice parameters at T = 300 K are taken from Refs. 51 and band gaps

at low temperature are taken from Refs. 52 and Refs. 53.

Method a (Å) c (Å) u Eg (eV)

AlN LDA 3.092 4.950 0.3818 4.40

GGA 3.127 5.021 0.3812 4.10

HSE (α=0.25) 3.102 4.971 0.3819 5.64

HSE (α=0.34) 3.096 4.957 0.3820 6.13

G0W0 3.112 4.982 0.382 6.47

Exp. 3.112 4.982 0.382 6.15

GaN LDA 3.155 5.145 0.3764 2.12

GGA 3.215 5.240 0.3766 1.74

HSE (α=0.25) 3.182 5.173 0.3772 3.27

HSE (α=0.30) 3.174 5.162 0.3773 3.48

G0W0 3.190 5.189 0.377 3.24

Exp. 3.190 5.189 0.377 3.51

InN LDA 3.504 5.670 0.3784 < 0

GGA 3.573 5.762 0.3792 < 0

HSE (α=0.25) 3.548 5.751 0.3796 0.68

G0W0 3.540 5.706 0.380 0.69

Exp. 3.540 5.706 0.380 0.7
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TABLE III: Deformation potentials (eV) of wurtzite AlN, GaN and InN obtained from DFT with

LDA, GGA, and HSE functionals, and from the G0W0 quasiparticle approach. The calculated

quantities are obtained at the experimental equilibrium lattice parameters. For GaN, the range

of experimentally determined deformation potentials and the values recommended by Vurgaftman

and Meyer (Ref. 52) are also listed.

Method acz −D1 act −D2 D3 D4 D5 D6

AlN LDA -3.44 -11.39 8.97 -3.95 -3.36 -

GGA -3.39 -11.38 9.12 -4.01 -3.37 -

HSE (α=0.25) -4.21 -12.07 9.22 -3.74 -3.30 -4.49

HSE (α=0.34) (recommended) -4.36 -12.35 9.17 -3.72 -2.93 -4.58

GaN LDA -4.56 -8.03 5.61 -3.03 -2.94 -

GGA -4.46 -8.08 5.83 -2.98 -3.13 -

HSE (α=0.25) -6.02 -8.98 5.45 -2.97 -2.87 -3.95

HSE (α=0.30) (recommended) -6.07 -8.88 5.38 -2.69 -2.56 -3.88

G0W0@OEPx -5.49 -8.84 5.80 -3.10 - -

Exp. range -9.6 . . . -3.1 -11.8 . . . -8.1 1.4 . . . 8.2 -4.1 . . . -0.7 -4.7 . . . -2.4 -

Vurgaftman and Meyera -4.90 -11.30 8.20 -4.10 -4.60 -

InN HSE (α=0.25) (recommended) -3.64 -4.58 2.68 -1.78 -2.07 -3.02

a Ref. 52.
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TABLE IV: Bowing parameters (eV) for strain effects on transition energies of wurtzite AlN,

GaN and InN obtained from DFT-HSE calculations. These bowing parameters should be used in

conjunction with the recommended deformation potentials given in Table III. All quantities are

obtained at the experimental equilibrium lattice parameters.

b1 b2 b3 b4

AlN -35.21 7.76 26.96 -14.50

GaN -7.02 -0.63 -6.49 -7.66

InN 6.66 -1.51 -13.34 -4.94
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x

y z

(a) (b)

FIG. 1: Partial charge density of (a) the highest and (b) the second highest valence band of wurtzite

GaN under compressive uniaxial strain in the c plane.
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(a)

(b)

(  )c

FIG. 2: Band structures of (a) AlN, (b) GaN, and (c) InN at the experimental lattice parame-

ters, calculated using DFT and the HSE hybrid functional with mixing parameters α adjusted to

reproduce the experimental band gap (see text).
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FIG. 3: (a) Transition energies EA(=EB) and EC of GaN under biaxial stress. (b) Crystal-field

splitting of GaN under biaxial stress calculated with the HSE approach. Symbols correspond to

calculated values, solid lines represent second-order polynomial fits. The dashed line is a linear fit

around the equilibrium lattice parameter.
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FIG. 4: (a) Transition energies EA(=EB) and EC of GaN under hydrostatic pressure. (b) Crystal-

field splitting of GaN under hydrostatic pressure. The data are calculated using DFT and the HSE

hybrid functional. Data points correspond to calculated values, solid lines represent second-order

polynomial fits. The dashed line is a linear fit around the equilibrium lattice parameter.
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FIG. 5: (a) Calculated band-gap change purely due to strain effects in an InxGa1−xN alloy grown

pseudomorphically on c-plane GaN. (b) Calculated transition energies of InGaN alloys grown on

GaN as a function of In composition. (c) Band gap of InxGa1−xN alloys with (solid line) and

without (dashed line) strain effects. The bowing parameter is adjusted to provide an optimal fit

to the experimental data of Refs. 17 and 57 (shown as black dots), resulting in a value b=2.0 eV.
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FIG. 6: (a) Strain components in InxGa1−xN alloys grown pseudomorphically on m-plane GaN.

(b) Transition energies of m-plane InxGa1−xN alloys. (c) Energy separation between the topmost

two valence bands (E1 and E3). Experimental data from Masui et al.14 are shown as black dots.
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