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The combination of density functional theory and single-site dynamical mean field theory, using
both Hartree and full continuous-time quantum Monte Carlo impurity solvers, is used to study the
metal-insulator phase diagram of perovskite transition metal oxides of the form ABO3 with rare
earth ion A=Sr, La, Y and transition metal B=Ti, V, Cr. The correlated subspace is constructed
from atomic-like d orbitals defined using maximally localized Wannier functions derived from the
full p-d manifold; for comparison, results obtained using a projector method are also given. Para-
magnetic DFT+DMFT computations using full charge self-consistency along with the standard
“fully-localized limit” (FLL) double counting are shown to incorrectly predict that LaTiO3, YTiO3,
LaVO3 and SrMnO3 are metals. A more general examination of the dependence of physical proper-
ties on the mean p-d energy splitting, the occupancy of the correlated d states, the double-counting
correction, and the lattice structure demonstrates the importance of charge-transfer physics even
in the early transition metal oxides and elucidates the factors underlying the failure of the stan-
dard approximations. If the double counting is chosen to produce a p-d splitting consistent with
experimental spectra, single-site dynamical mean field theory provides a reasonable account of the
materials properties. The relation of the results to those obtained from “d-only” models in which
the correlation problem is based on the frontier orbital p-d antibonding bands is determined. It is
found that if an effective interaction U is properly chosen the d-only model provides a good account
of the physics of the d1 and d2 materials.

PACS numbers: 71.30.+h,71.27.+a

I. INTRODUCTION

Understanding the ground state and excitations of in-
teracting electrons in solids is one of the grand challenges
of modern condensed matter physics. The entanglement
of coordinates in the Fermion wave function imposed
by the combination of Fermi statistics and the electron-
electron interaction renders a solution of the all-electron
many-body problem prohibitively difficult; indeed, the-
oretical arguments suggest that the general case of the
many-electron problem is nondeterministic polynomial
(NP) hard, meaning that it cannot be solved in poly-
nomial time [1]. While density functional theory (DFT)
calculations [2] provide a useful and reasonably accurate
treatment of many properties of many materials, in im-
portant cases such as transition metal oxides with par-
tially filled d shells DFT calculations often fail [3] to pro-
vide even a qualitatively reasonable picture of the elec-
tronic properties of interest. “Beyond-DFT” electronic
structure methods are needed.

In recent years the combination of density functional
theory (DFT) and dynamical mean field theory (DMFT)
[4–6] has emerged as a widely used beyond-DFT method.
The approach has provided important qualitative in-
sights into the physics of important classes of materials
including lanthanides and actinides [7–9], transition met-
als [10], transition metal oxides [11–14] and many other
compounds. One can formally view this approach as a

dual-variable effective action theory where one constructs
a functional of both the density and a local Green’s func-
tion representing degrees of freedom in a local subspace
where correlations are most important [8]. Two key is-
sues remain imperfectly understood in this formally ex-
act theory. The first issue is how to choose a local cor-
related subspace such that the best possible approxima-
tion can be developed when actually implementing the
theory. This choice should be informed by the approxi-
mations used in implementing the theory. One commonly
employed choice is to construct the correlated subspace
from frontier (near Fermi-surface) orbitals such as the p-
d antibonding bands of transition metal oxides; examples
may be found in Refs. 11, 12. An alternative, and also
widely used, choice is to define a correlated subspace in
terms of atomic-like orbitals such as transition metal d
orbitals defined by applying a projector or Wannier con-
struction to Kohn-Sham eigenfunctions in a wide energy
range (see e.g. Refs. 14–16). We directly compare these
two approaches in this study.

The second issue concerns the structure of the local po-
tential that acts on the correlated substance. While the
theory is formally defined once the correlated subspace is
chosen, in practical calculations one must make approxi-
mations to the position dependent potential and the local
time dependent potential (i.e. the self energy) acting on
the correlated subspace. These choices are the analogues
of the choice of density functional in standard DFT. The
local self energy is obtained using the single-site dynami-
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cal mean field approximation [17]. Given the successes of
the local density approximation (LDA) and the general-
ized gradient approximation (GGA) [2, 18], it is natural
to continue to use these approximations for the effec-
tive single-particle potential. The resulting formalism is
termed the DFT+DMFT methodology [4–6]. An obvious
problem then arises, because the LDA/GGA exchange-
correlation potentials already account for the local cor-
relations to some degree. Hence there is a “double-
counting” problem which needs to be corrected. This
“double counting correction” has been the subject of a
considerable theoretical literature [19–23] but remains ill-
understood.

In this paper we study these issues via a detailed exam-
ination of the application of the DFT+DMFT methodol-
ogy to the “early” transition metal oxides. These mate-
rials crystallize in variants of the ABO3 perovskite struc-
ture. The B site contains an atom (Ti, V, Cr) drawn from
the left side of the first transition metal row of the peri-
odic table and the choice of A-site ion controls the filling
of the d level and aspects of the crystal structure. The
early transition metal oxides play a fundamental role in
our understanding of the correlated electron problem, in
particular exhibiting correlation-driven insulating states
and the metal-insulator transitions (MIT) [3] that are
not understandable in conventional density functional
terms. Elucidating the physics of these materials is a
crucial step towards a more comprehensive solution of
the many-electron problem, and understanding the fac-
tors controlling the DFT+DMFT description of the ma-
terials is a crucial step in the validation of the method.
Our results demonstrate the importance of charge trans-
fer physics even in the early transition metal oxides and
suggest that one issue with the DFT+DMFT program is
that the underlying DFT provides an incorrect estimate
of the charge transfer energetics, which then propagates
into the many-body theory. We show that if this issue is
corrected, then for electronically three dimensional mate-
rials the single-site dynamical mean field approximation
provides a reasonably good approximation to the physics.
Put differently, the uncertainty arising from our lack of
knowledge of the double counting correction is appar-
ently larger than the errors arising from the single site
approximation to dynamical mean field theory.

The rest of this paper is organized as follows. In Sec-
tion II we present a review of the DFT+DMFT method
which emphasizes the important physics issues. In Sec-
tion III we present the theoretical model and method-
ology used in this paper. In Section IV we present a
simple but revealing Hartree-approximation solution to
the DMFT impurity problem. This Hartree approxima-
tion provides a computationally efficient method of un-
derstanding the qualitative features of the phase diagram
of various early transition metal oxides, in addition to
allowing a detailed comparison between correlated sub-
spaces constructed from Wannier functions and from pro-
jectors. Section V presents our DFT+DMFT results. In
Section VI, we discuss how to determine realistic values
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FIG. 1: (Color online) The density of states for SrVO3,
LaTiO3 and YTiO3 derived from DFT+MLWF tight bind-
ing Hamiltonian. The lattice structure for each material is
from experimental data [24, 25]. The vertical thin solid line
marks the Fermi level. The solid curve (red online) is the
transition metal d band, the dashed curve (black online) is
the oxygen p band.

for the interaction and the double-counting. We consider
the relationship of our results to those obtained by ap-
plying correlations to the frontier orbitals in Section VII.
Section VIII is a summary and conclusion.

II. DFT+DMFT IN TRANSITION METAL
OXIDES

In this section we review two of the crucial tech-
nical and conceptual issues that arise in applying the
DFT+DMFT method to transition metal oxides, namely
the definition of the correlated subspace and the double
counting correction, in order to motivate the formalisms
investigated in this paper.

A. Definition of the correlated subspace

Applications of the DFT+DMFT method to transition
metal oxides are based on the idea, accepted since the
original work of Peierls and Mott [26, 27], that the appro-
priate correlated subspace consists of the electrons in the
partly-filled transition metal d shell and that the impor-
tant interactions to include in a beyond DFT calculation
are the on-site, intra-d interactions. Different methods
of constructing the correlated subspace have appeared in
the literature. In the early stages of theoretical develop-
ment the correlated subspace was defined phenomenolog-
ically [28], typically as a tight binding model of electrons
hopping among sites of a lattice and coupled by an on-
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FIG. 2: (Color online) Energy isosurfaces of V-derived dxy
orbitals of SrVO3 (droplet shaped shaded regions, cyan and
yellow online) along with positions of V and O ions (large cir-
cle, blue online, and small circle, red online, respectively). (a)
Frontier orbital used in the d-only model defined by applying
the maximally localized Wannier function construction to the
near Fermi surface antibonding bands, (b) atomic-like dxy
orbital used in the full DFT+DMFT procedure, defined by
applying the maximally localized Wannier function method
to the full p-d band complex. The two plots are set at the
same scale and the same isosurface value (0.6) and are gener-
ated using VESTA [33] with the input produced by Quantum
Espresso [34, 35] and Wannier90 [36].

site repulsion U and (if each site contains more than one
orbital) a Hund’s coupling J .

Improvements in band structure calculations have
made it possible to define the correlated orbitals in a less
phenomenological way. One widely adopted approach
involves selecting the near Fermi-surface orbitals by fit-
ting to a few-orbital tight binding model using down-
folding [29] or Wannier function [30] techniques. This
approach appears plausible for the early transition metal
oxides, where as seen in Fig. 1 the near Fermi-surface
bands obtained from density functional calculations have
a dominantly d-like character and are separated from the
p bands by an energy gap. DFT+DMFT studies based on
this approximation have led to important insights; in par-
ticular Pavarini and co-workers have used this approach
to demonstrate the crucial role played by GdFeO3-type
structural distortions in the metal-insulator transition of
LaTiO3 [12, 31] and have argued that the structural dis-
tortions are similarly important in LaVO3 [32].

Defining the d orbitals via the near Fermi-surface
bands however poses practical and conceptual difficulties.
First, it seems desirable to have a theory that accounts
in a unified way for the properties of all of the transition
metal oxides. However, as the B-site ion is varied across
the 3d transition metal row from the “early” ions Ti, V to
the “late” ions Ni and Cu the admixture of p states into
the frontier bands increases and the energy separation
between the p and the d bands decreases, so an unam-
biguous identification of the frontier (p-d antibonding)
bands becomes problematic. Second, even in the case of
early transition metal oxides, the real-space orbitals ob-
tained from the near Fermi surface bands are rather de-

localized in space, with orbitals centered on a transition
metal ion having significant weight on the nearby oxy-
gen ions and even some weight on the nearest neighbor
transition metal ion (see Ref. 29 and Figure 2 for exam-
ples). Whether the electron-electron interactions relevant
to this somewhat delocalized object can be modeled with
the simple on-site U and J terms used in DFT+DMFT
calculations is not clear. Aichhorn and collaborators [37]
observed that projecting the physical interactions onto
these frontier orbitals let to an interaction matrix with
symmetry properties inconsistent with those found in the
usual theory of interactions in a d shell. A third issue
relates to the “charge transfer insulator” physics intro-
duced by Zaanen, Sawatzky and Allen in 1985. These
authors observed [38] that if the energy ECT to transfer
a charge from a ligand p state to a transition metal d
state was less than the d level charging energy U , then
the physics is controlled by ECT and not U . While the
precise ratio of ECT to U which places the material in the
charge transfer insulator regime is not known, we shall
see that descriptions of the physics of even the early tran-
sition metal oxides require a U ≥ 4eV >∼ ECT , suggesting
that charge transfer physics may be relevant even in these
materials.

A more phenomenological reason why a focus on the
frontier orbitals might be inadequate is seen in Figure 1.
SrVO3 is a moderately correlated metal, LaTiO3 is a
small-gap correlated insulator and YTiO3 is a wider-gap
correlated insulator. From Fig. 1 we see that the gap
between oxygen p bands and transition metal d bands of
SrVO3 is about 1eV. On the other hand, in LaTiO3 and
YTiO3, the gaps are larger (>∼ 3.5eV), implying less p-d
mixing. While the difference in p-d splitting appears in
the frontier orbital model as a difference in bandwidths,
the large differences in p-d splitting between compounds
may have additional effects, which cannot be studied in
a frontier orbital-only model.

For these reasons a different definition of the correlated
orbitals, corresponding more closely to the intuitive idea
of an atomic-like d state, may be appropriate. Such or-
bitals may be constructed by applying Wannier [30] or
projector [9, 21] methods to the set of states spanning
the entire p-d band complex. Provided that the manifold
of states is defined over the full p-d manifold, the cor-
related orbitals generated by either the projector or the
Wannier procedure are found to correspond reasonably
closely to the intuitive picture of atomic d orbitals, hav-
ing only small weight on the nearest neighbor oxygen ions
(see, e.g. Fig. 2b). The two choices have been shown to
lead to essentially the same results in DFT+DMFT com-
putations of La2CuO4 [39]. Further, for these orbitals the
interaction matrix elements computed from constrained
random phase calculations have, to a good approxima-
tion, the symmetry structure expected for the d shell
in free space [37]. Finally, the Zaanen-Sawatzky-Allen
charge transfer physics can be included in the calcula-
tion on the same footing as the Mott-Hubbard physics
driven by the local interactions. For most of this paper
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we adopt the atomic-like definition of d orbitals, but in
Section VII we compare results obtained using frontier
orbitals.

B. The double counting correction

Applying additional correlations to a predefined set of
states creates a crucial complication: the extra correla-
tions contribute to a Hartree shift which will change the
energies of the predefined states relative to other states
in the material, and will therefore change the charge den-
sities and other aspects of the physics. In the transition
metal oxide context, the extra correlations in particular
change the energy of the d level relative to that of the
oxygen p levels, shifting the charge transfer energy ECT
substantially and thus significantly affecting the Zaanen-
Sawatzky-Allen metal-insulator transition physics while
also changing the bandwidth and detailed band structure
of the antibonding manifold. Further, a large change
in ECT will lead to a large change in the occupancy
of the d level, potentially leading to issues with charge
self-consistency by shifting the charge distribution away
from the value favored by the long-ranged Coulomb in-
teraction. While some of the level shift may be physi-
cal (correcting errors in the underlying DFT), much of
the Hartree shift associated with the physical on-site
correlations is included in the LDA/GGA estimates of
the relative energies of the p and d states, and should
not be counted twice. Therefore it is generally agreed
[19, 20, 22, 23] that some forms of “double counting cor-
rection” ∆ should be introduced into the theory to prop-
erly adjust the charge transfer energy by compensating
for some or all of the Hartree shift of the d levels implied
by the added interactions. Also, a charge self-consistency
process should be implemented to ensure that the long
range part of the Coulomb energy is optimized. But be-
cause there is no clear theoretical procedure for deriving
the double counting correction, the literature has pro-
ceeded on a somewhat phenomenological basis, with dif-
ferent forms introduced based on symmetry and other
arguments.

Perhaps the most widely used form of the double
counting correction is the fully localized limit (FLL) form
[20]

EFLL = Uavg
Nd(Nd − 1)

2
− Javg

∑
σ

Nσ
d (Nσ

d − 1)

2
, (1)

where Uavg =
1

(2l + 1)2
∑
ij Uij and Uavg − Javg =

1

2l(2l + 1)

∑
i 6=j Jij . For the Slater-Kanamori interaction

[40] (see Eq. 4), Uavg and Javg are:

Uavg = U − 8J

5
, Javg =

7J

5
. (2)

We note that in VASP DFT+U or the Wien2k/TRIQS
code, the interaction is written in the form of the spher-

ical harmonic functions [41] (see Table I), which is not
identical to, but can be well approximated by, the Slater-
Kanamori form provided that the interaction parame-
ters are such that both forms of interactions yield the
same Uavg and Javg. Therefore, when using the VASP
DFT+U and Wien2K/TRIQS codes, we present our re-
sults in terms of the U and J implied by the Uavg and
Javg via Eq. 2.

The addition of EFLL to the functional yields a term
∆ in the effective potential which shifts the correlated
subspace relative to the other electronic states:

∆σ
FLL = Uavg

(
Nd −

1

2

)
− Javg

(
Nσ
d −

1

2

)
=

(
U − 8J

5

)(
Nd −

1

2

)
− 7J

5

(
Nσ
d −

1

2

) (3)

We found [39] that for La2CuO4, the FLL dou-
ble counting in combination with the fully charge self-
consistent DFT+DMFT procedure yields metallic be-
havior, while the material is insulating in experiment.
In subsequent work [42], Park and two of us found that
DFT+DMFT calculations in conjunction with the FLL
double-counting wrongly predicts that none of the rare
earth nickelate family RNiO3 have a charge dispropor-
tionated ground state, whereas in experiment [43] all of
the materials except LaNiO3 disproportionate. The es-
sential difficulty was found to be that the FLL double
counting places the d levels too close to the p levels.

One possible resolution of this problem is to alter
the double counting correction. Park and two of the
present authors [42] proposed a modified FLL formula
in which U is replaced by a smaller value U ′ < U . This
form was motivated by studies of the total energy within
DFT+DMFT and can be used straightforwardly to per-
form fully charge self-consistent calculations in existing
codes. The effect of using a U ′ < U is to increase the
p-d splitting and thus slightly decrease the number of
electrons in the correlated shell; for the LaNiO3 system,
this approach was found to give much better agreement
with multiple experiments [42]. An alternative approach
is given in Ref. 16, which proposed that Eq. 3 be re-
placed by a constant level shift determined by replacing
Nd in that equation with the formal valence N0

d . This
approach has the practical effect of reducing the magni-
tude of the double counting correction relative to the FLL
value, thereby increasing the p-d splitting. The ansatz of
Ref. 16 however implies that the double counting contri-
bution to the Hamiltonian should not be viewed as an
interaction energy, but that Eq. 1 should be replaced by
a linear function of Nd.

Other approaches have also been discussed [21–23, 41],
but the theoretical issue is not settled. In previous work
[39] we therefore proposed to sidestep entirely the ques-
tion of what form of double counting correction should be
used. We demonstrated that for cuprates and nickelates
different choices of double counting correction correspond
in the end to different values of the charge transfer en-
ergy or, equivalently, to different values of the number
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Code
Correlated Impurity

CSC Interactions
Subspace Solver

Quantum Espresso MLWF
CT-QMC

No SK
Hartree

VASP Projector Hartree Yes SH

Wien2K/TRIQS Projector CT-QMC Both SH

TABLE I: A summary of the DFT codes used (Quantum
Espresso code [34, 35], VASP [44–47], and Wien2k [48]), the
methods (maximally localized Wannier function (MLWF) [30,
49] as implemented in Wannier90 [36], or projector [9, 21])
employed to construct the correlated subspace, the impurity
solver, whether or not full charge self-consistency (CSC) is
implemented, and whether the Slater-Kanamori (SK, Eq. 4)
or spherical harmonic (SH, Ref. 41) forms of the interaction
are used. We note that the projectors defined in VASP and
Wien2K/TRIQS have different implementations.

Nd of electrons in the correlated shell. To understand
the physics of the metal-insulator transitions, we com-
puted the metal-insulator phase diagram for theoretical
models of La2CuO4 and LaNiO3 as a function of U and
εd − εp and presented the results in the plane of U and
Nd, revealing that for Nd sufficiently close to the nom-
inal formal valence value N0

d (for example N0
d = 9 for

cuprates) the model is insulating while when Nd exceeds
a critical value, an insulator to metal transition ensues.
An interesting aspect of this representation of the data is
that for large U the phase boundary generically becomes
nearly vertical, indicating that for sufficiently large Nd
(i.e. for sufficiently small charge transfer energy) an in-
sulating state cannot be realized even for large values of
U .

In this paper we examine the extent to which these
issues are relevant to a wider range of transition metal
oxides, in particular the ‘early’ transition metal oxides
such as the La and Sr-based titanates, vanadates and
chromates.

III. METHODS

A. Overview

In this paper we shall mainly be interested in transi-
tion metal oxides that crystallize in variants of the ABO3

perovskite structure. We study materials in which the A-
site ion is Sr, La and (in one case) Y and the B site ion
is one of Ti, V, Cr and Mn. The Sr series of materi-
als are cubic perovskites; the La/Y series crystallize in
GdFeO3-distorted variants of the cubic perovskite struc-
ture characterized by a four-sublattice pattern of tilts
and rotations.

In this study we have used different DFT codes, meth-
ods of constructing the correlated subspace, impurity
solvers and forms of the interaction in order to obtain un-

derstanding of the effect of these details on the physics.
A summary showing which methodological options were
used with each code is given in Table I.

We will demonstrate that for the V and Ti-based com-
pounds, it is not necessary to treat the entire d-manifold.
Truncation to the t2g subspace provides an accurate rep-
resentation of the physics: the eg levels (which are nearly
empty) may be omitted entirely. However for LaCrO3

and SrMnO3 where standard valence counting indicates
that the t2g shell is half filled, we find that inclusion of
the eg levels is important, essentially because the insulat-
ing gap is determined by the energy difference between
the t2g and eg levels.

The interactions in the correlated subspace are nor-
mally taken as the standard Slater-Kanamori form [40]

Honsite = U
∑
α

nα↑nα↓ + (U − 2J)
∑
α 6=β

nα↑nβ↓+

+ (U − 3J)
∑
α>β,σ

nασnβσ+

+ J
∑
α6=β

(c†α↑c
†
β↓cα↓cβ↑ + c†α↑c

†
α↓cβ↓cβ↑).

(4)

where α, β label orbitals in the transition metal d mani-
fold on a given site. We fix J , which is only very weakly
screened by solid state effects, to be J = 0.65eV unless
stated otherwise, but consider a range of U .

B. Solution of correlation problem

We obtain the local self energy using the single-site
dynamical mean field approximation [17], which requires
the solution of an auxiliary quantum impurity model.
We obtain numerically accurate solutions using quantum
Monte Carlo methods [50, 51] and also simple and quali-
tatively useful approximations using the Hartree method,
in which the quartic terms of the Hamiltonian are ap-
proximated by density mean fields 〈ni〉 determined self
consistently such that ninj ≈ ni〈nj〉+ 〈ni〉nj −〈ni〉〈nj〉.
It should be noted that the DFT+DMFT formalism
reduces to DFT+U when solving the DMFT impurity
problem within the Hartree approximation. We also note
that while the spin polarization is allowed in DFT+U or
DFT+Hartree, all calculations with DFT+DMFT in this
work are restricted to the paramagnetic state.

In order to perform the extensive calculations needed
for our phase diagram surveys we typically neglect the
exchange and pair-hopping terms of Eq. 4 (Ising approx-
imation) in our QMC calculations, to be able to use the
“segment” algorithm (see Ref. 51 for a definition), which
is 4 to 5 times faster. To test the quality of the interac-
tion we present in Figure 3 a comparison of the self energy
obtained using the rotationally invariant and Ising inter-
actions for d1, d2 and d3 systems with U = 5eV and Nd
chosen so that the materials are near the metal-insulator
phase boundary. The imaginary part of the self energy,
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FIG. 3: (Color online) Imaginary part of the Matsubara self
energies obtained with U = 5eV and J = 0.65eV using Ising
interaction (pair hopping and exchange terms excluded) and
rotationally invariant interaction and plotted against Matsub-
ara frequency. The p-d energy splitting is the same for the
Ising and rotationally invariant calculations but is adjusted
for each material so that the compound is near the metal-
insulator phase boundary (see Fig. 9).

which is a reasonable representation of the correlation
strength, is similar in the two cases, except at the low-
est frequency. The differences in self energy are found
to be sufficiently small so that the metal-insulator phase
diagram is well approximated by the Ising interaction
calculations.

To specify whether the system is metallic or insulating,
we use maximum entropy techniques to continue the self
energy, then use the continued self energy to compute
the lattice Green’s function. We define solutions as insu-
lating if the imaginary part of the local Green’s function
vanishes at the chemical potential. To locate the metal-
insulator transition phase boundary, we determine the
gap magnitude from a linear extrapolation of the density
of states and define the metal-insulator transition as the
point at which the gap is closed.

C. The double-counting correction, full charge
self-consistency and the d level occupancy

The double counting correction in effect defines a shift
∆ of the correlated subspace that acts to compensate for
some or all of the Hartree shift due to the interactions
within the subspace. Different forms of the double count-
ing correction have been given in the literature [16, 19–
23] but the correct form is not known. Determining the
correct form of the double counting correction (or, al-
ternatively, the correct mean p-d energy splitting) is a
crucial open issue in the DFT+DMFT methodology.

In the fully charge self-consistent DFT+U and
DFT+DMFT calculations we use the fully-localized-limit
(FLL) double counting formula [20] (see Eq. 3) unless
otherwise stated. In our other calculations (which do not
include the charge self-consistency step) we follow Ref. 39
and consider a range of double counting corrections,
which we parametrize by Nd, the expectation value of the
operator giving the d level occupancy. The parametriza-
tion is possible because if the correlation problem is de-
fined in terms of the p-d manifold, Nd is a monotonic
function of the d level energy. The parametrization is
useful because (as was demonstrated for late transition
metal oxides in Ref. 39 and will be seen in detail below)
many of the specifics of the materials properties affect the
metal-insulator line only via their effect on the value of
Nd, so the resulting phase diagrams are relatively simple
when expressed in terms of Nd. Of course the precise val-
ues found for Nd depend on the precise definition of the d
orbital which in turn depends on the scheme (Wannier vs
projector) and the energy window chosen. However the
trends are robust and different situations can be mean-
ingfully compared if consistent definitions of d orbital are
adopted. Further details are given in Ref. 39.

A related important issue concerns the effect of full
charge self-consistency in the DFT+DMFT formalism.
In Ref. 52 we showed that the only important effect of the
full charge self-consistency is a change in the Nd values: a
one-shot calculation tuned to have the same Nd produces
spectra which are indistinguishable from those obtained
in the fully charge self-consistent formalism. We present
here additional calculations further confirming this ob-
servation. Therefore, in most of this paper we simply
present non-charge self-consistent results as a function of
Nd.

D. GdFeO3 distortion

In reality, only a few perovskites (most notably SrVO3

and SrMnO3) form in the cubic structure. In most tran-
sition metal oxides of chemical form ABO3, the small
radius of the rare earth A causes a significant distor-
tion (the GdFeO3 rotation) of the perovskite structure.
Pavarini and collaborators [12] argued on the basis of
studies of a frontier orbital (d-only) model that the dis-
tortion was important for the metal-insulator transition.
The importance of the crystal structure was also noted
by Craco et al. [53]. We further investigate this issue
using our approach.

The materials we study form in the Pnma or in
Glazer’s notation [54] a−b+c− structure. These struc-
tures may be obtained from the ideal perovskite struc-
tures by rotating the transition-metal-oxygen octahedra
by certain tilt angles. The tilt angles are zero for SrVO3

and increase as one moves to LaTiO3, LaVO3 and fi-
nally to YTiO3. The experimental structural parameters
[24, 25, 55] are used in all calculations.

While the hybridization function is diagonal in orbital
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FIG. 4: (Color online) The density of states for SrVO3 (SVO) and LaTiO3 (LTO) obtained from DFT+U (VASP implemen-
tation) with FLL double counting (column (a) for SVO and (c) for LTO) and DFT+Hartree (Quantum Espresso/MLWF)
(column (b) for SVO and (d) for LTO) for U = 0, 3, 5 and 7eV. The DFT calculations employ the experimental structures.
The Hund’s coupling is J = 0.65eV. The light (red online) curves are the transition metal d bands, the black curves are the
oxygen p bands. The Nd values shown in the DFT+U columns are calculated from the VASP projector, while the ones in the
DFT+Hartree columns are from MLWF. The dashed lines mark the Fermi level, which is set at the lower edge of the majority
spin upper band. In the DFT+Hartree calculations, the double counting correction is manually set so that the decreases in Nd

are the same as in DFT+U calculations as U increases.

indices for the cubic structures, it will have off-diagonal
terms in the GdFeO3 structures. Because off-diagonal
terms in the hybridization function lead to a severe sign
problem in the CT-QMC calculations it is advantageous
to define a basis in which the off-diagonal terms are mini-
mized. We therefore employ on each site a new (rotated)
basis of t2g orbitals chosen to minimize off-diagonal terms
[56]. In our procedure, at each DMFT iteration, the lat-
tice Green’s function is rotated to the new basis in order
to obtain a diagonal hybridization function which serves
as the input of the impurity solver. The output diago-
nal impurity self energy is then transformed back to the
original basis in preparation for the next DMFT itera-
tion. The results from the DMFT calculation are post-
processed in the same ways as for the cubic structure to
construct the MIT phase diagrams.

IV. DFT+HARTREE CALCULATIONS

In this section we solve the DMFT impurity prob-
lem within the Hartree approximation as described in
Section III B (based on Quantum Espresso/MLWF) and
compare the results to those obtained with the widely
used DFT+U approximation as implemented in VASP
[44–47]. The VASP DFT+U calculations are based on
a definition of the d orbitals from a projection onto d-
symmetry states defined within a sphere centered on
the transition metal sites and include a full charge self
consistency calculation with the FLL double counting
(Eq. 3). The spin-independent PBE [57] exchange-

correlation functional is employed. Hereafter we will refer
to these two approaches as DFT+Hartree and DFT+U ,
but it should be understood that the only difference is
that the former uses a correlated subspace defined via
Wannier functions and does not perform full charge self-
consistency while the latter has a correlated subspace
defined via a projector and does include full charge self-
consistency.

The DFT+Hartree and DFT+U calculations are static
mean field approximations, and as such overemphasize
the tendency to long ranged order and provide poor ap-
proximations to spectra. However, the methods are com-
putationally inexpensive and provide important insights.
In our calculations we do not allow the possibility of
breaking of translational symmetry; therefore, insulating
behavior requires ferromagnetic and ferro-orbital order.
Allowing for antiferromagnetic and/or antiferro-orbital
states which break translational symmetry would change
the locations of the phase boundaries, but would not af-
fect the qualitative conclusions we wish to draw here,
concerning the relation of Wannier and projector results,
the effect of charge self-consistency, and the relevance of
the eg manifold of states.

Figure 4 compares the VASP DFT+U fully charge self
consistent calculations (with FLL double counting) to
those obtained from DFT+Hartree approximation calcu-
lations in which the d level energy is adjusted to produce
spectra in agreement with the VASP DFT+U results (in
particular relative energies of the majority p and major-
ity d derived bands). Even after this adjustment, small
differences remain between the two calculational meth-
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FIG. 5: (Color online) Metal-insulator phase boundary computed using the DFT+Hartree approximation for the Sr and La-
based perovskites in the cubic and GdFeO3-distorted structures and displayed in the plane of t2g occupancy and interaction U ,
with the Hund’s coupling J = 0.65eV. The solid lines show the phase boundary computed using the full 5 d orbital model while
the dashed lines show the results obtained by restricting to the t2g-only manifold. The dotted curves are the phase boundaries
of LaTiO3 and LaVO3 using their real structures (LaTiO3 has two dotted curves with an area of phase separation in between).
The insulating (metallic) regime is to the left (right) of the phase boundary. The vertical lines mark the values of t2g occupancy
obtained from density functional band calculations.

ods. We discuss these in detail below but emphasize that
the small differences do not change any of the qualitative
physics.

The fully charge self consistent DFT+U calculations
in Fig. 4 show that, as the interaction strength is in-
creased, the electronic structure rearranges itself so as to
keep the d occupancy and the p-d band splitting (defined,
for example, as the energy separation from the top of
the lower, oxygen-dominated bands to the bottom of the
majority spin upper band) relatively unchanged. We see
that as U is increased the energy of the “upper Hubbard
band” (minority spin unoccupied states) increases. This
increase implies a decrease in virtual charge fluctuations
into the minority spin d states. However the decrease in
Nd implied by this decrease in virtual charge fluctuations
is to a large extend compensated by a small upward shift
of the O states (compare e.g. the position of the O states
relative to the Fermi level in panels a1-a4 of Fig. 4) which
acts to increase the occupancy of the majority-spin or-
bitals, with the result that Nd is hardly changed. This
evolution of electronic structure with U reveals an es-
sential role of p-d covalency and charge self-consistency
in compensating for the effects of the Hubbard U . This
physics is not contained in the frontier orbital Hubbard
model.

There are some differences of detail between DFT+U
and DFT+Hartree calculations. First, the projected
DOS resulting from the DFT+U calculation is slightly
smaller than that of the DFT+Hartree calculation, be-

cause some portion of the charge resides in interstitial
regions and is not captured by the projector method
used in the VASP implementation of DFT+U . Second,
as can easily be seen by comparing the d DOS in the
p-dominated lower energy part of the spectrum shown
in Fig. 4 (the same effect is present but more difficult
to discern in the d-dominated part of the DOS), the d
occupancy resulting from the VASP DFT+U calcula-
tion is larger than that resulting from the MLWF-based
DFT+Hartree procedure. For SrVO3 the total Nd per
transition metal atom (summed over all 5 d orbitals) ob-
tained in the VASP DFT+U projector scheme is about
0.65 greater than that obtained in the DFT+Hartree
Wannier scheme; for LaTiO3 the difference is about 0.53.
Roughly half of this difference arises from the fact that
the projector has nonzero weight below −8eV. The more
relevant contribution to the difference arises because the
projector method produces a slightly larger p-d covalency
than the Wannier method. A consequence is that because
the dimensionless parameter giving the effective correla-
tion strength of the quantum impurity model is more or
less the ratio of the interaction U to a measure of the
covalence, the projector-based DFT+U results are in ef-
fect less correlated than the DFT+Hartree results, ex-
plaining the difference in gap sizes and spin polarizations
between the two methods. Third, in DFT+U calcula-
tions for LaTiO3 (Fig. 4c), the Ti d bands mix with La
f bands, resulting in small portions of Ti d DOS at the
positions of La f bands slightly above the Fermi level
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FIG. 6: (Color online) Density of states for SrMnO3 at
U = 4eV and J = 0.65eV generated using DFT+Hartree as-
suming unbroken translational symmetry and using 5 d and 9
oxygen p orbitals. The double counting correction is adjusted
so that Nd = 3.3 and the system is at the metal-insulator
phase boundary. The solution is ferromagnetic with no or-
bital ordering. The positive (negative) DOS is for majority
(minority) spin. The vertical line marks the Fermi level.

(see for example the DOS in the energy range between
1.5 and 2eV in panel 1 of Fig. 4c). This mixing is not
captured in MLWF method used in DFT+Hartree (com-
pare with panel 1 of Fig. 4d). These differences do not
affect the qualitative trends and make only small changes
to quantitative values but are important to bear in mind
when comparing projector and Wannier-based results.

Figure 5 shows the metal-insulator phase diagram com-
puted in the DFT+Hartree approximation for the Sr and
La series of materials. First we consider the simple cu-
bic perovskite lattice structure; this is physical for the
Sr series but not for the La series. As we do not al-
low translational symmetry breaking, obtaining insulat-
ing states with DFT+Hartree calculation requires ferro-
magnetic (translationally invariant breaking of spin sym-
metry) and ferro-orbital (translationally invariant break-
ing of rotation symmetry about a transition metal site)
order. Orbital order corresponds to splitting the energies
of the t2g levels, which are degenerate in the non-orbitally
ordered state. We find two kinds of splitting pattern: “1
down, 2 up”, in which one orbital has lower energy than
the other two and correspondingly higher occupancy, and
“2 down, 1 up” in which two orbitals have approximately
the same energy, which is lower than that of the third, so
that they have higher occupancy. We find that the orbital
order depends on the formal valence: d1 has “1 down, 2
up”, d2 has “2 down, 1 up” and d3 has no orbital order.
We see that for both the Sr and hypothetical cubic La se-
ries of materials, in the nominally d1 and d2 compounds
the three t2g orbital (the dashed curves) and five orbital
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FIG. 7: (Color online) Comparison of DFT+Hartree phase
diagrams for Sr-based and La based perovskites. All calcula-
tions are performed for cubic structures. The full 5-d orbital
model is used. Hund’s coupling is J = 0.65eV.

(the solid curves) calculations yield essentially indistin-
guishable results, whereas in the nominally d3 materials,
inclusion of the eg manifold changes the physics signifi-
cantly, drastically decreasing the parameter regime over
which insulating behavior is found.

To explicate the reason for the difference we show
in Fig. 6 the density of states computed in the
DFT+Hartree calculation for SrMnO3, with parameters
tuned so that the system is in the metallic state but on
the boundary of the insulating phase. It is evident that
the gap is between the t2g and eg manifolds; inclusion
of the eg states is thus essential to describe the physics.
By contrast, in the nominally d1,2 materials the excita-
tion gap is to unoccupied t2g states; eg states do not
play an important role in the metal-insulator transition.
Further, we observe that in contrast to the d1 and d2 sys-
tems, where the insulating gap is closely related to the
p-d splitting which is directly connected to Nd, in the d3

systems the insulating gap arises from the eg-t2g splitting
which is affected only indirectly by Nd.

Fig. 7 demonstrates the effect of local chemistry by
overlaying the phase diagrams obtained for the cubic-
perovskite Sr and La materials. We see that when ex-
pressed in the U -Nd plane there is almost no difference
in the location of the metal-insulator phase boundary,
except in the region of Nd very near the atomic limit
where small differences in the (very small, but not zero)
d-d hopping lead to slight differences in the location of
the phase boundaries. We conclude that for the hypo-
thetical cubic structures the only difference between the
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FIG. 8: (Color online) The d occupancy of majority and mi-
nority spins for SrVO3 as a function of U with the total Nd

chosen so that the system is at the MIT (going along the
SrVO3 phase boundary - see Fig. 5a).

Sr and La materials is the different electronegativities of
the transition metal ions, which lead to differences in the
p-d energy splitting and thus to the d occupancies of the
transition metal ions. This again underscores the impor-
tance of charge transfer physics in early transition metal
compounds.

The phase diagrams for LaTiO3 and LaVO3 in the
experimental (GdFeO3-distorted) structure are shown in
Fig. 5. The unit cell of the GdFeO3-distorted structure
contains 4 transition metal ions; thus ‘staggered’ (in cu-
bic notation) phases may be found in a DFT+Hartree
calculation even without further spatial symmetry break-
ing. However, to understand the effect of the lattice dis-
tortion in this figure we restrict our study to ferromag-
netic and ferro-orbital states (in cubic notation), in other
words we require that the spin and orbital states of each
octahedron are the same.

Fig. 5 shows that the main effect of the GdFeO3 distor-
tion is to shift the location of the phase boundaries: the
insulating state extends over a wider parameter range in
the GdFeO3-distorted structure than in the cubic struc-
ture, and the enhancement is larger for LaTiO3 than for
LaVO3. One might imagine that a significant contribu-
tion to the difference arises from the decrease in band-
width caused by the GdFeO3 distortion. In the distorted
structure, the B-O-B bond (B is the transition metal
atom) is buckled, reducing the amplitude for an electron
to hop from one B-site to the next. In our DFT calcula-
tions (not shown), the bandwidth of the p-d antibonding
bands are reduced by 25% for LaVO3 and ∼ 20% for
LaTiO3. However, we observe that a decrease in band-
width is equivalent to an increase of U , in other words, to
a vertical shift of the phase boundary in Fig. 5. As can
be seen by inspection of the figures, vertically shifting the

curve obtained for the cubic system does not make it co-
incide with the phase boundary obtained for the distorted
one. In fact, as already noted by Pavarini and co-workers
[12], the key physics is that the distortion breaks the or-
bital symmetry, leading to a “1 down 2 up” distortion
that promotes orbital order. This orbital order strongly
favors the insulating state in LaTiO3. However, in high-
spin d2 systems such as LaVO3 the natural symmetry
breaking associated with an insulating phase would be of
the “2 down 1 up” type, which is not produced by the
GdFeO3 distortion. The actual “1 down 2 up” orbital
splitting has a much smaller effect.

Fig. 5 also shows that at very large U the phase bound-
ary is not vertical, but bends back. The back-bending
reflects the decrease of the occupancy of high-lying mi-
nority spin d states as they are pushed to very high en-
ergies by the large U . Calculations (Figure 8) of the
spin-resolved d occupancy show that, in the d1, d2 and
d3 cases, the majority spin d occupancy tends to a U -
independent asymptote as U is increased while the minor-
ity spin occupancy decreases. We expect that as U →∞,
the minority spin d occupancy goes to zero and the phase
boundary in the U -Nd plane asymptotes to a vertical
(U -independent) line. For GdFeO3-distorted cases, the
bending of LaTiO3 is larger than that of LaVO3 (see
Fig. 5) because of the splitting of unoccupied orbitals
arising from the strong orbital polarization. This strong
orbital polarization allows a decrease in the occupancy of
the nominally empty majority spin orbitals in addition to
the decrease in minority spin occupancy. In LaVO3 (d2

systems), the orbital splitting is negligible and there is
no such effect. We note that this back-bending is ampli-
fied in the DFT+Hartree calculations by the strong spin
and orbital polarization found in this approximation. In
the DMFT calculation, as shown later, the unoccupied
states are not split as much and so this behavior is less
pronounced.

The DFT+Hartree method combined with the stan-
dard FLL double counting, a physically reasonable value
of U ∼ 5eV and the experimental structure predicts an
insulating state for LaTiO3 and LaVO3 in agreement
with experiment. We believe that this apparent agree-
ment arises from a cancellation of errors and is simply
fortuitous. The two errors are that Hartree approxima-
tions are known to overestimate order and therefore favor
insulating states, and that the DFT approximation over-
estimates Nd and therefore underestimates the tendency
to order. Later in the manuscript we will demonstrate
that the same calculation using DFT+DMFT(QMC) re-
sults in a metallic state, and we show that the double-
counting must be adjusted in order to properly capture
the insulating state and the spectra.

V. DFT+DMFT CALCULATIONS

The Hartree approximation does not include quan-
tum fluctuations arising from electronic correlations and
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FIG. 9: (Color online) The metal insulator phase dia-
grams of LaTiO3, LaVO3 and LaCrO3 calculated using the
DFT+DMFT and DFT+Hartree procedures described in the
text but retaining only the t2g portion of the d manifold, pre-
sented in the U -Nd plane. (a) metal-insulator phase diagrams
calculated assuming that the materials are in the cubic per-
ovskite structure using DFT+DMFT (dashed-dotted curves
with symbols) and DFT+Hartree (solid curves). (b) The
phase boundaries obtained using the experimental (GdFeO3-
distorted) structures using DFT+DMFT. The vertical dashed
lines are t2g occupancies derived from DFT+MLWF. The
temperature is T = 0.1eV. The insulating (metallic) regime
is to the left (right) of the phase boundary.

cannot capture the paramagnetic Mott insulating phase,
which is observed experimentally in many early transi-
tion metal oxides [3] including LaTiO3 and LaVO3. To
treat the correlation more properly, it is necessary to go
beyond the mean field approximation. In this section, we
use the dynamical mean-field method to study the metal-
insulator transition in the paramagnetic DFT+DMFT
framework [5].

The procedure follows the one discussed above in the
context of the Hartree approximation, but with the lo-
cal self energy computed using the single-site DMFT ap-
proximation rather than the Hartree approximation. A
DMFT solution for the full five orbital model is too ex-
pensive for wide surveys of parameter space. In most of
our DMFT calculations, we therefore use the model with
transition metal t2g bands (and oxygen p bands), but for
selected points we present results obtained with the full
5-orbital model.

We first compare the results obtained using DMFT
and Hartree calculations for the La series in Figure 9.
Panel (a) shows results obtained for a hypothetical cu-
bic structure. The difference between the DMFT and
Hartree phase boundaries is substantial in LaTiO3 and
much less for the other two compounds. As the nomi-
nal number of d electrons increases, the DMFT solution
becomes more insulating and in the d3 case (LaCrO3),
DMFT predicts a larger insulating regime than does the
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FIG. 10: (Color online) Spectral functions A(ω) for cubic
LaTiO3, LaVO3 and LaCrO3 at U = 5eV, J = 0.65eV and
Nd chosen to be close to the MIT phase boundaries. The
dashed curves (black online) are oxygen p bands, the solid
curves (red online) are correlated d bands. The vertical line
marks the Fermi level.

Hartree calculation.

This change in DMFT phase boundary is a conse-
quence of the Hund’s coupling J , which behaves differ-
ently for systems with different d valence. Some aspects
of the differences between materials can be understood
from atomic-limit estimates, following Ref. 58. In the
atomic limit the energy cost to move a d electron from
one transition metal atom with N valence electrons to
another is ∆(N) = E(N + 1) + E(N − 1) − 2E(N). At
half-filling (N = 3), ∆(N = 3) = U+2J , while for d1 and
d2 cases, ∆ = U − 3J . Therefore, with J 6= 0, we expect
d3 systems have the largest gaps and hence the smallest
Uc for the MIT, explaining the large enhancement of in-
sulating regime in LaCrO3. However, the atomic limit
gaps for atomic d1 and d2 are equal, suggesting that
LaTiO3 and LaVO3 should have comparable Uc. The
differences in phase boundary arise because in the vana-
date case there is some admixture of d3 into the ground
state, leading to more insulating behavior. This differ-
ence is thus a consequence of charge transfer physics in
the early transition metal oxides.

It is interesting to note that for LaCrO3 the DMFT
calculation has a larger regime of insulating behavior
than the Hartree calculation. This does not contra-
dict the general statement that the Hartree approxi-
mation overestimates order; it merely shows that our
DFT+Hartree calculations, which were restricted to fer-
romagnetic and ferro-orbital states, did not include the
correct long-ranged order for this compound. Calcula-
tions (not shown) allowing for antiferromagnetic order
would produce a much larger regime of insulating behav-
ior.
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Figure 10 shows the one-electron spectral functions (in-
teracting DOS) of hypothetical cubic LaTiO3, LaVO3

and LaCrO3 with U = 5eV, which is around the typi-
cal U value computed for early transition metal oxides
in the perovskite structure [15]. Nd is adjusted so that
the systems are insulating but close to the transition to
the metallic state. We see that to drive hypothetical cu-
bic LaTiO3 into the insulating state one must shift the
oxygen bands to about −10eV far from the Fermi level.
This energy for the oxygen states is in very substantial
disagreement with the experimental value ∼ −3.5eV al-
though the gap between the highest occupied states and
the lowest unoccupied ones is consistent with the exper-
imental value. For LaVO3 an insulating state can be
obtained for oxygen bands closer (−5eV) to the Fermi
level, but this oxygen band energy remains in substan-
tial disagreement with experiment. Finally, in LaCrO3

an insulating state can be obtained even for p states very
close to the Fermi level. These observations illustrate the
necessity of including the octahedral rotations.

We now discuss the results of DMFT calculations for
LaTiO3 and LaVO3 using the experimental structures.
Some of the results have been partly discussed in Ref. 52.
Here, we go beyond the results of Ref. 52, in particular
discussing in detail the effects of the structural distor-
tion and providing a comparison to the DFT+Hartree
calculations. The MIT phase diagrams for LaTiO3 and
LaVO3 obtained using DMFT calculations performed us-
ing the experimental structures (solid curves) are shown
in Fig. 9b in comparison with those obtained using the
hypothetical cubic structure (dotted-dashed curves). As
in the DFT+Hartree calculations, increasing the magni-
tude of the rotational lattice distortion enlarges the insu-
lating regime, both in U and Nd with the increase being
larger in LaTiO3 than in LaVO3.

The qualitative similarity of the DMFT and Hartree re-
sults (see Section IV) suggests that insights gained from
the Hartree calculations can be applied to understand
the DMFT results. First, the lattice distortion decreases
the antibonding bandwidth W by 20 → 25%. In the
Mott-insulating regime (small U region), the critical Uc
for Mott transition is proportional to W , with smaller
bandwidth in distorted structure, so the critical U be-
comes smaller. In the charge transfer regime (large U
region), the reduced p-d hybridization means oxygen p
bands must come closer to the d states in order to induce
enough covalency to destroy the insulating state. The
difference in the enhancement of the insulating regime
between LaTiO3 and LaVO3 arises from orbital ordering.
In the experiment structure, the t2g orbitals in both ma-
terials experience a crystal field splitting. In the DFT cal-
culation, LaTiO3 has a weak “1 up, 2 down” orbital order
(one orbital is occupied more than the other two). The
DMFT results indicate that this type of orbital order-
ing is enhanced significantly by interactions (Fig. 11a),
although the precise degree of enhancement depends on
the value of Nd. For LaVO3, the DMFT calculation in-
dicates that there is almost no orbital order. We believe
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FIG. 11: (Color online) Spectral functions A(ω) for cubic
(negative value) and GdFeO3-distorted (positive value) struc-
tures of LaTiO3 and LaVO3 at values U = 5eV, J = 0.65eV
and Nd chosen to be close to the MIT phase boundaries. The
dashed curves (black online) are the average spectra per band
for oxygen p bands, the solid curves (color online) are corre-
lated d bands. The vertical dashed line marks the Fermi level.

that the lack of orbital ordering occurs because the vir-
tual charge fluctuations in the d2 state lead to a signif-
icant admixture of d3, and the tendency of the Hund’s
coupling to favor high spin then reduces the tendency
to order. Thus, with the DMFT approximation we con-
clude that in LaTiO3 the orbital splitting induced by the
GdFeO3 rotation is essential for Mott behavior, while in
LaVO3, the main effect of the distortion is to reduce the
bandwidth. The bandwidth reduction also favors order,
but to a lesser degree [58, 59].

VI. DETERMINING PHYSICAL VALUES FOR
U AND THE DOUBLE COUNTING

In previous sections, we studied the general structure
of the theoretical results, varying the p-d splitting and
interaction strength over wide ranges. In this section we
ask how to choose proper values for the actual systems by
estimating the interaction and p-d splitting parameters.

First, we specify the correct values of the Hubbard
value U and the Hund’s coupling J (in Eq. 4) for mate-
rials. The Hund’s coupling is only weakly renormalized
by solid state effects [15, 62], and is believed to be of
the order of 1eV or slightly less. Ref. 15 shows that J is
around 0.65eV for SrVO3, SrCrO3 or SrMnO3 (using the
energy window including p and d bands and symmetriz-
ing over the interactions of the t2g bands) and we adopt
this throughout our paper. In contrast, the U value is
screened strongly [15, 62], being 5 or 6 times smaller than
the bare value, with the precise renormalization depend-
ing on material parameters. For SrVO3, Ref. 15 estimates
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FIG. 12: (Color online) The dependence of d occupancy Nd on
the interaction U using fully charge self consistent calculations
with FLL double counting correction (Wien2k+TRIQS code
[60, 61]). The temperature is T = 0.1eV. The calculations use
projector method [37] to obtain the full 5 correlated d orbitals.
Note that the y axis is the difference between Nd and the DFT
value NDFT

d where the NDFT
d values are 2.60, 1.81, 2.92 and

4.81 for SrVO3, LaTiO3, LaVO3 and SrMnO3, respectively.

U = 4.1eV (note we have expressed the result of Ref. 15
using the Kanamori parametrization). Because the La-
based materials are Mott insulators one might expect the
screening to be slightly less, so the U values might cor-
respondingly be slightly larger. In Ref. 52, we show that
within the MLWF scheme, only a range of U ∼ 6± 1eV
can reproduce both the observed insulating gap and the
position of the oxygen states so we suggest that this value
is reasonable. We note however that our results are not
strongly sensitive to U .

We also note that a recent paper [16] using fully-charge
self consistent DFT+DMFT calculations with d states
defined via a projector method argued that U = 10eV
is reasonable for oxides. The origin of this difference re-
quires further investigation. One important issue is the
difference in p-d hybridization between Wannier and pro-
jector methods. The relatively larger p-d hybridization
in the projector method requires a larger U to obtain an
insulating state. Other technical differences occur in the
calculation, including in particular the use of a broader
energy window, incorporating e.g. La-derived bands. A
calculation of the screened Coulomb interaction within
the system defined in Ref. 16 would be of interest.

The next crucial issue is the value of the p-d energy dif-
ference or double counting correction, parametrized here
by the d occupancy Nd. We first note that the Nd val-
ues can be different depending on the method used to
define the correlated subspace. The results presented
in this section are obtained using one of three differ-
ent methods: VASP projector (in DFT+U calculations),
Wien2k+TRIQS projector (in fully-charge self consistent
calculations) and MLWF method (in “one-shot” DMFT

SrVO3 LaTiO3 YTiO3 LaVO3

exp. energy gap 0 0.3eV 1eV 1eV

exp. oxygen bands position 2.4eV 5.35eV 4.95eV 4.35eV

DFT oxygen bands position 1.5eV 3.25eV 3.15eV 2.5eV

exp. Nd 1.73 1.28 1.31 2.24

DFT Nd 1.99 1.56 1.57 2.55

TABLE II: The first row is experimental data for the en-
ergy gaps from Ref. 63. The values of “exp. oxygen bands
position” and “exp. Nd” are the p band positions and the
d occupancy values obtained from Fig. 15 where the spectra
match experiments. The “DFT Nd” values are from DFT cal-
culations (with MLWF method) and the “DFT oxygen band
positions” are the p band positions obtained from Fig. 14.

calculations). We will therefore note the method together
with the Nd value.

We also carried out fully charge self consistent calcu-
lations using the DFT+DMFT framework with realistic
structures (also with the FLL double counting). Fig-
ure 12 shows Nd −NDFT

d as a function of U for several
materials. The changes are small relative to the total
Nd for d1 and d2 materials (SrVO3, LaTiO3, LaVO3).
Figure 13a,c,d are the spectra of SrVO3, LaTiO3 and
LaVO3 corresponding to the U values used in Fig. 12.
As the d occupancies of these materials do not change
much, the change in the spectra of these materials are
insignificant. More importantly, the DFT+DMFT cal-
culations with full charge self consistency and FLL dou-
ble counting predict that all of the d1 and d2 perovskites
are metals as can be seen directly from the calculated
spectra. We conclude that the standard DFT+DMFT
with FLL double counting does not put materials in the
correction positions in the phase diagrams, as from ex-
periments, LaTiO3 and LaVO3 are Mott insulators [63].

The case of SrMnO3 is different. When applied to
SrMnO3 the fully charge self-consistent DMFT proce-
dure leads to an Nd significantly smaller than the DFT
value (see Fig. 12) and places the material at the edge of
the insulating regime. Part of the difference from the d1

and d2 materials may relate to the half-filled nature of
the t2g shell, but understanding why the Mn material is
so different from the others remains an important open
problem.

As shown above, the fully charge self consistent re-
sults yield d occupancies for d1 and d2 systems that are
close to the DFT values. We thus conduct “one-shot”
DMFT calculations (using the MLWF correlated sub-
space) for SrVO3, LaTiO3, LaVO3 and YTiO3 with the
double counting correction adjusted to have the d oc-
cupancies close to the DFT values. This will elucidate
the role of using a different type of correlated subspace.
Figure 14 shows the spectra at U = 5eV, in which all
materials are in metallic state, confirming that our re-
sults are not dependent on the details of the correlated
subspace. Moreover, the two different methods used to
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FIG. 13: (Color online) Full charge self consistent spectral functions using FLL double counting correction (Wien2k/TRIQS)
for (a) SrVO3, (b) SrMnO3, (c) LaTiO3, and (d) LaVO3 at various U values. The spectra are corresponding to the Nd vs. U
plots in Fig. 12 at U 6= 0. Note that only the average for each t2g, eg and p types is plotted in order to make the plots easy to
see.

produce Fig. 13 (the projector method [37]) and Fig. 14
(MLWF method [30, 49]) give oxygen p bands positions
quite close to each other, with the largest difference found
in LaTiO3 where the difference in the p band position is
about 0.7eV. Even though there is uncertainty between
different projection methods, the spectra in Figs. 13,14
show that full charge self consistency is unnecessary, if
the d occupancy is known, one can reproduce the fully
charge self consistent result using one-shot calculation
with the Nd adjusted to the known value. Of course, this
presumes that one is using a normalized projector which
is defined over a similar energy region as the Wannier
functions which are used to define the correlated sub-
space.

As found in Fig. 9, the d occupancy must be reduced
to drive the d1 and d2 systems (LaTiO3, LaVO3 and also
implying for YTiO3) into insulating state. Therefore, in
one-shot DMFT, the double counting correction must be
decreased to reduce the p-d covalency, and thus reduce

Nd. Figure 15 shows the spectra with the double count-
ing correction adjusted in order to match the experimen-
tal spectra. In this figure, with U = 5eV, the calculated
spectra are compatible with the experiments not only for
the oxygen p band position but also the energy gap for
insulators. The results clearly show that applying the
standard FLL double counting to the computed band
structure is inappropriate.

Thus to summarize, for all reasonable values of U , the
standard scheme of FLL double counting plus the fully
charge self-consistent DFT+DMFT procedure yields for
LaTiO3 (d1) and LaVO3 (d2) materials (and implying for
YTiO3) a d occupancy which is very close to that pre-
dicted by the underlying DFT calculation, and for this
d occupancy the materials are predicted to be metals, in
contrast to experiment, which finds them to be Mott in-
sulators. The phase diagrams in Fig. 9 suggest that to fix
this discrepancy, the Nd value must be smaller than the
DFT values and the FLL predicted values for LaTiO3 and
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FIG. 14: (Color online) Spectral functions A(ω) for SrVO3,
LaTiO3, YTiO3 and LaVO3 using realistic lattice structure at
U = 5eV, J = 0.65eV and Nd (obtained from MLWF method)
chosen to be close to the value from ab initio calculations.
The dashed curves (black online) are the average spectra per
band for oxygen p bands, the solid curves (color online) are
the three correlated t2g bands. The vertical dashed line marks
the Fermi level.
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FIG. 15: (Color online) Spectral functions A(ω) for SrVO3,
LaTiO3, YTiO3 and LaVO3 using realistic lattice structure
at U = 5eV, J = 0.65eV and ∆ is adjusted to match ex-
perimental photoemission spectra (PES). The PES are from
Ref. 3, 64–66. The vertical dashed line marks the Fermi level.

LaVO3. Equivalently, the oxygen bands must lie lower in
energy than predicted by the DFT calculations and the
DFT+DMFT calculations which use the standard FLL
double counting. We therefore suggest that one should
focus on the position of oxygen p bands to locate the
material on the phase diagram.

VII. COMPARISON TO THE d-ONLY
CORRELATED SUBSPACE

Previous sections showed that p-d covalency is impor-
tant. However, unlike the case of ‘late’ transition metal
oxides such as the nickelates and cuprates, materials [38]
where the oxygen p bands are close to the Fermi level
and play an essential role in determining the physics, the
relatively large p-d splitting characteristic of the early
transition metal oxides suggests that a d-only correlated
subspace may capture important aspects. In this section,
we will compare the two approaches. For simplicity, we
will use the term “d-only model” and “p-d model” to refer
to the use of a correlated subspace created from frontier
orbitals near the Fermi energy and well localized atomic
orbitals, respectively.

For calculations with the d-only model, the basic
DFT+DMFT framework is reapplied. The only change
is in the construction of the correlated subspace: in the
d-only model the energy window must be reduced to in-
clude only the t2g bands (assuming, for simplicity, that
we deal only d1 and d2 systems in which eg bands do
not make any significant contribution). Additionally, we
will only examine the spectra of the correlated states,
which means that we will not need to consider a double-
counting correction and charge self-consistency will not
be employed. All other steps are carried out as in the
previous sections. The calculations use the same param-
eters J = 0.65eV and β = 10eV−1 as in the previous p−d
model calculations, while the U value is reduced so that
the calculated spectra have the same energy gap as in the
p-d model. The correlated subspace is defined using the
MLWF method from the same DFT results used in previ-
ous section (with GdFeO3-distorted structure), ensuring
a fair comparison.

The spectral functions obtained in the full (p-d) and
d-only models are shown in Fig. 16; only the energy
range relevant to the d-bands is displayed. Both models
show the same physics: both types of spectra behave
as insulator with the same orbital ordering for each
materials in consideration (LaTiO3 and YTiO3 have
“1 up 2 down” orbital order while LaVO3 has almost
no orbital order). There are some differences of detail
in the spectra, in particular in the positions of peaks
arising from the bands above the Fermi levels, and the
magnitude of the peaks, which are affected p-d covalency
and subject to the uncertainties of the maximum entropy
analytic continuation used here. If we define orbital
order in terms of the total occupation of the d level,
the degree of orbital order is larger in the d-only model
than in the p-d model for all cases considered in Fig. 16.
However, in the p-d model some portion of the d-spectral
weight resides relatively far below the Fermi level, at
the energy of the oxygen p bands. A more reasonable
comparison between the two models may be obtained by
comparing the fraction occupancy of the d spectrum in
the energy range common to both approaches, i.e.from
−4eV to 0 (c.f. Fig. 16). Considering only contributions
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FIG. 16: (Color online) Comparison between d-only and full
p-d models for LaTiO3, LaVO3 and YTiO3. Positive (nega-
tive) spectra are spectra of t2g orbitals for d-only (full p-d)
model. The parameters J = 0.65eV and the inverse temper-
ature β = 10eV−1 are the same for both models. For the
p-d model, U = 5eV and the double countings are set as in
Fig. 15. For the d-only model, U = 4.5eV for LaTiO3 and
LaVO3 and U = 4eV for YTiO3. Vertical dashed line marks
the Fermi level.

from this energy range we find that distribution of
d occupancies are, for LaTiO3, (69.7%, 14.2%, 16.1%)
and (70.7%, 13.2%, 16.1%) for d-only and p-d mod-
els, respectively; the corresponding numbers are
(35.2%, 33.9%, 30.9%) and (35.5%, 32.9%, 31.6%)
for LaVO3; and (78.6%, 11.0%, 10.4%) and
(79.0%, 11.3%, 9.7%) for YTiO3. Thus the full p-d
model is in good agreement with the d-only one if a
reasonable effective U is chosen for the latter model.

There are differences between the two models, arising
mainly from the effects of p-d covalency. First, in the
p-d model, there is always a d portion in the bonding
part of the spectra, which may cause differences in the d
occupancy or the orbital ordering, but these differences
disappear if the same low energy window is considered
for calculating the d occupancy. A second effect of the
oxygen p bands is to reduce the electron correlation, so
that to produce comparable band gaps one must use a
smaller U in the d-only model than in the full p-d model,
as shown in Fig. 16. Therefore, it appears that the d-
only model provides a reasonable representation of the
low energy physics of the p-d model if the interaction U
is appropriately renormalized. It should be noted, how-
ever, that the results presented here pertain only to the
paramagnetic case. Preliminary results [67] indicate that
the two models yield rather different predictions for mag-
netic ordering temperatures, but a full exploration of this
question is beyond the range of this study.

We remark that by using the same U , J and β as
in Refs. 12, 31, 32, we produce (not shown) very sim-
ilar results for LaTiO3, LaVO3 and YTiO3 using the

same d-only model. While the energy gaps are similar,
the orbital polarization we find is slightly weaker. In
our calculations, the dominant orbital has the occupan-
cies 0.88 (LaTiO3) and 0.91 (YTiO3), while the corre-
sponding numbers in previous works are 0.88 and 0.96
[31]; for LaVO3 our t2g occupancies are 0.73, 0.68, 0.59
while Ref. 32 gives 0.87, 0.65, 0.48. We believe that these
differences arise from differences in the construction of
the t2g subspace. Without any correlation effect, our
MLWF approach produces DOS with smaller polariza-
tion (e.g. for LaVO3: 0.71, 0.66, 0.63), while the method
used in Ref. 32 gives stronger orbital order (LaVO3:
0.78, 0.63, 0.59). Correlations will then enhance the or-
bital order, which explains for differences between our
study and previous work. But the differences are quan-
titative, not qualitative. In particular we reproduce the
key role played by the GdFeO3 distortion which enhances
the tendency to forming an insulating state in the d1 sys-
tems whereas in the d2 systems, the orbital fluctuation
is larger and the effect of the distortion on the insulating
state is weaker.

VIII. CONCLUSIONS

In this study, we have investigated the consequences
of p-d covalency for the metal-insulator physics of early
transition metal oxides. We used the DFT+U and
DFT+DMFT methods, with correlated subspaces de-
fined via projector and MLWF methods. By adjusting
the d level energy (i.e. the correlated subspace) and
the onsite interaction, we built metal-insulator phase di-
agrams for materials of interest, mapping to the space
of interaction U and d occupancy. We examined possi-
ble methods for locating materials in the phase diagrams
and found that the standard FLL double counting cor-
rection (Eq. 3) gives a d occupancy close to the DFT
values and fails to predict the correct phase of certain
materials. However, with an appropriate double count-
ing correction, the spectral functions match well with
the experimental photoemission spectra and the metallic
vs. insulating nature of the predicted ground states is
in agreement with experiment. We also investigated the
possibility of using a correlated subspace consisting only
of delocalized, frontier orbitals (ie. d-only) and found
that if proper parameters were used the results of well
localized, atomic-like correlated subspace could be satis-
factorily reproduced.

Important results obtained in this study include the
following. First, the p-d covalency is not only important
in late transition metal oxides, as predicted by Zaanen,
Sawatzky and Allen [38], but also crucial in the early
transition metal oxides. In essence, the p-d splitting is
not larger than the important U values and p-d covalency
acts to suppress electron correlation. While we showed
that effective d-only models can capture many aspects of
the low-energy physics, for a full treatment it is necessary
to include the oxygen p bands in the calculations even for
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early transition metal oxides.
Second, the DFT+DMFT framework, with an appro-

priate choice of double counting correction, gives results
(photoemission spectra, energy gaps, oxygen p positions)
in reasonable agreement with experimental data. How-
ever, this agreement could not be obtained without ex-
perimental guidance: the double counting correction had
to be adjusted to match with a corresponding experimen-
tal quantity (the energy gap or the oxygen p band posi-
tion). The standard ab initio methods based on double
counting corrections such as the FLL formula, in con-
trast, fail to put materials in the correct phase. This
raises the important question of how to define a proper
double counting correction.

Our results also confirm the importance of including
realistic crystal structures. We find (as did Pavarini et
al [12]) that the Mott insulating behavior of LaTiO3 and
YTiO3 can only be understood in terms of the experi-
mental (GdFeO3-distorted) structure, which acts to split
the t2g levels.

We found that the much less computationally expen-
sive Hartree method, and hence DFT+U , can well ap-
proximate certain aspects of DMFT calculations. Given
a DFT+Hartree phase diagram, depending on the nomi-
nal number of d electrons, one can extrapolate the DMFT
phase diagram by shifting the phase boundary by an ap-
propriate amount (see Fig. 9). One can get a crude pic-
ture of the DMFT paramagnetic spectra by averaging the
spin up and down spectra generated by DFT+Hartree
calculation. The greater computational convenience of
the DFT+Hartree calculations enabled a more detailed
examination of several important aspects of the physics
and formalism. In particular, the DFT+Hartree calcu-
lations reveal that projector methods provide substan-
tially more p-d hybridization than do the Wannier meth-
ods used by many workers; this substantially affects the
calculated results, and (with the different choice of dou-
ble counting correction) explains much of the difference
between the results of Ref. 16 and those presented here.
Understanding the origin of this difference and determin-
ing which method is more correct is an important open
problem.

We have shown that the DFT+single-site DMFT
method, combined with the phenomenological approach
of adjusting the double-counting correction to place the
p bands at the correct energy positions, provides a suc-

cessful description of a wide range of transition metal
oxides. This suggests several directions for future work.
First, it is important to understand the evolution of the
p-d covalency across the transition metal series as the d
shell is gradually filled. Extending our studies to the ma-
terials in the crossover between early and late transition
metal oxides, in which all five d bands have to be taken
into account is warranted. Other aspects of the metal-
insulator transition such as the temperature dependence
or the metal-insulator coexistance region are also inter-
esting topics. It is also important to apply this model
to study other properties such as spin/orbital ordering
or reexamine works done with d-only models to under-
stand how the p-d covalency affects the systems. Finally,
finding an appropriate double-counting correction that
correctly positions the d bands relative to the oxygen
bands is an important open problem. One promising ap-
proach would be to extend the U ′ ansatz [42] to the early
transition metal oxides.
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