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Quantum Monte Carlo methods provide in principle a highly accurate treatment of the many-body
problem of calculating the ground and excited states of condensed systems. In practice, however,
uncontrolled errors such as those arising from the fixed-node and pseudopotential approximations
can be problematic. We show that the accuracy of some quantum Monte Carlo calculations is
limited by the properties of currently available pseudopotentials. The use of pseudopotentials in-
volves several approximations, and we will focus on one that is relatively simple to correct during
the pseudopotential design phase. It is necessary to include angular-momentum channels in the
pseudopotential for excited angular-momentum states and to choose the local channel appropri-
ately to obtain accurate results. Variational and diffusion Monte Carlo calculations for Zn, O, and
Si atoms and ions demonstrate these issues. Adding higher angular-momentum channels into the
pseudopotential description reduces such errors without a significant increase in computational cost.

I. INTRODUCTION

Computational electronic structure methods have been
extremely useful in developing our understanding of the
atomic and electronic structures of real materials. As
methods have become more accurate and their implemen-
tations increasingly efficient, simulations and calculations
have taken some of the burden of finding and character-
izing new materials off experimental work.1

Density-functional theory (DFT), in particular, has
been widely applied in recent decades. It is computa-
tionally efficient compared to other methods with simi-
lar accuracy, and robust, user-friendly software packages
have made the method easy to apply. However, its accu-
racy is still insufficient for some applications, and the lack
of a systematic way to improve its results or estimate its
errors has hampered progress. In particular, electron cor-
relation effects can be significant in many complex mate-
rials and are not captured accurately by many commonly-
used density functionals. The development of function-
als that accurately describe the electronic band gap, van
der Waals interactions, and other electronic properties of
materials, is still an active area of research.2–5

These issues are overcome by methods that treat quan-
tum many-body effects explicitly from the outset such
as quantum Monte Carlo (QMC). QMC techniques are
among the most accurate many-body methods and can
reliably and accurately predict ground-state expecta-
tion values for many systems. In fact, they have often
been used as a benchmark for DFT work.6–9 Among the
quantum Monte Carlo methods, variational Monte Carlo
(VMC), diffusion Monte Carlo (DMC), and auxiliary-
field quantum Monte Carlo10 are the most mature in
terms of applicability to solid state systems. We treat
only VMC and DMC in this work and refer to them col-
lectively as QMC.

As computers become faster and high-quality soft-
ware packages for QMC such as casino,11 qmcpack,12

qwalk,13 and champ14 mature, these calculations are
becoming less challenging. It is therefore important to
identify and propagate the best-practice procedures for
carrying out these calculations as they become more rou-
tine.

QMC and other correlated-electron methods usually
employ the pseudopotential approximation to reduce
the computational cost, particularly for heavy elements.
The common form is the non-local, norm-conserving
pseudopotential,15 which applies different radial poten-
tial functions to each angular-momentum component of
the wave function.

In this work, we determine the error in the energy due
to an insufficient number of angular-momentum chan-
nels in the pseudopotential and discuss other sources of
error in QMC calculations. We show that pseudopoten-
tials that include channels to account for higher angular-
momentum components of the wave function are nec-
essary for performing accurate pseudopotential calcula-
tions in QMC. Such pseudopotentials are not currently
the norm in the literature, and we suggest that this be
corrected in order that QMC methods be suitable for
routine application to scientifically and technologically
interesting systems.

II. BACKGROUND

The computational cost of all-electron QMC scales ap-
proximately as Z5.5 or Z6.5 with respect to the atomic
number Z.16,17 This makes the direct application of all-
electron QMC to heavy atoms difficult. In practice, many
properties of atoms are primarily due to the behavior
of and interactions between valence electrons, and so a
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pseudopotential approximation is commonly used to re-
move core electrons from the calculation and reduce the
necessary computational effort.

Modern pseudopotentials are non-local in the sense
that they act differently on distinct angular-momentum
components of the wave function. This is necessary to
capture accurately the effects of the nucleus and core
electrons on the valence electrons, since the pseudopo-
tential not only represents the effective electrostatic po-
tential but also enforces orthogonality of valence orbitals
to lower-energy states of the same angular momentum.

Of course, there is no clear distinction between core
and valence electrons in many-body methods as the elec-
trons are indistinguishable particles. Thus, the pseu-
dopotential approximation requires the neglect of ex-
change and correlation interactions between the valence
and core electrons, as well as between the core electrons
themselves. These errors are not explicitly accounted for
in the calculations. However, the core-core interactions
largely cancel out when considering energy differences,
and the core-valence interactions may be kept small by
a choice of core size that leads to significant spatial sep-
aration between the core and valence electron densities.
These techniques may be able to produce results as accu-
rate as all-electron calculations.17 Additionally, the use
of core-polarization potentials can account for some core-
valence correlations.18–20

To introduce non-local pseudopotentials in QMC, the
electron-ion potential of any given atom is divided into
a local potential, V̂loc, and a nonlocal potential opera-
tor, V̂nl. The local potential is applied to the whole wave
function, and the nonlocal corrections account for the
differences between the local potential and the potentials
that should be seen by each angular-momentum compo-
nent of the wave function:

V̂loc + V̂nl =

Nel∑
i=1

V ps
loc(ri) +

Nel∑
i=1

V̂ ps
nl,i. (1)

The nonlocal potential operator V̂ ps
nl,i acts on a function

f(ri) by

V̂ ps
nl,if(ri) =

∑
l,m

V ps
nl,l(ri)Ylm(Ωi)

∫
4π

Y ∗lm(Ω′i)f(r′i)dΩ′i ,

(2)
where the angular integral in the operator projects the
wave function onto spherical harmonics. The V ps

nl,l(r) are
functions of only the electron-nuclear distance r and ac-
count for the difference between the desired l-dependent
potential and the local channel. The local potential,
or local channel, V ps

loc(r), is by convention chosen to be
the exact potential associated with one of the angular-
momentum components, so the sum in Eq. (2) need not
include this local component.6

The choice of local channel itself is arbitrary in prin-
ciple, and it is often chosen for convenience during the
pseudopotential design process. In particular, judicious
choice of the local channel is often necessary to avoid

the problem of ghost states which can arise due to the
Kleinman-Bylander transformation.21 The same choice
of local channel that is suitable for that transformation
may not be optimal with regards to accuracy of QMC
calculations, however.22

In an independent electron theory such as Hartree-
Fock (HF) or DFT, atomic wave functions are composed
of the lowest-energy single-particle orbitals. For exam-
ple, in these frameworks, the electronic configuration of
an O atom may be written as 1s22s22p4. Notice that
this wave function contains no angular-momentum com-
ponents above l = 1. Thus, a non-local pseudopotential
in the above form which acts on these single-atom wave
functions need not include terms V ps

nl,l for l > 1 if it is to
be used to calculate ground-state atomic properties using
a one-electron theory.

The situation is not so simple in the case of solids
and other extended systems where bonding changes the
wave functions in a way that effectively introduces higher
angular-momentum components. Indeed, in the case of
systems such as bulk Si and other second row elements,
wave functions with higher angular-momentum character
will be present. In this case, it may be necessary to use a
pseudopotential with a d-channel, even at the DFT level
(especially in the high-pressure regime). However, these
errors often cancel when considering energy differences
and are frequently neglected in practice.23,24

In QMC and other correlated-electron methods, excita-
tions of the wave function into higher angular-momentum
states arise immediately, even for isolated atoms. In
VMC, wave functions may be represented by the product
of a Slater determinant of single-particle orbitals and the
so-called Jastrow factor. The Jastrow factor is a positive
function of inter-particle distances, and its purpose is to
account directly for many-body correlation effects. Nat-
urally, the VMC wave function is then no longer entirely
composed of the lowest-order spherical harmonics. The
situation in DMC and other correlated-electron methods
is analogous.6

Notice from Eq. (1) that, in the absence of a pseu-
dopotential channel to deal with the higher angular-
momentum components of the wave function, these com-
ponents simply feel the local channel. This is incorrect
and may be drastically so, especially in the case where
the local channel was designed to enforce orthogonality
to the lower-energy orbitals with a particular angular mo-
mentum. This can lead to sizable errors in total-energy
calculations.

Now, this effect is not a particularly surprising one
and has certainly been understood by some in the
density-functional theory community since the earliest
use of pseudopotentials in that field (see, for example,
Ref. 25). However, inclusion of so-called higher angular-
momentum channels is not the normal practice in the
development of potentials for use with QMC.

There are a limited number of pseudopotential types
available for use with QMC. The application of projector-
augmented waves26 or ultra-soft pseudopotential27 tech-
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TABLE I. Choices of angular-momentum channels and local
channels for the various pseudopotentials considered for O,
Si, and Zn.

Standard Augmented
Channels Local Channels Local

O s, p s or p s, p, d s or p
Si s, p s or p s, p, d s or p
Zn s, p, d s or d s, p, d, f s, d, or f

niques in QMC is currently not feasible since the DMC
operators for the projectors and the augmentation charge
are unknown, but a number of semi-local pseudopoten-
tials have been developed with QMC applications in
mind. Greeff et al. developed a carbon pseudopotential
which included s- and p-channels.28 Ovcharenko et al. ap-
plied a similar methodology to produce pseudopotentials
for Be to Ne and Al to Ar with lmax = 1.29 Burkatzki
et al. present potentials for many of the main group
elements30 and for the 3d transition metals.31 Their Si
and Zn potentials have three channels, and their O poten-
tial has two. These authors all cite the rule of thumb that
lmax should be at least as high as the highest angular-
momentum component in the atomic core. Trail et al.
developed a variety of pseudopotentials for all elements
from H to Hg. These all have exactly three channels
and are associated with the casino code which, until
recently, only supported pseudopotentials with exactly
three channels.32

III. METHODOLOGY

We determine how the number of channels and the
choice of local channel affects the energy for several atoms
and ions. We compute the total energies and first and
second ionization energies of the O, Si, and Zn atoms us-
ing several related pseudopotentials. These elements pro-
vide interesting test cases due to their varied electronic
structures. Additionally, we are interested in the appli-
cation of QMC methods to bulk semiconductors such as
Si and ZnO.8,9

HF pseudopotentials were generated with the opium
code33 using the Troullier-Martins (TM)34 and Rappe-
Rabe-Kaxiras-Joannopoulos (RRKJ)35 methods. HF has
been found to be preferable to DFT for the genera-
tion of pseudopotentials for many-body methods.28 A
singly ionized reference configuration was used, and a
grid search over the design parameter space (including
fitting method) was performed with the objective of min-
imizing error under the fitting theory for pseudopoten-
tial and all-electron valence energy levels for a set of
test configurations. Some preference was given to soft-
ness of the potentials as well. Where parameters cor-
responding to high angular-momentum channels had no
effect on the energies at the single-particle level of the-
ory, parameters were chosen to be identical to those used
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FIG. 1. (color online) Pseudopotentials for O, Si, and Zn.

for the next-highest channel. In the end, we used an
RRKJ pseudopotential for O and TM pseudopotentials
for Zn and Si. Mean absolute errors at the HF level were
7 meV, 10 meV, and 33 meV for the O, Si, and Zn fits,
respectively.36

Table I lists the angular-momentum channels and the
choice of local channel for each pseudopotential. For each
element, we consider (i) pseudopotentials with the mini-
mum number of channels (s and p for O and Si; s, p and
d for Zn) and (ii) pseudopotentials that contain an addi-
tional angular-momentum channel (d for O and Si; f for
Zn). We refer to the first set as standard pseudopoten-
tials and the second as augmented. For the local channel,
we consider the s and p channels for O and Si and the
s, d, or f channels for Zn. One (augmented) pseudopo-
tential was fitted for each element, and then appropriate
channels were removed to obtain the standard versions.
The choice of local channel can be delayed until the en-
ergy calculation. This results in the 13 pseudopotentials
listed in Table I.

Figure 1 shows the distance dependence of the angular-
momentum channels for the various pseudopotentials.
For Si and Zn, we confirmed that the pseudopotentials
accurately describe the lattice parameters of the ground-
state crystal structure and for O, we confirmed that the
pseudopotential reproduces the dimer bond length at the
DFT level.

QMC calculations were performed using the casino
code.11 We implemented support for pseudopotentials
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with an arbitrary number of angular-momentum chan-
nels in casino. Total-energy calculations were performed
on the nine isolated ions with each of the applicable
pseudopotentials. Our Slater-Jastrow trial wave func-
tions consisted of a Jastrow factor multiplying a linear
combination of Slater determinants of single-particle or-
bitals. The minimum number of Slater determinants was
chosen to account for the correct spin ground states of
the atoms and ions; a single determinant was sufficient
for the case of O+, Si2+, Zn0, Zn+, and Zn2+, while
three determinants were required for O0, O2+, Si0, and
Si+. The single-particle orbitals were generated using
the pwscf code37 with the B3LYP exchange-correlation
functional38 and for efficiency were expressed in a B-
spline basis.39,40 Plane-wave cutoffs of 70 Ry for O and
Si and 100 Ry for Zn were used to converge the total en-
ergies to 2 meV. Occupancies were fixed so that the wave
functions had the correct symmetry.

The Jastrow factor is a positive function of inter-
particle distances and includes two-body electron-
electron and electron-nucleus and three-body electron-
electron-nucleus terms as implemented in casino.41 Pa-
rameters were added to the Jastrow factor of the trial
wave function gradually during its optimization. The
Jastrow parameters were optimized using variance min-
imization42 followed by energy minimization in the final
step.43 The backflow transformation44 was not found to
provide any significant benefit in these cases. Trial wave
functions were evaluated by their mean energy plus three
times the statistical error in the energy, following Ref. 45.

Several additional details of our VMC calculations are
noteworthy. First, the integral in Eq. (2) is performed on
a spherical grid in real space. This integration mesh must
be chosen to be sufficiently dense to accurately calcu-
late the contributions to the energy from higher angular-
momentum components of the wave function and thus
evaluating the effects which are the focus of this paper.
Secondly, it is the default behavior of the casino code
that the non-local contributions to the energy are as-
sumed constant and are not recalculated during a vari-
ance minimization step. In many systems, this improves
the runtime of the algorithm significantly while still giv-
ing good results; in some cases it actually improves the
performance of the variance minimization. However, as
we will see, the non-local contributions are significant
in many of our calculations. We found it necessary in
many cases to recalculate the non-local contributions to
the energy at each step of the optimization to ensure the
stability of the optimization process during Jastrow op-
timization.

Our DMC calculations were performed using the pseu-
dopotential locality approximation.46 For each system,
we performed at least 256 · 106 steps with a target pop-
ulation of 2, 000 walkers. We carried out the DMC cal-
culations using time steps of 0.0025 and 0.01 Ha−1 and
extrapolated the DMC results to zero time step, obtain-
ing corrections to the total energies of less than 1, 9, and
25 meV in the total energies and 1, 6, and 6 meV in
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FIG. 2. (color online) Total VMC energy in Hartree and
statistical error in the energy of each species with respect to
each Hamiltonian. Pseudopotentials are denoted according to
the choice of local channel and as ‘aug’ if they are augmented
with an additional channel or ‘std’ otherwise.
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FIG. 3. (color online) Total DMC energy in Hartree and
statistical error in the energy of each species with respect to
each Hamiltonian. Pseudopotentials are labeled as in Fig. 2.

the ionization energies for Si, O, and Zn, respectively.
Atomic ionization energies were simply evaluated as dif-
ferences between the total energies of the appropriate
species.

IV. RESULTS AND DISCUSSION

Figures 2 and 3 show the energies for each ion-
pseudopotential combination for VMC and DMC, respec-
tively. The error bars indicate only the statistical uncer-
tainties in the energies associated with the QMC calcu-
lations. First, it is important to notice the scale of the
axes. The magnitude of variation in the total energies
differs between the three elements; for Si, it is on the or-
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der of milli-Hartrees, while for Zn, it is on the order of
tenths of Hartrees, with O falling in between.

The VMC and DMC total energies for the different
choices of pseudopotentials and local channels exhibit
similar trends. The energies obtained with the different
choices of local channel for the augmented pseudopoten-
tial (the two or three left-most filled data points in each
panel) agree significantly better with each other than is
the case for the standard pseudopotentials. For the stan-
dard pseudopotentials the choice of local channel has a
large effect on the total energy since the higher angular
components of the wave function see that local channel.
When using the augmented potentials, more of the wave
function sees the correct potential, and the choice of local
channel has less effect on the result of the calculation.

If we take the calculations with augmented potentials
to indicate the correct results, we can understand the
errors in the other total energies in terms of the poten-
tials that are applied to certain components of the wave
function. Focus on the channel associated with augmen-
tation for each species in Fig. 1, i.e., on the d-channel for
O and Si, and on the f -channel for Zn. In each case, the
s-channel is more repulsive and the p-channel is more at-
tractive over much of their domains. Thus, we expect cal-
culations in which high angular-momentum components
of the wave function incorrectly see the s-channel to be
too high in energy. Indeed these data points (which are
the second right-most point in each frame of the total-
energy plots) exhibit this trend in the case of O and Zn.
Similarly, the right-most data point in each frame cor-
responds to a calculation in which any higher-l compo-
nent of the wave function sees the d-channel, and these
results are erroneously low in energy. Even the residual
differences between the energies calculated using the aug-
mented potentials follow this trend. This is indicative of
small amounts of yet higher l character in the wave func-
tions.

To understand the importance of the virtual excita-
tions that might be present in the many-body ground
state of each of the species we consider the excitation
energies for these atoms and ions to higher angular-
momentum states. Table II lists the measured lowest en-
ergy excitation to a higher angular-momentum state for
each of the three atoms for the various charge states.47–50

The excitation energies of these states increase with the
level of ionization. Additionally, as expected the d levels
are relatively high in O but low in Si. The f levels in
Zn trend in between. Thus, we expect that the effects
of the choice of local channel on the total energy will be

TABLE II. Lowest-energy excitations in eV to higher-l states
for each species from experiment.47–50

Species O Si Zn
Neutral 12.08 5.86 8.53
Singly-Ionized 28.7 9.84 14.54
Doubly-Ionized 40.23 17.72 31.9
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FIG. 4. Comparison of the ionization energies in eV for O,
Si, and Zn in DFT, VMC, and DMC for the different choices
of pseudopotential with experimental values.50 As described
in the text, all-electron, single-determinant DMC results are
in much better agreement with experiment.

more pronounced for the neutral species relative to the
positive ones and for Si relative to O. Indeed, for the Si
species, the decreasing significance of the extra channel
with increasing charge is clear. This effect is less readily
apparent in the O and Zn data and is likely obscured
by correlation effects. This effect, due to the lower ex-
citation energies here, has implications not only for the
atomic wave functions. Lower-energy excited states of
the atoms and ions are more likely to participate in bond-
ing in molecules and solids, and it is important to design
pseudopotentials to account for that.

Figure 4 shows the first and second ionization ener-
gies for each element. For all three elements, the use
of the augmented pseudopotentials improves the accu-
racy of DMC for the first and second ionization ener-
gies. Furthermore, in all cases the DMC ionization en-
ergies are less sensitive to the choice of local channel for
the augmented pseudopotentials than is the case for the
standard pseudopotentials. The magnitude of errors in
our ionization energies are comparable with other DMC
pseudopotential results in the literature (see for example
Refs. 10, 20, 31, and 51). As a check, we performed an
all-electron, single-determinant DMC calculation for an
isolated O atom with a Slater-Jastrow trial wave func-
tion and obtained an ionization energy of 13.611(7) eV,
in very close agreement with the experimental value of
13.618054(7) eV.50

For O and Si we compare the accuracy of our pseudopo-
tential DMC calculations of the first ionization potential
with all-electron CCSD(T) calculations using the aug-cc-
pVQZ basis set.52 The experimental ionization energies
of O and Si are 13.618 and 8.152 eV, respectively.50 The
deviations from the experimental values for O and Si are
0.09 eV and 0.03 eV, respectively, for the all-electron
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CCSD(T) method and 0.14 and 0.03 eV, respectively,
for the pseudopotential DMC calculations using the aug-
mented potentials and the highest angular-momentum
channel as the local channel. This close agreement indi-
cates not only the accuracy and usefulness of the opti-
mized pseudopotentials for O and Si but also that the
neglect of core-polarization and relaxations as well as
core-valence correlations for these atoms has only a small
effect on the ionization energies.

For the case of Zn, we observe significantly larger errors
of about 1 eV for the first and second ionization energies.
Several sources of errors may explain the deviation of our
pseudopotential results from experimental values. We
calculated spin-orbit corrections to the total energies at
the DFT level and found that they largely cancel out of
the ionization energies, resulting in corrections too small
to account for the observed differences in the ionization
energies between QMC and experiment (less than 3 meV
for O and less than 1 meV for Zn).

The pseudopotential approximation itself leads to sev-
eral errors other than those focused on in this paper. By
removing explicit treatment of core electrons from the
calculation, we neglect correlations between the core and
valence electrons. This is minimized but not altogether
eliminated by designing pseudopotentials so that the core
and valence electrons are spatially separated. The core-
valence correlation may be particularly important for the
case of Zn where the 3d valence electron states have siz-
able spatial overlap with the 3p core electron states and
may explain the large errors in the ionization energies
there. However, the magnitude of corrections obtained
using published core-polarization potentials32 was negli-
gible.

Pseudopotential calculations for Sc and Ti using small-
core pseudopotentials by Burkatzki et al. resulted in
DMC ionization energies up to 0.4 eV above the ex-
perimental value, indicating that including the 3p or-
bitals in the valence states somewhat improves the accu-
racy. However, calculations of the ionization energies for
the same pseudopotential using CCSD(T), a many-body
quantum chemistry method, resulted in significantly im-
proved ionization energies compared to DMC, indicat-
ing that it is not the pseudopotential approximation but
the fixed-node approximation that may be the dominant
source of errors in their case.31

Evaluation of the pseudopotentials in DMC is sub-
ject to the locality approximation46 used in this work
or the lattice-regularized method by Casula.53 Pozzo and
Alfè54 found that, in magnesium and magnesium hydride,
the errors of the locality approximation and the lattice-
regularized method are comparably small, but that the
lattice-regularized method requires a much smaller DMC
time step. We calculated O ionization energies using the
lattice-regularized method of Casula and found the re-
sults changed by less than 30 meV.

In addition to the pseudopotential approximation, a
second primary source of errors in our O and Zn ioniza-
tion energies at the DMC level arises from the fixed-node
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FIG. 5. (color online) Variance in local energy in atomic
units and associated statistical error of each VMC calcula-
tion. Hamiltonians are labeled as in Fig. 2.

approximation. Fixed node errors can be eliminated by
providing an initial trial wave function with the correct
nodal structure. The variance in the local energy for
each VMC calculation is shown in Fig. 5. Eigenstates of
the Hamiltonian have zero variance, and higher variances
typically indicate a worse approximation of the ground-
state wave function. High variances can originate from
poor single-particle orbitals or from difficulty optimizing
the parameters of the Slater-Jastrow trial wave functions
and are indicative of poorly-optimized variational wave
functions. In DMC poor trial wave functions can lead to
high variances due to the locality approximation for the
non-local channels of the pseudopotential.

Figure 5 indicates that our optimized trial wave func-
tions are best for Si and increasingly worse for O and Zn.
For Si, our variational Slater-Jastrow wave functions were
well-optimized as evidenced by the low variance in the lo-
cal energy. The fixed node error is correspondingly small,
and we see that the choice of local channel and inclusion
of higher angular-momentum channels has a clear bear-
ing on the accuracy of the calculated ionization energies.
In the case of O and Zn, the effect of these pseudopoten-
tial design choices on our results was swamped by other
issues which made it difficult to obtain good trial wave
functions at the VMC level.

A possible reason for the difficulty in optimizing a
Slater-Jastrow wave function for Zn stems from the poor
description of the 3d-levels of the Zn atom in DFT.
Semilocal functionals are known to place the 3d level
of the Zn atom significantly too high.55,56 This results
in an incorrect description of the d-channel of the pseu-
dopotential and of the 3d-orbital in the trial wave func-
tion, which is reflected in both the large energy variance
and large deviation of the QMC ionization energy from
experiment. Each of these issues could lead to subopti-
mal VMC trial wave functions and then, by way of the
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fixed-node approximation, to errors in the DMC results.
Modern QMC optimization methods can optimize the co-
efficients of single-particle orbitals that are represented as
compact sums of Slater or Gaussian functions, which in
principle could lead to improved results.43,45

V. CONCLUSIONS

In this paper, we have shown that pseudopotentials
that include channels to account for higher angular-
momentum components of the wave function are nec-
essary for performing accurate pseudopotential calcu-
lations in QMC. For O, Si, and Zn atoms we deter-
mined how the number of angular-momentum channels
and the choice of local channel in the pseudopotential af-
fect the total energy and ionization energies in QMC. We
find a sizable error in the total energies for any choice
of local channel when the pseudopotentials do not in-
clude at least one additional angular-momentum chan-
nel above the highest angular-momentum component of
the ground-state wave function of the atom. This is
because, contrary to single-electron mean-field methods
such as HF and DFT, atomic ground-state wave functions
in correlated-electron methods include higher angular-
momentum character. These components effectively see
the wrong potentials when using standard pseudopoten-
tials.

This effect was demonstrated for the case of isolated
ions where it is least severe. Because of the effect of
bonding on the wave functions, the effect is expected to
be more pronounced in the case of solids and molecules.
Nonetheless it appears to be the dominant source of er-
ror in our calculated Si ionization energies. In the case
of Zn and O, it has an effect of similar magnitude, but

errors arising from the pseudopotential and fixed node
approximations appear to dominate at the DMC level.

All-electron, single-determinant QMC methods obtain
very high accuracy and are systematically improvable
through the use of multi-determinant wave functions.
However, the pseudopotential approximation is often a
practical necessity. Although QMC methods are becom-
ing more widely used, they are still not routine, and
best practices for obtaining reliable results are still evolv-
ing. Our results suggest that one such best practice
is to include at least one channel in the pseudopoten-
tial above the highest angular-momentum component of
the ground-state wave function in single-particle meth-
ods. Additionally, this highest channel should be used as
the local channel, as it will generally be most similar to
missing, yet-higher angular-momentum channels.
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15 D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev.

Lett. 43, 1494 (1979).
16 D. M. Ceperley, J. Stat. Phys. 43 (1986).
17 B. L. Hammond, P. J. Reynolds, and J. William A. Lester,

J. Chem. Phys. 87 (1987).
18 W. Muller, J. Flesch, and W. Meyer, J. Chem. Phys. 80,

3297 (1984).
19 E. L. Shirley and R. M. Martin, Phys. Rev. B 47, 15413

(1993).
20 Y. Lee and R. J. Needs, Phys. Rev. B 67, 035121 (2003).



8
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