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There is much interest in the realization of systems with p-wave pairing in one dimension or
chiral p-wave pairing in two dimensions, because these are believed to support Majorana modes
at the ends or inside vortices. We consider a two component system of composite fermions and
provide theoretical evidence that, under appropriate conditions, the screened interaction between
the minority composite fermions is such as to produce an almost exact realization of p-wave paired
state described by the so-called anti-Pfaffian wave function. This state is predicted to occur at filling
ν = 3/8 or 13/8 in GaAs when the Zeeman energy is sufficiently small, and at ν = ±3/8 or ±13/8
in single layer graphene when either the Zeeman or the valley splitting is sufficiently small.

PACS numbers: 73.43.-f,05.30.Pr,71.10.Pm

Much attention has recently been devoted to topolog-
ical phases of matter, in particular on the realization of
a one-dimensional p-wave superconductor [1] that traps
Majorana modes at the ends, or a two-dimensional chiral
p-wave superconductor [2, 3] whose Abrikosov vortices
can support Majorana modes. Many possible experimen-
tal realizations have been suggested [4–7] for this pur-
pose, and some evidence [8–10] for Majorana modes has
been reported at the end of one-dimensional wires. It has
been proposed by Moore and Read [11] that the 5/2 frac-
tional quantum Hall effect (FQHE) is a realization of a
chiral p-wave superconductor of spin-polarized compos-
ite fermions, and thus provides a platform for Majorana
modes obeying non-Abelian braid statistics [3, 12–14]. In
spite of experimental efforts [15–17] to test this predic-
tion, the situation has remained unclear. One possible
source of complication is that the Majorana modes are
best motivated for the so-called Pfaffian [11] or the anti-
Pfaffian [18–20] wave function, but the actual Coulomb
5/2 FQHE state is not accurately represented by either
of these wave functions [21]. It would therefore be im-
portant to ask if a better realization of the Pfaffian wave
function exists. One can construct a model 3-body in-
teraction [13] that has the Pfaffian wave function as its
exact solution (in this model the only interaction is that
experienced by three particles in their smallest relative
angular momentum state; there is no interaction in the
two particle channel), but an experimental realization of
such a model is difficult and has not yet been achieved.

Composite fermions [22] (CFs) are bound states of elec-
trons and an even number (2p) of vortices, formed when
electrons are confined to the lowest Landau level (LL).
They experience an effective magnetic field and form
Landau-like levels. Their filling factor ν∗ is related to the
electron filling factor ν by the relation ν = ν∗/(2pν∗+1).
We consider in this work CFs carrying two vortices each
(denoted 2CFs) at filling factor ν∗ = 1/2. Can they
form a paired state in the same manner as electrons in
the second LL do at filling factor ν = 1/2? The answer

is negative, because the interaction between these com-
posite fermions has a sufficiently strong short range part
that they capture two more vortices and form a Fermi
sea of 4CFs (which appears at ν = 1/4), just as elec-
trons at ν = 1/2 in the lowest LL capture two vortices
to form a 2CF Fermi sea [23, 24]. However, let us now
consider 2CFs at ν∗ = 3/2 with ν∗↑ = 1 and ν∗↓ = 1/2,
where the subscripts label the two components, which
we will generically refer to as “spin.” This state has spin
polarization of γ = (ν∗↑ − ν∗↓)/(ν∗↑ + ν∗↓) = 1/3. The in-
teraction between the minority spin composite fermions
is softened due to screening by the majority spin 2CFs.
Our calculations presented below make a strong case that
the screened interaction is such that it produces for the
minority spin composite fermions an almost exact real-
ization of the anti-Pfafian wave function. In GaAs, this
state will manifest as a partially spin polarized incom-
pressible FQHE state at ν = 3/8 or its hole partner at
ν = 13/8. In graphene, this state can be realized at
ν = ±3/8 and ±13/8 in the limit where either the spin or
the valley symmetry is approximately valid. A definitive
observation of any of these FQHE sates or a measurement
of its spin polarization has so far been lacking, although
some evidence for a developing FQHE at 3/8 was seen by
Pan et al. [25] and more recently by Bellani et al.[26] in
GaAs quantum wells. On the theoretical front, a previ-
ous study by Scarola et al. [21] investigated this problem
by modeling the composite fermions in the spin-reversed
sector as interacting with an effective two-body interac-
tion, which was obtained by a microscopic calculation
[27–29]. However, the 2-body interaction model is not
fully reliable for several reasons [30, 31]: the physics is
likely driven by very subtle energy scales where three and
higher body terms can play a significant role; the 2-body
inter-CF model assumes perfect particle-hole symmetry
for 2CFs, which is in general not valid (an explicit vio-
lation is seen below); it fails to discriminate between the
Pfaffian (Pf) and the anti-Pfaffian (APf) states; it also
does not give the energy of the 3/8 state, and therefore
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does not allow a determination of the parameter region
where this state is favored.

A study of this issue requires an accurate quantitative
theory that can capture the subtle physics of pairing.
We employ the method of composite fermion diagonal-
ization (CFD) [32], which has been shown [30, 31] to
be extremely precise in this filling factor range. In this
method, we work in the spherical geometry that consid-
ers N electron on the surface of a sphere exposed to a
radial magnetic field with total flux 2Q in units of the
flux quantum φ0 = hc/e. We begin with a determina-

tion of the basis states
{

Φ
↓,(L,α)
1/2

}
(α’s label distinct ba-

sis functions in a given total angular momentum sector
L) of the degenerate ground states of N↓ noninteracting
spin-down fermions at flux 2Q∗ = 2N↓ − λ, which corre-
sponds to filling ν∗↓ = 1/2; λ is a constant “shift” that
depends on the specific model for the state. We next
composite-fermionize this basis to construct a correlated
CF basis{

Ψ
CF,(L,α)
3/8

}
=

{
J2Φ↑1[{ur, vr}]Φ↓,(L,α)1/2 [{uj , vj}]

}
, (1)

with

J2 =

N↑∏
r<s

(urvs−usvr)2
N↓∏
i<j

(uivj−viuj)2
N↑,N↓∏
r,j

(urvj−vruj)2,

(2)
The particle indices {r, s} ({i, j}) refer to the
N↑ (N↓) number of up-spin (down-spin) composite

fermions. The spinor coordinates are defined as u =
cos(θ/2) exp(−iφ/2) and v = sin(θ/2) exp(iφ/2) in terms
of the spherical coordinates[33] θ and φ. Multiplication
by the Jastrow factor J2 describes the attachment of two
quantum vortices to each electron. Here N↑ = 2Q∗ + 1,
N = N↑ + N↓ is the total number of electrons, and the
total flux

2Q =
8N − λ− 8

3
. (3)

The value λ = 3 (−1) refers to the Pf (APf) shift. Finally,
the full Coulomb Hamiltonian is diagonalized separately
in each L sector within this restricted CF-basis, evalu-
ating the Coulomb matrix elements by the Monte Carlo
method. To obtain a desirable accuracy of the energies,
we have had to perform an unusually large number of
Monte Carlo steps (400–2000 Million for each of the sys-
tems). The spin polarization of the state is given by
γ = (ν∗↑ − ν∗↓)/(ν∗↑ + ν∗↓) = 1/3.

As we shall see, distinguishing between different pos-
sibilities at 3/8 requires a study of fairly large systems.
The lowest LL Hilbert space dimensions in various total
orbital angular momentum L sectors for several (N, 2Q)
systems corresponding to Pf and APf shifts are tabu-
lated in Table I; these are beyond the reach of computer

calculations. The dimensions of CF basis
{

Ψ
CF,(L,α)
3/8

}
are exponentially small (see Table II), which allows us to
treat larger values of N .

TABLE I: Exact Hilbert space dimensions for various systems
(N, 2Q) corresponding to Pf and APf shifts in various L sec-
tors. The exact numbers are quoted for the (N, 2Q) = (14, 35)
and (16,39), and approximate numbers for larger systems.

(N, 2Q) L = 0 1 2 3 4 5 6 7 8

(14, 35) 68061370 203942248 339434629 474057321 607668097 739793185 870299200 998724540 1124948790

(16, 39) 8634541516 25888613188 43101482607 60243279869 77288105284 94206535507 110973258761 127559585561 143941070616

(20, 51) 3.23× 1013 9.70× 1013 1.61× 1014 2.26× 1014 2.90× 1014 3.54× 1014 4.18× 1014 4.81× 1014 5.44× 1014

(22, 55) 5.05× 1015 1.51× 1016 2.52× 1016 3.53× 1016 4.53× 1016 5.54× 1016 6.54× 1016 7.53× 1016 8.52× 1016

The low-lying spectra obtained by CFD for several
systems are shown in Fig. 1 at the APf and Pf shifts
(left and right columns, respectively). The horizontal
neighbors correspond to the same Q∗, and would have
identical spectra if composite fermions satisfied particle-
hole symmetry (as would be the case in the model of
Ref. [21]). An incompressible state is identified by an
L = 0 ground state which is separated from other states
by a nonzero gap in the thermodynamic limit. Several

important points can be noted from the spectra: (i) A
nondegenerate ground state is formed at L=0 for each
of the systems considered for the APf shift, but for the
Pf shift the ground state of (N, 2Q) = (28, 71) occurs
at L = 4. Figure 1 thus disfavors a Pf type physics
for partially polarized FQHE state at 3/8. (ii) A lack
of particle-hole symmetry for composite fermions can be
seen, as the spectra on the right panels are different from
their corresponding spectra on the left. (iii) The accuracy
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TABLE II: Dimensions of correlated CF basis for various sys-
tems (N, 2Q) in different L-sectors. These are equal to the
ground state degeneracy for N↓ noninteracting particles at
2Q∗. Systems related by the particle-hole symmetry have the
same Hilbert-space dimensions.

(N, 2Q) L = 0 1 2 3 4 5 6 7 8

(14, 35) & (16, 39) 2 0 2 1 3 1 3 1 2

(20, 51) & (22, 55) 4 1 7 5 11 7 13 9 13

(26, 67) & (28, 71) 12 10 32 30 51 48 66 61 77

TABLE III: This table compares the Pf and the APf trial

wave functions Ψ
trial−Pf/APf

3/8 of Eq. 4 with the ground states

at those (N, 2Q) values obtained by CF diagonalization, la-
beled ΨCFD

3/8 . The total number of electrons is N and the
corresponding fluxes are 2Q = (8N − 11)/3 for the Pf shift
(λ = 3) and 2Q = (8N−7)/3 for the APf shift (λ = −1). The
corresponding number of down-spin 2CFs and effective flux
2Q∗ are also listed. The overlap between the CFD ground

state ΨCFD
3/8 and the trial wave function Ψ

trial−Pf/APf

3/8 is de-

noted 〈ΨCFD
3/8 |Ψ

trial−Pf/APf

3/8 〉. For (N, 2Q) = (28, 71) the CFD

ground state occurs at L = 4; the asterisk is to remind us that
the overlap shown in this case is calculated with the lowest
energy state in the L = 0 sector.

N 2Q N↓ 2Q∗ 〈ΨCFD
3/8 |Ψtrial−Pf

3/8 〉 〈ΨCFD
3/8 |Ψtrial−APf

3/8 〉

14 35 4 9 – 0.9996(1)

16 39 6 9 0.9815(1) –

20 51 6 13 – 0.9999(1)

22 55 8 13 0.7739(3) –

26 67 8 17 – 0.9969(1)

28∗ 71 10 17 0.9612(3) –

and the efficiency of the CFD method is crucial for an
investigation of this incompressible state. The minimum
energy gap for neutral excitation is small, of the order
of ∼ 0.0004 e2/εl, for the systems studied here. However,
our systems are still too small for a reliable extrapolation
of the excitation gap to the thermodynamic limit.

To further corroborate the APf physics, we consider
the explicit trial wave functions

Ψ
trial-Pf/APf
3/8 = J2Φ↑1[{ur, vr}]Φ↓,Pf/APf

1/2 [{uj , vj}] (4)

Here Φ↑1 is the wave function of one filled LL (with spin-

up particles). The factor Φ
↓,Pf/APf
1/2 represents the Pf or

the APf wave function at ν∗↓ = 1/2. The Φ↓,Pf
1/2 is pro-

duced by diagonalizing the 3-body interaction Hamilto-

nian [13] V3 =
∑
i<j<k P

(3)
ijk (3Q∗−3) with 2Q∗ = 2N↓−3,

where P
(3)
ijk (L) projects out a cluster of three particles

(i, j, k) with total orbital angular momentum L. The

APf wave function Φ↓,APf
1/2 at ν∗↓ = 1/2 with 2Q∗ =

2N↓+ 1 is obtained by diagonalizing particle-hole conju-
gated Hamiltonian of V3 with 2Q∗ = 2N↓−3. Overlaps of
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FIG. 1: (Color online) The low energy spectra obtained by
CF diagonalization at both “Pf shift” (right panels) and “APf
shift” (left panels) at partially spin polarized ν = 3/8, for sys-
tems with various values of N and 2Q shown on the panels.
The statistical error, estimated from Metropolis Monte Carlo
calculation is less than the diameter of the circle. The energy
per electron, E, includes the interaction with the background;
it is quoted in the units of e2/εl where l =

√
~c/eB⊥ is the

magnetic length, ε is dielectric constant of the host material,
and B⊥ is the component of the magnetic field along perpen-
dicular to the plane of the system.

the Pf and APf-type trial wave functions Ψ
trial-Pf/APf
3/8 in

Eq. (4) with the corresponding CFD ground states in the
L = 0 sector are calculated using Monte Carlo method
and are tabulated in Table III. Most strikingly, the APf
wave function has almost perfect overlaps (> 99.6%) with
the state obtained by CFD. We believe that, taken alto-
gether, these results make a compelling case that a par-
tially spin polarized incompressible state at 3/8 is possi-
ble, and, if observed, it will be an excellent realization of
the APf paired state.

While we have made a case that the partially spin po-
larized 3/8 state is the lowest energy state in the chosen
spin sector, its realization requires that it be the global
ground state in some parameter range. As shown in
Ref. [30], an APf-type state is also possible for fully
spin polarized system at ν = 3/8. Figure 2 shows the
interaction energies of the ground states (including the
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FIG. 2: (Color online) Left panel: The ground state energy
per particle, Egs, for fully and partially polarized 3/8 states
at the APf shifts (circles and squares, respectively). A lin-
ear extrapolation in 1/N , where N is the number of parti-
cles, produces the ground state energies (open symbols) in
the thermodynamic limit. Right panel: Dependence of the
critical value of κ ≡ EZ/(e

2/εl), at which a transition from
the partially polarized to fully polarized state takes place (see
text), on electron density for several quantum well widths in-
dicated on the figure. Here EZ is the Zeeman splitting, ε is the
dielectric function of the host material, and l is the magnetic
length.

interaction with the background) per particle, obtained
by CFD at different allowed N values for the both par-
tially and fully polarized states at the APf shift. The
data for fully polarized 3/8 state are taken from Ref. [30]
(although we have improved the accuracy of the energies
compared to that in Ref. 30). The ground state ener-
gies of the partially and fully polarized 3/8 states in the
thermodynamic limit (N →∞) are obtained respectively
to be −0.4256(1) e2/εl and −0.4195(2) e2/εl. (Note: To
correct for a slight variation in the density with N in
the spherical geometry, we multiply the finite system en-
ergies by the factor (2Qν/N)1/2 prior to extrapolation.)
The important point is that the partially spin polarized
3/8 has lower Coulomb energy than the fully spin po-
larized state, and therefore is favored at sufficiently low
Zeeman energy EZ (the energy required to flip the spin
of an electron). Equating the interaction energy differ-
ence per particle between the two different states with
EZ/3, we predict that a phase transition from partially
to fully polarized state occurs at κ ≡ EZ/(e

2/εl) ≈ 0.018,
which corresponds to a magnetic field of ∼10 T for pa-
rameters of GaAs and also for graphene (assuming that
spin is the relevant degree of freedom for the latter). We
have also estimated the quantum well width dependence
of the critical value of κ for GaAs, shown in Fig. 2, where
we have evaluated the transverse wave function in a local
density approximation, which modifies the form of the in-
teraction between electrons. The finite width corrections
should be negligible in graphene. We note that extensive
investigation of the spin or valley physics of the FQHE
states of the form ν = n/(2n ± 1) has been performed
experimentally in GaAs and AlAs quantum wells as well
as graphene [34–53] and these results have been analyzed
quantitatively by the CF theory [54–56]. One may won-

der about the role of CF skyrmions; these are estimated
to be relevant only for very small values of κ < 0.007
close to ν = 1/3 [57], but are not relevant for the physics
of the ground state at 3/8 [54].

Many proposals [18, 19, 58] have been made for distin-
guishing between the Pf and the APf states at ν = 5/2.
These include: counter-propagating neutral modes at the
edge of the APf [19]; various tunnel exponents [58]; ther-
mal conductivity [18]; etc. These ideas were extended
to fully polarized 3/8 state [30], and carry over to the
partially polarized 3/8 state without change. To sum-
marize, the partially spin polarized APf state at 3/8 is
predicted to have charge 1/16 excitations (an abelian vor-

tex in the spin reversed wave function Φ
↓,Pf/APf
1/2 in Eq. 4

has a charge equal to 1/8th of an electron charge, as can
be ascertained from standard methods; however, because
of pairing physics [11], the vortex can be split into two
quasiholes of charge 1/16 each); Majorana modes; non-
Abelian braid statistics for excitations; counter propa-
gating edge modes (none for Pf); and thermal Hall con-
ductivity of 1/2 (5/2 for Pf) in units of (π2k2

B
/3h)T .

There is an interesting difference in the edge struc-
ture of the Pf and APf 3/8 states for the partially spin
polarized case. We recall that for the fully polarized
Pf and APf-3/2 state have edge structures 3/2(Pf)-1-0
and 3/2(APf)-2-1-0 (which denote the filling factor as
we go across the edge from inside out), which produce at
ν = 3/8 the edge structures 3/8(Pf)-1/3-0 and 3/8(APf)-
2/5-1/3-0, respectively. In contrast, the partially po-
larized Pf and APf-3/2 states will have edge structures
of 3/2(Pf)-1-0 and 3/2(APf)-2(singlet)-0, where the last
one follows because the filling of both up and down spins
will simultaneously vanish at the edge. Upon composite
fermionization, we thus find the edge structures for par-
tially polarized Pf and APf states at 3/8 to be 3/8(Pf)-
1/3-0 and 3/8(APf)-2/5(singlet)-0. The partially spin
polarized APf 3/8 state is thus accompanied by a sliver
of spin singlet 2/5 at the boundary. We note that the
calculated critical values of κ are very different for a spin
transition in the bulk states at 2/5 (κ ≈ 0.011[56]) and
3/8 (κ ≈ 0.018); our calculation suggests that there is a
region of κ where the partially polarized APf 3/8 FQHE
in the bulk induces a spin singlet 2/5 at the boundary
even though a spin singlet 2/5 is not stable in a bulk
phase in this parameter region. It is important to remem-
ber that in our discussion of the edge physics, we have
uncritically assumed the validity of the effective theory
and disregarded the possibility of edge reconstruction.

In summary, we predict that the screened interac-
tion between the minority 2CFs at total effective filling
ν∗ = 3/2 will produce an excellent realization of the anti-
Pfaffian wave function, representing a chiral p-wave pair-
ing of 4CFs. This state is relevant for fillings 3/8 and
13/8 in GaAs and ±3/8 and ±13/8 in graphene. We
have estimated the Zeeman energy range where it should
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occur.
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