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We propose an experiment to use the magneto-optical Faraday effect to probe the dynamic Hall
conductivity of spin liquid candidates. Theory predicts that an external magnetic field will generate
an internal gauge field. If the source of conductivity is in spinons with a Fermi surface, a finite
Faraday rotation angle is expected. We predict the angle to scale as the square of the frequency
rather than display the standard cyclotron resonance pattern. Furthermore, the Faraday effect
should be able to distinguish the ground state of the spin liquid, as we predict no rotation for
massless Dirac spinons. We give a semiquantitative estimate for the magnitude of the effect and
find that it should be experimentally feasible to detect in both κ-(ET)2Cu2(CN)3 and, if the spinons
form a Fermi surface, Herbertsmithite. We also comment on the magneto-optical Kerr effect and
show that the imaginary part of the Kerr angle (circular dichroism) may be measurable.

I. INTRODUCTION

Recent experiments in the spin liquid candidates Her-
bertsmithite and κ-(ET)2Cu2(CN)3 have observed a
power law in the conductivity below the Mott gap1,2.
One of the potential explanations of this conductivity is
optical excitations of spinons in a spin liquid state3,4. In
the experiments on Herbertsmithite, the measured con-
ductivity amplitude and exponent are slightly smaller but
comparable to the theoretical predictions for the spinon
contribution to the conductivity. Here we propose an ex-
periment using the magneto-optical rotation of light as a
further probe of possible contributions of spinons to the
finite frequency conductivity tensor.

The quasi-two dimensional materials κ-
(ET)2Cu2(CN)3 and Herbertsmithite are both well
described by half-filled Hubbard models. In the organic
κ-(ET)2Cu2(CN)3 the spins form a nearly isotropic
triangle lattice and it is just on the insulating side of
the Mott transition5. It is believed to have a spin liquid
phase with spinon excitations forming a Fermi surface6,7.
On the other hand, in the material Herbertsmithite
the spins form a kagome lattice, and the system is
deeper into the insulating phase. While it is commonly
believed that Herbertsmithite has a spin liquid phase,
it is unclear what the ground state is. Projected wave
function studies predict a spin liquid state with massless
Dirac fermions8, while density matrix renormalization
group calculations find a gapped Z2 spin liquid9.
Neutron scattering and thermodynamic measurements
show evidence of gapless excitations10,11. The neutron
scattering pattern shows gapless spin excitations across
a wide range of momentum transfer, Q, potentially
suggesting that the spinons form a Fermi surface rather
than there only being two Dirac nodes where the
excitations are gapless. In addition, the heat capacity
showed a linear T term in high magnetic field11. We
show below that massless Dirac spinons should show no
linear magneto-optical Faraday effect, while the Faraday

rotation should be experimentally observable for spinons
with a Fermi surface, allowing an experimental probe to
distinguish between the two gapless ground states.

As was shown by Motrunich and others, in the pres-
ence of the magnetic field the spinons will see an inter-
nal magnetic field due to a linear coupling between the
physical magnetic field and the gauge magnetic field.12

This breaking of time reversal symmetry for the spinons
should be observable through the measurement of the ro-
tation of the polarization of the transmitted light. The
Faraday rotation at normal incidence is given, for small
rotations, by

θF =
`

nc
2πσ′xy(3D) (1)

where ` is the thickness in the direction of propagation of
the light, n is the index of refraction, and σ′xy(3D) is the
real part of the off-diagonal in-plane 3D conductivity.

II. THEORETICAL BACKGROUND

Herbertsmithite is a Mott insulator and can be well
described by taking a strong coupling t/U expansion of
the half-filled Hubbard model. While κ-(ET)2Cu2(CN)3

is just on the insulating side of the Mott transition, we
assume that a similar expansion is still an appropriate
starting point. In the limit where the electron hopping
term vanishes, t = 0, the ground state is given by sin-
gle occupation of each lattice site and has a 2N -fold de-
generacy. As we increase the hopping relative to the
Coulomb energy, U , the degeneracy is broken and the
ground state is lowered by mixing of the different singly
occupied states through virtual hopping. We can project
the Hamiltonian onto the low energy manifold, to get
an effective spin Hamiltonian for the system. To lowest
order in t/U we get a Heisenberg antiferromagnetic inter-
action with J = 4t2/U . Higher order terms will introduce
further spin-spin interactions, as well as loop interactions
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that will be important when we compute the coupling be-
tween the physical and emergent magnetic fields.

The spin model can be solved approximately by intro-
ducing fermions to carry the spin in an enlarged Hilbert

space replacing each spin with Si = f†i,aσabfb. The phys-
ical Hilbert space is the subspace with each state singly
occupied. After making this substitution into the spin
Hamiltonian and introducing an integration over an aux-
illary scalar field to enforce the constraint13, we apply a
mean field treatment of the resulting 4-Fermi term to get
the mean field Hamiltonian

HMF = J
∑
〈ij〉

(
χijf

†
i,σfj,σ + c.c.

)
− λ

∑
i,σ

f†i,σfi,σ (2)

with χij = 〈f†i fj〉 and λ enforcing the constraint of one
fermion per site on average. We can interpret f† as the
creation operator of fermionic spinons. To get back to a
physical spin wavefunction, the solution of this mean field
Hamiltonian can be projected onto the physical single
occupancy subspace. Allowing fluctuations of λ and the
phase of the hopping term χij corresponds to introducing
a dynamical electric and magnetic vector potential. This
is the source of the emergent electic and magnetic fields,
e and b, that the spinons feel.

A. Mechanism for optical conductivity from
spinons

In order to compute the conductivity we follow the
framework given by Potter et al3. The physical conduc-
tivity is proportional to the correlation function of the
emergent gauge electric field

σij ≈ 72π(n∆a
2)
e2

h
iω

t2

U4
〈eiωe

j
−ω〉 (3)

where n∆ is the density of triangles in the lattice, a is the
lattice constant, and e = ∇λ+ȧ is the gauge electric field
with a the continuum vector potential corresponding to
the phase of χij . They compute this correlation function
within the random-phase approximation and find that

〈eiωe
j
−ω〉 = − iω

2
[σ−1
s ]ij = − iω

2
[ρs]ij (4)

where ρs is the spinon resistivity in response to the inter-
nal gauge electric field. Substituting this into equation 3
we get,

σij ≈ 36π(n∆a
2)
e2

h
iω

t2

U4
[ρs]ij (5)

This equation is valid only for frequencies less than the
spinon bandwidth, which is estimated to be on the order
of J . For the materials discussed here J ≈ 250− 350 K,
corresponding to frequencies of about 5− 7 THz.

B. Coupling between the physical and emergent
magnetic fields

We must first calculate the magnitude of the induced
internal flux that the spinons feel. This was done already
for the organic material κ-(ET)2Cu2(CN)3 by Motrunich
using a strong coupling expansion. A perturbative t/U
expansion of the Hubbard model leads to a linear cou-
pling of the applied magnetic field to the scalar spin chi-
rality, S1×S2 ·S3. Bulaevskii et al. showed that virtual
charge fluctuations lead to a current (and orbital mag-
netic moment) proportional to the spin chirality14. The
coupling shown by Motrunich can be more physically in-
terpreted as the coupling of the external magnetic field
and this orbital magnetic moment. This spin chirality
can be interpreted additionally as a Berry’s flux or the
emergent magnetic field that the charge neutral spinons
feel15,16.

In order to estimate the magnitude of the internal field
produced, Motrunich minimized the energy as a function
of the applied field. In the organic, the linear coupling
found at third order by hopping an electron around a
triangle is supplemented by a fourth order term that is
quadratic in the internal flux, Φint, that stabilizes the
field. Motrunich found a mean field energy per site in
the uniform flux state of

Emf = αΦext
t3

U2
sin(Φint) + β

t4

U3
cos(2Φint) (6)

keeping only the most relevant terms12. α and β con-
tain numerical coefficients and material dependent pa-
rameters and Φext and Φint the dimensionless fluxes per
triangle. The factor of 2 on the flux in the second term
comes from the fact that the fourth order loop encloses
two triangles. Balancing these terms, along with other
corrections, he found that the emergent flux was related
to the external flux by Φint = ΓΦext, with Γ ∼ 1−2.12

We will use a value of Γ = 1.5 for the rest of the paper.
Extending Motrunich’s work, we expect the kagome

lattice of Herbertsmithite to give a similar result. The
argument is similar, but one needs to go to a higher order
in t/U to get a restoring term quadratic in b. It is not
until order t6/U5 that a term that is even in the emergent
flux arises, given by hopping around two corner sharing
triangles (see figure 1), i.e. the mean field energy per site
is given instead by

Emf = αΦext
t3

U2
sin(Φint) + β

t6

U5
cos(2Φint) (7)

This effect would tend to make the emergent field
stronger, as it decreases the effective gauge stiffness. This
is counteracted, however, by a larger combinatorial pref-
actor for the term β.

The fact that as one goes further into the insulating
phase, with t/U getting smaller, the emergent magnetic
field grows is counterintuitive and points to a potential
limitation of the theory. As t/U shrinks the effective



3

ϕ

ϕ

1

2

FIG. 1: Illustration of the virtual hopping needed to give the
restoring force to the gauge field on the kagome lattice.

gauge stiffness does as well, meaning that the system will
be more prone to gauge fluctuations. This calls into ques-
tion the accuracy of our expansion, as we neglect screen-
ing affects. However, since even for Herbertsmithite we
are only in the intermediate regime, we expect that this
treatment will suffice to get an estimate of the effect, and
we use Γ = 1.5 for Herbertsmithite as well.

III. SEMI-QUANTITATIVE ESTIMATES OF
THE FARADAY EFFECT

We can now calculate the spinon conductivity within
each of the possible ground states. For a massless Dirac
spin liquid in the presence of a static gauge magnetic
field, we expect the spinon bands to be Zeeman split,
creating a hole pocket of spin-down spinons and a spinon
pocket of spin-up spinons. Since there are equal concen-
tration of spinons and holes which are oppositely charged
with respect to the emergent gauge field, the Hall effect
due to the particle pocket will be canceled by that due to
the hole pocket, and we expect no Hall conductivity and
thus no Faraday rotation that is linear in H. This is in
contrast to the case of a spinon Fermi surface which, as
we now show, should have an experimentally detectable
Faraday effect, allowing experiments to distinguish be-
tween these two gapless spin liquid phases.

For a spinon Fermi surface we expect to see an ef-
fect. Within experimentally realizable fields, the Landau
level filling factor should be very large, and we model the
spinon conductivity with the Drude model. Within the
Drude model, we get that the spinon resistivity is given

by

ρs =
ms

n

(
γ − iω ωc
−ωc γ − iω

)
(8)

where ms is the spinon mass, n is the spinon density, γ is
the spinon scattering rate, and ωc is the spinon cyclotron
frequency. The spinon bandwidth is estimated to be a
fraction of J , which corresponds to a spinon mass, ms ∼
1/(Ja2). The spinon cyclotron frequency is given by ωc =
b/ms = ΓB/ms.

Putting all this together we get

σxy ∼ 36π(n∆a
2)(

t

U
)2(

ω

U
)2Γ

B

n

e2

h
(9)

= 72π2n∆

n
(
t

U
)2(

ω

U
)2Γ

Ba2

φ0

e2

h
(10)

where φ0 is the magnetic flux quantum.
We can now estimate the magnitude of this conductiv-

ity and of the Faraday rotation in both κ-(ET)2Cu2(CN)3

and Herbertsmithite. In the organic, we use t = 55 meV
and t/U = .1212. We use a lattice constant of a = 10
Å and an interlayer spacing of d = 16 Å17. There are
two triangles per spinon, so n∆/n = 2. We calculate

the Hall conductivity of one layer σ′xy ∼ 4 · 10−6 e2

h at
ω = 2π × 1 THz and 7 T. This in turn gives a 3D
conductivity σxy(3D) ∼ 1 · 10−3Ω−1cm−1. Using equa-
tion 1, we find an estimate of the Faraday rotation to
be about 0.2 mrad for a 30 µm sample using a dielec-
tric constant of ∼ 418. Extrapolating from IR data, we
estimate that there should be reasonable transmission
through this thickness at 1 THz2. Recent experiments
have resolutions of down to 30 µrad, so this effect should
be within experimental limitations19. The rotation an-
gle, like the Hall conductivity, should be quadratic in the
frequency and linear in the magnetic field.

In Herbertsmithite, assuming a spinon Fermi liquid
ground state, we use t = 100 meV and t/U ∼ .1, a lattice
constant a ∼ 10 Å, and an interlayer spacing of d ∼ 10
Å3. On the kagome lattice, n∆/n = 2/3. The single layer
Hall conductivity is smaller by an order of magnitude re-

sulting in a single layer conductivity of σxy ∼ 2×10−7 e2

h ,

a 3d conductivity of σxy(3D) ∼ 4 · 10−5Ω−1cm−1, and a
Faraday rotation of 0.2 mrad at ω = 2π×1 THz and 7 T
in a 0.3 mm thick sample. This rotation should again still
be observable with the current resolution of experimental
setups.

We note that the predicted frequency dependence of
the Faraday rotation due to spinons is distinct from that
due to conductivity from electronic sources. Typically, in
low carrier density metals, when the Hall conductivity is
from electronic sources, the Faraday rotation angle shows
a resonance structure around the electron cyclotron fre-
quency with an (ω2−ω2

c )−1 tail for frequencies away from
the resonance. On the other hand, the resistivity tensor
does not show a resonance, as seen in equation 8. In
particular, ρxx does not depend on the magnetic field.
However in our case, for conductivity due to spinons,
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there is no resonance peak in the conductivity or Faraday
angle because the physical conductivity is proportional
to the spinon resistivity tensor. Instead, we expect the
Hall conductivity to scale as ω2 and for there to be no
magneto-conductance.

If spinons are the dominant source of conductivity, it
is the physical resistivity that shows a resonance. If an
experiment could accurately measure both σxx and σxy,
then, by inverting the conductivity tensor to get the resis-
tivity tensor, we expect to see a resonance at the spinon
cyclotron frequency. This would give direct evidence of
the presence of both spinons and the emergent gauge
field. We expect the cyclotron frequency to be about
ωc ∼ 2π × 50 GHz. However, the expected Faraday ro-
tation at this frequency is less than 5 · 10−6 rad, in both
materials, which is below the resolution of current exper-
iments.

We can also take a look at the longitudinal conduc-
tivity contribution from spinons using the Drude model.
Using equation 5 we get,

σxx ∼ 36π(n∆a
2)(

t

U
)2(

ω

U
)2ms(γ − iω)

n

e2

h
(11)

∼ 36π
n∆

n
(
t

U
)2(

ω

U
)2 γ − iω

J

e2

h
(12)

Assuming that the scattering rate is dominated by in-
elastic scattering in our temperature range, we take the
factor γ ∼ kBT ∼ J/10. We also estimate ms ∼ 1/(Ja2).
This leads to a quadratic power law for the real part of
the conductivity. For Herbertsmithite, our crude esti-

mate predicts a value σxx ∼ 1 · 10−6 e2

h at ω = 2π · 1
THz, which is a couple orders of magnitude smaller than
the conductivity observed by Pilon et al.1. On the other
hand, the Dirac spin liquid model gave a reasonable
estimate3. In both models, we expect that the longi-
tudinal conductivity should show no field dependence, as
observed in Herbertsmithite1.

We comment also on the magneto-optical Kerr effect,
the rotation of the polarization of the reflected light. For
normal incidence the complex Kerr angle is given by

θK = i

(
n+ − n−
n+n− − 1

)
(13)

where n± are the indices of refraction for right and left
circularly polarized light20. The imaginary part of the
Kerr angle, θ′′K , gives the ellipticity of the polarization of
the light reflected from incident linearly polarized light,
measured as the ratio of the major to minor axes. The
real part, θ′K , gives the rotation angle between the initial
polarization and the major axis of the final polarization.
Because our predicted Hall conductivity is real, we have
to expand this expression to second order in the conduc-
tivity to get a non-vanishing contribution to the rotation
angle. We find that

θ′K ≈
(

32

(ε− 1)2
− 8

(ε− 1)ε

)
π2

ω2
√
ε
σ′xxσ

′
xy (14)

with ε the dielectric constant and σ′ the real part of the
conductivity. For these materials at realizable fields the
rotation is beyond the resolution of current instruments.
For the organic, we predict θ′K ∼ 10−8 rad. One poten-
tial way to boost this value is to tune the frequency to a
phonon resonace in order to boost the value of the diag-
onal conductivity, while the off-diagonal part should be
unaffected and still due only to the spinon contribution.

However, the ellipticity of the reflected light should be
observable. The imaginary part of the Kerr angle only
requires approximating to first order in conductivity,

θ′′K =≈ 4π

n(n2 − 1)ω
σ′xy (15)

Within the spinon Fermi surface model, we predict that
the organic will have an ellipticity θ′′K ≈ 2 mrad and
Herbertsmithite will have θ′′K ≈ 0.1 mrad. This ellip-
ticity is directly measurable and is within experimental
limitations. We expect the ellipticity to be linear in both
magnetic field and frequency. This effect is unexpected
in an insulator. In addition, the frequency dependence
is quite different from that of electrons where the ellip-
ticity is resonant at the cyclotron frequency and falls as
(ω(ω2−ω2

c ))−1 above the resonance. Thus its observation
should be a clear signature of spinon conductivity.
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