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Abstract

How the long-range ordering and local defect configurations modify the electronic structure of

graphene remains an outstanding problem in nanoscience, which precludes the practical method of

patterning graphene from being widely adopted for making graphene-based electronic and optoelec-

tronic devices, because a small variation in supercell geometry could change the patterned graphene

from a semimetal to a semiconductor, or vice versa. Based on the effective-Hamiltonian formalism,

here we reveal that a semimetal-to-semiconductor transition can be induced geometrically with-

out breaking the sublattice symmetry. For the same patterning periodicity, however, breaking the

sublattice symmetry increases the gap, while phase cancellation can lead to a semiconductor-to-

semimetal transition in non-Bravais lattices. Our theory predicts the analytic relationship between

the long-range defects ordering and bandgap opening/closure in graphene, which is in excellent

agreement with our numerical ab initio calculations of graphene nanomeshes and partially hydro-

gen passivated or boron nitride doped graphene.

PACS numbers: 73.22.Pr, 73.22.-f, 71.15.Mb
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I. INTRODUCTION

While graphene1,2 possesses exceptional charge carrier mobilities3, it lacks a sizable

bandgap necessary for meaningful on-off ratios in field-effect transistors or for practical

optoelectronics. The pursuit of semiconducting graphene-based materials remains a high

priority in current research. Recently, field-effect transistors based on graphene nanomeshes

(GNMs), in which periodic holes are punctuated, have been fabricated4. Similarly, bandgap

opening in graphene has also been induced by patterned hydrogen (H) adsorption5 or boron

nitride (BN) doping6–8. An alternative scheme is ‘self-doping’, where extended defects, such

as pentagons and heptagons, are introduced to alter the properties of graphene9.

An outstanding problem is how such periodic patternings modify the electronic struc-

ture of graphene, in particular, what are the exact effects of the long-range ordering and

local defects on the Dirac points (K and K′) where π and π∗ bands touch? Previous

experimental4,5,8,10,11 and theoretical12–26 studies have revealed that the electronic band

structure of graphene is sensitive to patterning: a small variation in the supercell peri-

odicity could change the patterned graphene from a semimetal to a semiconductor, or vice

versa. However, the underlying mechanisms and basic rules remain unclear, since most of

these theoretical efforts are largely computation-driven and empirical, relying heavily on

first-principles computations of special cases and thus lacking analytic understanding from

fundamental considerations.

Here we propose a theory based on the effective Hamiltonian for the tight-binding model

of graphene to reveal the analytic relation between defect geometry and bandgap open-

ing/closure. We show that without breaking the sublattice symmetry, the semimetal-to-

semiconductor transition can occur if the periodic defects induce scattering between two

sublattices at the Dirac points, while such scattering could be annihilated by phase cancel-

lation if defects form non-Bravais lattices in certain arrangements. In addition, breaking the

sublattice symmetry always increases bandgaps, and such symmetry breaking and restoring

can also be induced geometrically. We then carry out first-principles electronic structure

calculations for three different types of patterned graphene including GNMs and partially

H-passivated and BN-doped graphene. The numerical results confirm our analytic theory

and find the bandgap scaling rules in these defected graphene structures as well.
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II. THEORETICAL RESULTS

Two carbon (C) atoms in the unit cell of graphene form two sublattices, and the famous

electronic band structure of graphene is well described by the two-dimensional tight-binding

model Hamiltonian2,27 including only the nearest-neighbor hopping:

H0(k) =





E0 λf(k)

λf ∗(k) E0



 . (1)

Here E0 and λ are the onsite energy and hopping parameter, respectively, and

f(k) = eikxa + 2e−ikxa/2 cos

(√
3

2
kya

)

, (2)

with a the C-C distance. The eigenvalues for this effective Hamiltonian are E = E0 +

sλ|f(k)|, where s = ±1, and the eigenstates are

〈r|s,k〉 = 1√
2
eik·r





1

seiθ(k)



 , (3)

where eiθ(k) = f(k)/|f(k)|.
All types of periodic patterning mentioned above can be universally modeled by applying

a periodic external potential U(r) = U(r + Ri), with Ri (i = 1, 2) the supercell lattice

vectors for the patterned graphene. The scattering amplitude between two states is28–31

〈s,k|U(r)|s′,k′〉 =
∑

G

1

2
(1 + ss′ei[θ(k

′)−θ(k)])U(G)δk′,k−G, (4)

where G and U(G) are the reciprocal lattice vector and the Fourier component of the

external periodic potential, respectively.

Eq. 4 suggests that a semimetal to semiconductor transition can occur if the scattering

between two degenerate states at Dirac points K and K′ is non-zero, i.e., when U(G) 6= 0

at G = K−K′. Because of the periodicity in the reciprocal space of the pristine graphene,

the above condition is equivalent to U(K) 6= 0 [and U(K′) 6= 0], which induces bandgap

opening without breaking the sublattice symmetry. Considering the usual case in which the

defected sites are only a small portion of all C atoms, we propose a simple periodic model

potential based on the Dirac δ-function,

U(r) =

α,β=+∞
∑

α,β=−∞

gδ(r− αR1 − βR2), (5)
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with integers α and β. U(K) 6= 0 only when the reciprocal lattice vectors G for the

periodically modified graphene, with lattice vectorsR1 = n1a1+m1a2 andR2 = n2a1+m2a2,

contain Dirac points of the pristine graphene. Here a1 and a2 are primitive lattice vectors of

the pristine graphene, and n1, m1, n2 and m2 are 4 integers. It is straightforward to show32

that U(K) 6= 0 is satisfied only when

n1 −m1 = 3p, and n2 −m2 = 3q, (6)

for integers p and q, which is the same condition for a semimetallic carbon nanotube with

chirality index (n1, m1) or (n2, m2) at the tight-binding level of theory.

Therefore there are two approaches to open up a bandgap in graphene by applying pe-

riodic defects. The first one is sublattice symmetry breaking, e.g., BN doping, so that the

two diagonal matrix elements in the effective Hamiltonian (Eq. 1) are different and the

degeneracy at the Dirac points is lifted. This has been extensively studied. The second

is the inter-valley scattering between two Dirac points K and K′ induced geometrically

without breaking the sublattice symmetry, which can be realized in GNMs and partially

H-doping. The second mechanism remains under exploration, and previous works28–31 con-

cluded that this mechanism could not open up a bandgap since smooth external potentials

were used to describe periodic defects, which is not true in general. Here we employed the

δ-function potential and derived the analytical relations between the long-range ordering

and the transition between semimetal and semiconductor.

Next we extend our theory for graphene sheets whose defects form non-Bravais lattices,

e.g., a honeycomb structure. There are more than one (M > 1) defects in a supercell, which

are centered at τ 1, τ 2, ..., τM , and it can be shown that

Unon−Brav(k) = S(k)UBrav(k), (7)

where Unon−Brav(k) is the external potential for a non-Bravais lattice, UBrav(k) for the cor-

responding Bravais lattice, and the defect structure factor S(k) =
∑M

j=1 exp(ik · τ j). Thus

even if the lattice vectors of a non-Bravais structure satisfy the bandgap opening condition

(Eq. 6), a zero structure factor at the Dirac point,

0 = S(K) =
M
∑

j=1

exp(iK · τ j), (8)

leads to bandgap closure due to phase cancellation.
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III. AB INITIO SIMULATION RESULTS

We employ first-principles electronic structure calculations based on the density func-

tional theory (DFT) to verify our analytic theory. Although DFT often severely under-

estimate bandgaps, it accurately predicts a zero gap at the Dirac points for graphene

and yields qualitatively correct electronic band structures for graphene33 and graphene

nanoribbons34,35. The spin-polarized calculations within the generalized gradient approximation36

are carried out using the SIESTA code37 based on atomic orbitals. Specifically, we use a

triple-ζ polarized basis set for C and double-ζ polarized basis sets for B, N, and H, whose

accuracy and convergence have been well examined by comparing against calculations using

the planewave VASP code38. All graphene structures in this work are relaxed until all

atomic forces are less than 0.02 eV/Å and the maximum stress is below 0.2 GPa.

A. Defects Forming Bravais Structures

Fig. 1 shows the crystal and electronic band structures for two different supercells with

partial H-passivation, holes (GNMs), and BN doping regions forming Bravais lattices. The

effect of supercell lattice symmetry on electronic properties is compared across the three

rows of panels, while the effect of different types of defects is compared among each column.

The supercells on the left column have (n1, m1, n2, m2) = (6,−6, 4, 4) so that n1 −m1 and

n2 −m2 are both divisible by 3, satisfying the condition of Eq. 6, while the supercells on

the right column have (n1, m1, n2, m2) = (7,−7, 4, 4), therefore n1 −m1 = 14, not divisible

by 3. Our theory predicts that the partially H-passivated graphene and GNM shown in the

left column of Fig. 1 are semiconductors, while those on the right (Figs. 1b and 1d) are

semimetals, consistent with first-principles results. Our theory also indicates that the BN-

doped graphene is always semiconducting, but the the long-range ordering could increase

Eg if the lattice parameters (n1, m1, n2, m2) satisfy Eq. 6, agreeing well with calculated

electronic band structures shown in Figs. 1e and 1f, with Eg = 0.78 and 0.39 eV, respectively.

In addition, as expected, electronic band structures in the left three panels are very

similar, different mainly in values of bandgap, with 0.55, 0.56 and 0.78 eV for the partially-

H passivated graphene, GNM, and BN-doped graphene shown in Figs. 1a, 1c and 1e,

respectively. Electronic band structures across the right column are also very similar, except
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FIG. 1. (color online) Crystal (left) and electronic band (right) structures for (a) H-

passivated graphene, (c) GNM and (e) BN-doped graphene with supercell lattice parameters

(n1,m1, n2,m2) = (6,−6, 4, 4). Panels (b), (d) and (f) show those corresponding structures with

(n1,m1, n2,m2) = (7,−7, 4, 4). Here C, H, B and N atoms are denoted by golden, blue, green

and red spheres, respectively. The black rectangle in each panel indicates the supercell of defected

graphene.

that in Fig. 1f for the BN-doped graphene there is an energy gap at a point between Γ and

M2, at which bandgap closes in Figs. 1b and 1d for H-passivated graphene and GNM.

These three types of defected graphene structures with other shapes of supercells, such as

hexagonal and parallelogram, show the same trends for electronic band structures.

Tables I and II summarize the calculated Eg for H-passivated and BN-doped graphene

sheets with various supercell symmetries, in addition to the rectangular unit cells shown in

Fig. 1. Results for GNM structures (not shown) are very similar to those for H-passivated

graphene, as demonstrated in Figs. 1a–d and in Fig. 2a. Here armchair indicates that both

supercell vectors are along the armchair direction so that (n1, m1, n2, m2) = (2n,−n,m,m)
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TABLE I. Calculated band gaps (Eg in eV) of graphene sheets partially passivated by H. Here Nd

and Ntot are the numbers of defected (passivated by H) and total carbon atoms in one supercell,

respectively.

Cell type n1 m1 n2 m2 Eg Nd Ntot Defect %

Armchair 10 −5 5 5 0.48 12 150 8.0

14 −7 8 8 0.14 6 336 1.8

8 −4 5 5 0.59 12 120 10.0

Zigzag 6 0 0 6 0.71 6 72 8.3

6 0 0 6 1.05 12 72 16.7

6 0 0 7 0.00 12 84 14.3

7 0 0 7 0.00 12 98 12.2

Chiral hexagonal 3 5 8 3 0.00 6 62 9.7

5 4 9 −5 0.00 6 122 4.9

7 1 8 −7 0.49 6 114 5.3

Chiral rectangular 6 2 −7 5 0.00 12 88 13.6

6 3 −4 5 0.63 6 84 7.1

6 4 −7 8 0.00 6 152 3.9

Rectangular 5 −5 5 5 0.00 6 100 6.0

6 −6 4 4 0.55 6 96 6.3

7 −7 4 4 0.00 6 112 5.4

Parallelogram 6 1 −3 9 0.00 6 114 5.3

6 2 −3 9 0.00 6 120 5.0

6 3 −2 7 0.54 6 96 6.3

with n and m two integers, while zigzag indicates that both supercell vectors are along

the zigzag direction so that (n1, m1, n2, m2) = (n, 0, 0, m). Rectangular corresponds to

rectangular supercells with one lattice vector along the zigzag direction while the other

vector is along the armchair direction with (n1, m1, n2, m2) = (n,−n,m,m), while chiral

rectangular and chiral hexagonal correspond to rectangular and hexagonal supercells with

7



TABLE II. Calculated band gaps (Eg in eV) of graphene sheets doped by BN. Here Nd is the

number of defected (replaced by B or N) carbon atoms while Ntot indicates the total number of

atoms (including C, B and N) in one supercell.

Cell type n1 m1 n2 m2 Eg Nd Ntot Defect %

Armchair 10 −5 5 5 0.34 12 150 8.0

14 −7 8 8 0.08 6 336 1.8

8 −4 5 5 0.42 12 120 10.0

Zigzag 6 0 0 6 0.69 12 72 16.7

6 0 0 7 0.41 12 84 14.3

7 0 0 7 0.36 12 98 12.2

Chiral hexagonal 3 5 8 −3 0.16 6 98 6.1

3 5 8 −3 0.48 12 98 12.2

5 4 9 −5 0.13 6 122 4.9

5 4 9 −5 0.38 12 122 9.8

7 1 8 −7 0.25 6 114 5.3

7 1 8 −7 0.68 12 114 10.5

Chiral rectangular 6 2 −7 5 0.42 12 104 11.5

6 3 −4 5 0.33 6 84 7.1

6 4 −7 8 0.31 12 152 7.9

Rectangular 5 −5 5 5 0.53 12 100 12.0

6 −6 4 4 0.78 12 96 12.5

7 −7 4 4 0.39 12 112 10.7

Parallelogram 6 1 −3 9 0.42 12 114 10.5

6 2 −3 9 0.39 12 120 10.0

6 3 −2 7 0.75 12 96 12.5

lattice vectors along arbitrary directions. These numerical results in Tables I and II have

qualitatively verified our analytical modeling on the semimetal-to-semiconductor transition

in periodically defected graphene.
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Quantitatively, Eg in these semiconducting graphene structures are roughly proportional

to the defect percentage (x, when x <∼ 15%): Eg ≈ Cx with C a constant, as demonstrated in

Fig. 2. Here Fig. 2a shows that Eg in a semiconducting GNM is slightly larger than that in

a corresponding H-passivated graphene with the same supercell and defected areas. Fig. 2a

also emphasizes the sensitive dependence of Eg on lattice parameters which can dramatically

switch these defected graphene between semiconductor and semimetal by small changes.

However, Fig. 2b indicates that in a BN-doped graphene, for the same level of doping, Eg is

considerably enhanced if its lattice parameters (n1, m1, n2, m2) satisfy Eq. 6. Linear fitting

to Fig. 2a obtains C = 0.091 eV/% and 0.087 eV/% for GNM and H-passivated graphene,

respectively, and C = 0.057 eV/% (the red line) and 0.036 eV/% (the green line) in Fig. 2b

for BN-doped graphene. These values suggest that in the BN-doped graphene the imbalance

between two sublattices contributes more to Eg than the supercell symmetry does, and the

effect on Eg from the latter is much weaker than that in GNMs or H-passivated graphene,

because apparently removing pz orbitals or passivating pz orbitals of C atoms causes much

more dramatic changes on the graphene lattice than B/N substitution. We note that in

semiconducting GNMs and H-passivated graphene Eg have much better linear relations to

defect percentage than those for BN-doped graphene. This might also due to less severe

perturbation induced by BN-doping than H-passivation or vacancy, complicating Eg as a

function of BN doping percentage.

B. Defects Forming Non-Bravais Structures

Next we consider defects forming non-Bravais structures. As illustrated in Fig. 3, the

H-passivated graphene sheets in the upper two panels share the same chiral hexagonal lattice

with parameters (n1, m1, n2, m2) = (7, 1, 8,−7). Their electronic band structures are similar,

except that Eg for the non-Bravais structure is larger. Since n1 −m1 and n2 −m2 are both

divisible by 3, the Bravais structure (Fig. 3a) is semiconducting with Eg = 0.50 eV, while

the non-Bravais structure (Fig. 3b) with two passivated areas has a larger gap of 0.84 eV.

This is because τ 2 − τ 1 = 2a1 + 2a2, and S(K) = eiK·τ1 [1 + eiK·(τ2−τ 1)] = eiK·τ1(1 + ei4π),

leading to |S(K)| = 2 > 1; consequently, constructive interference enlarges the bandgap.

One cannot create a non-Bravais graphene lattice with two identical defects per unit

cell whose structure factor vanishes at the Dirac point. This is because for an arbitrary
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FIG. 2. (color online) Bandgap (Eg) as a function of defect percentage for (a) partially H-passivated

graphene and GNMs and (b) BN-doped graphene.

relative displacement τ 2 − τ 1 = pa1 + qa2 with p and q two integers, K · (τ 2 − τ 1) =

2qπ+ 4
3
(p− q)π 6= (2n+1)π with n an integer, thus S(K) = 1+ eiK·(τ2−τ1) 6= 0. However, it

is possible when there are more than two identical defects per unit cell, e.g., the triangular

arrangement shown in Fig. 3d. In this H-passivated graphene, defects are displaced along

zigzag directions in a supercell by vectors of τ 2 − τ 1 = 5a1 and τ 3 − τ 1 = 5a2, so that

1 + eiK·(τ2−τ1) + eiK·(τ3−τ1) = 0. Even though the corresponding Bravais structure (not

shown) is semiconducting with Eg = 0.34 eV, this non-Bravais structure is a semimetal. In

contrast, the non-Bravais structure plotted in Fig. 3c, in which three defects in a supercell are

displaced along armchair directions, specifically, τ 2−τ 1 = 2a1+2a2 and τ 3−τ 1 = 2a1−2a2,
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FIG. 3. (color online) Crystal (left) and electronic band (right) structures of defected graphene

sheets, which have (7, 1, 8,−7) supercells in (a) and (b) and (9, 0, 0, 9) supercells in (c–h). Except

for panel (a), defects in these graphene structures form non-Bravais lattices. (a–d) H-passivated

graphene. (e) and (f) GNMs. (g) and (h) BN-doped graphene. Supercells in these graphene

structures are indicated by black rhombuses.

leading to |S(K)| =
√
3 and an enlarged bandgap of 0.83 eV.

Fig. 3e suggests that a constructive interference with |S(K)| =
√
3 in the GNM leads

to an enhanced Eg = 0.91 eV, compared with Eg = 0.36 eV for the corresponding Bravais

GNM, whereas a destructive interference with S(K) = 0 in the non-Bravais GNM plotted

in Fig. 3f leads to a zero gap. Thus our calculations have demonstrated a transition from

semiconductor to semimetal by rearranging the defects in H-passivated graphene and GNMs,

as predicted in Eq. 8.

Finally we discuss non-Bravais lattices with BN-doped areas. Fig. 3g indicates a con-

structive interference with |S(K)| =
√
3 drastically increases bandgap (Eg = 0.48 eV),
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FIG. 4. (color online) Crystal (left) and electronic band (right) structures of BN-doped graphene

with supercell lattice parameters of (6, 1,−3, 9) in (a) and (b) and (6, 3,−2, 7) in (c) and (d). In

the left column [(a) and (c)] four doped areas in a supercell are identical, while in the right column

[(b) and (d)] in a supercell two BN-doped areas are different from the other two so that an overall

balance between A and B-sublattices are reached. In each panel the supercell is indicated by a

black rhomboid.

compared with that of only 0.17 eV in the corresponding Bravais structure. However, a

destructive interference with zero S(K) doesn’t lead to a zero gap at the Γ-point (Fig. 3h),

although its bandgap is reduced to 0.27 eV. This is due to the imbalance between A- and

B-sublattices, so that Eg 6= 0. Compared with the corresponding Bravais structure, the

non-Bravais BN-doped graphene with S(K) = 0 (Fig. 3g) has a larger gap, because of the

increase in imbalance between A- and B-sublattices.

To induce a transition from semiconductor to semimetal for BN-doped graphene, one can

geometrically restore the sublattice balance by switching B and N atoms between doped

regions. Fig. 4b shows a (6, 1,−3, 9) lattice with zero gap, compared with the structure

plotted in Fig. 4a, which has the same (6, 1,−3, 9) lattice but is a semiconductor with

Eg = 0.50 eV. Figs. 4c and 4d show the (6, 3,−2, 7) lattices, which satisfy the gap-opening

rule of Eq.6. In Fig. 4a, S(K) 6= 0, leading to a relatively large bandgap of 0.80 eV, whereas

in Fig. 4d switching B and N atoms between defects to restore A- and B-sublattice balance

significantly reduces Eg to merely 0.12 eV, and further arranging identical doping sites to

ensure S(K) = 0 can eventually induce the semiconductor-to-semimetal transition.
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IV. SUMMARY

In summary, we find that the degeneracy at the Dirac points is lifted and a sizable bandgap

appears when reciprocal lattice vectors of such a defected graphene overlap with Dirac

points of the pristine graphene. Previous works have shown the absence of back scattering

and bandgaps in graphene and metallic carbon nanotubes under external potentials that

vary slowly on the order of the C-C bond length28–30. However, for dopants, adsorbed

atoms and vacancies the corresponding effective potentials vary considerably on this length

scale, leading to the existence of the inter-valley scattering between K′ appears.28–30 The

symmetry breaking between two sublattices is also a contributing factor to bandgap, which

has been studied before. Here our theory includes both sublattices asymmetry and inter-

valley scattering. For multiple defects in a supercell forming the non-Bravais structure, the

magnitude of the structure factor at the Dirac point determines the strength of long-range

ordering induced non-degeneracy at the Dirac point, thus arranging defects positions in non-

Bravais structures could cause a transition from semiconductor to semimetal if a destructive

interference leads to a complete phase cancellation and the sublattice symmetry is kept.

Our ab initio electronic structure calculations on a variety of partially H-passivated

graphene, graphene nanomeshes, and BN-doped graphene demonstrate the validity of our an-

alytic analyses. Specifically, the sublattice symmetry in H-passivated graphene and GNMs

we studied is maintained, therefore the supercell symmetry and the structure factor at

the Dirac point can be controlled geometrically to induce transitions between semimetal

and semiconductor. On the other hand, the balance between two sublattices in BN-doped

graphene sheets must be restored to induce such transitions, in addition to lattice symme-

try considerations. Present modeling not only offers the fundamental understanding of how

the local defects configurations and long-range ordering modify the electronic properties of

complex and realistic graphene structures so that precise tuning for various applications is

possible, but also can be employed to investigate magnetism induced by patterning graphene.
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