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Recent calculations show that the band gaps of the nonisovalent random alloys such as Zn0.5Sn0.5P
are much smaller than those of their ordered phases; that is, the band gap of the random alloy is
not the ensemble averaged value of the ordered structures, in contrast to the trend observed in most
isovalent semiconductor alloys and predicted by the cluster expansion theory. We show that this
abnormal behavior is caused by the strong wavefunction localization of the band-edge states in the
nonisovalent alloys. Moreover, we show that although the disordered phase of the isovalent alloys is
similar to the random phase, for the nonisovalent alloy, the disordered phase deviates significantly
from the random phase and the fully random phase is not achievable under the equilibrium growth
conditions.
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To broaden the range of the material properties for
specific device applications, it is quite common to mix
different elemental or binary semiconductor compounds
to form alloys, because by varying the alloy composi-
tion and/or atomic configuration, the structural, elec-
tronic, transport, and optical properties of the alloys can
be tuned1–6. The AxByC type alloys can be classified
into two categories: isovalent alloys, where A and B have
the same valence state, such as GaxIn1−xP, CdSxTe1−x,
etc., and nonisovalent alloys, where A and B have differ-
ent valence states, such as CuxInySe, Zn0.5Sn0.5P, etc..
For the isovalent alloys, the compositions x and y = 1−x

usually vary smoothly and continuously in a wide range.
However, for the nonisovalent alloys, the compositions
can only exist around some discrete values, to satisfy
the charge neutrality rule. For example, the ZnxSnyP,
which has recently been proposed as a promising candi-
date for solar cells7–9, exists only in a small range around
x = y = 0.5; the CuxInySe, which is widely used for thin-
film solar cells10,11, can also exist at other compositions
besides x = y = 0.5, such as CuIn3Se5. The proper-
ties of the isovalent alloys have been extensively studied.
For example, the band gap of the GaxIn1−xP, which is
an ideal material for the solid-state light-emitting diodes
and high-efficiency multi-junction solar cells12,13, can be
tuned by varying the composition and ordering parame-
ters. However, the properties of the nonisovalent alloys
are poorly understood.

Isovalent and nonisovalent alloys can have some sim-
ilar properties. For example, they all adopt ordered
structures at low temperatures, and experience an order-
disorder transition due to the increased entropy contribu-
tion as the temperature increases. They also have many
different properties, even different chemical trends. For
example, the ground states of free-standing isovalent al-
loys are generally phase separated, due to the positive
mixing enthalpy, but those of the nonisovalent alloys
are the ordered alloy structures satisfying the octahedral
rule14,15. Their electronic structures can also be very

different. For the direct-band-gap isovalent alloys, it was
found Eg(CH) > Eg(CA) > Eg(CP)

16, where CH, CA,
and CP represent the ordered chalcopyrite, CuAu-, and
CuPt-like structures respectively, and the random alloy
has a band gap close to the ensemble averaged value of
these ordered ones. However, for the nonisovalent al-
loys, the band gap of the random structure could be very
small, and even smaller than that of the CP structure9.
Nevertheless, such a small band gap has never been ob-
served experimentally. The reason for this abnormal be-
havior is unclear. Because more and more nonisovalent
alloys are currently considered for the optoelectronic ap-
plications, it is imperative to understand the general dif-
ferences between the isovalent and nonisovalent alloys in
their structural-functional relationships.

FIG. 1. The HSE band-edge energies of (a) the isovalent
Ga0.5In0.5P and (b) the nonisovalent Zn0.5Sn0.5P alloys in
the CH, CA, CP, and random (SQS) structures.
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In this paper, using first-principles calculations, we
compare the structural and electronic properties between
the isovalent Ga0.5In0.5P (for comparison we only con-
sider x = y = 0.5) and the nonisovalent Zn0.5Sn0.5P
alloys. We have calculated the band-edge energies of the
ordered CH, CA, CP, and fully random alloy structures.
We find that for the isovalent alloysEg(CH) > Eg(CA) ∼
Eg(Random) > Eg(CP), but for the nonisovalent alloys
Eg(CH) > Eg(CA) > Eg(CP) > Eg(Random). The ab-
normal trend of the nonisovalent alloys can be explained
by the wavefunction localization of the band-edge states
induced by the local charge transfer. We have also cal-
culated the alloy phase-diagrams, and find that the dis-
ordered phase of the isovalent alloy is close to the ran-
dom structure but a strong short-range ordering exists
in the disordered nonisovalent alloy. The disordered non-
isovalent alloy near the phase transition has been simu-
lated, and the band gap agrees well with the experimental
data. We also point out that for the nonisovalent alloys, a
fully random phase is unachievable under the equilibrium
growth condition.

Our calculations are based on the density functional
theory17,18 as implemented in the VASP code19–21. The
projector augmented wave22 pseudopotentials are em-
ployed, and the wavefunctions are expanded in a plane-
wave basis with an energy cutoff of 400 eV. The random
alloys are mimicked by the special quasirandom struc-
tures (SQS) in a 64-atom cell (32 mixed-atoms)16,23. We
employ a 6 × 6 × 5 k-point mesh for the CH structure,
6 × 6 × 4 for the CA structure, 9 × 9 × 9 for the CP
structure, and 3 × 7 × 2 for the SQS structure, respec-
tively. The k-point meshes are fine enough to guaran-
tee the convergence. For the electronic structure calcu-
lations, we employ the Heyd-Scuseria-Ernzerhof hybrid
functional (HSE)24–26. We have also tested the gener-
alized gradient functional (PBE)27, and the calculated
trends are similar although the band gaps are underesti-
mated.

FIG. 2. The charge densities of the VBM and CBM in the
random (a) Ga0.5In0.5P and (b) Zn0.5Sn0.5P alloys.

We start by comparing the band gaps of the ordered
(CH, CA, and CP) and random (SQS) structures between
the isovalent Ga0.5In0.5P alloy and the non-isovalent
Zn0.5Sn0.5P alloy. The HSE band gaps and the relative
positions of the conduction band minimum (CBM) and
the valence band maximum (VBM) are shown in Fig. 1.
The band edges are aligned using the core level of the
P atoms. For the Ga0.5In0.5P, the CH structure has the
largest band gap of 2.08 eV, the CP structure has the
smallest band gap of 1.57 eV, and the CA structure has
an intermediate band gap of 1.86 eV. The band gap of
the random structure (1.92 eV) is close to the ensemble
averaged value of the ordered structures, as one would
expect. This trend is common in the isovalent alloys and
has been successfully explained by the k-point foldings
and level repulsions16,28. For the Zn0.5Sn0.5P, the band
gaps of the CH, CA, and CP structures are 1.73, 1.38, and
0.50 eV, respectively. The trend of the band gaps of the
ordered structures is similar to that of the Ga0.5In0.5P.
However, surprisingly, the band gap of the random struc-
ture of the Zn0.5Sn0.5P shows an abnormal trend: it is
very small, even smaller than that of the CP structure.

To identify the origin of the different trends, it is help-
ful to compare the VBM and CBM energies of these or-
dered and random structures. As shown in Fig. 1, for
both isovalent Ga0.5In0.5P and nonisovalent Zn0.5Sn0.5P
alloys, from CH, CA, to CP, the VBM energy increases
and the CBM energy decreases, so the band gap de-
creases. The band gap reduction from the CA to CP
structure, however, is much larger for the Zn0.5Sn0.5P.
For the Ga0.5In0.5P, the VBM energy changes less sig-
nificantly than the CBM energy. This is because the
Ga0.5In0.5P is a common-anion alloy; therefore, the
CBM, which is mostly derived from the cation s states,
is more strongly affected by the alloying than the VBM,
which is mostly derived from the anion p states. In the
random structure, both the VBM and CBM energies are
close to the averages of the VBM and CBM energies of
the ordered structures, which confirms that the proper-
ties of the random alloy are the averages of those of the
ordered structures. For the Zn0.5Sn0.5P, the CBM energy
of the random structure, although low, is still close to the
average of the CBM energies of the ordered structures.
However, surprisingly, the VBM energy of the random
structure is the highest among all the calculated struc-
tures, which is unexpected. Therefore, the band gap ab-
normality of the Zn0.5Sn0.5P is mainly due to the unusual
variation of the VBM energies.

The VBM and CBM charge densities of the random
structure for the Ga0.5In0.5P and Zn0.5Sn0.5P are shown
in Fig. 2. For the Ga0.5In0.5P, the VBM and CBM states
are rather delocalized. However, for the Zn0.5Sn0.5P, the
CBM localization is stronger, because the chemical po-
tential difference between Sn and Zn is larger than that
between In and Ga. However, because the CBM is mainly
s state, which is delocalized, the CBM localization is still
not too strong. In contrast, the VBM state of the ran-
dom Zn0.5Sn0.5P is strongly localized on the P atoms
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surrounded by four Zn atoms. This is explained by the
nonisovalent effect. Zn has two valence electrons and Sn
has four. To form bonds, Sn transfers an electron to
Zn, so that Zn is negatively charged and Sn is positively
charged in the Zn0.5Sn0.5P. The strong Coulomb repul-
sion will push up the energies of the P p levels when the
P atoms are surrounded by the negatively charged Zn
atoms, and pull down the energies of the P p levels when
the P atoms are surrounded by the positively charged
Sn atoms. Furthermore, Zn has higher d orbitals than
Sn, so the stronger p − d coupling will also make the p

level higher in energy when the P is surrounded by more
Zn atoms. Therefore, the P atoms surrounded by four
Zn atoms has the highest p level, and the VBM state is
strongly localized on those sites.
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FIG. 3. The total energies per cation site of the ordered and
random Ga0.5In0.5P and Zn0.5Sn0.5P alloys. The energies of
the CH structure are set to zero.

For the Zn0.5Sn0.5P in the CA and CH structures, all
the P atoms are surrounded by two Zn and two Sn atoms,
so the VBM energies of these two structures are similar.
In the CP structure, half of the P atoms are surrounded
by one Zn and three Sn atoms, and the other half are
surrounded by one Sn and three Zn atoms. The VBM
energy is mostly determined by the P atoms surrounded
by three Zn atoms due to the Coulomb repulsion, so it is
∼ 0.4 eV higher than those of the CA and CH structures,
which explains the large band gap reduction from the
CA to CP structure. In the random structure, the VBM
energy is mostly determined by the P atoms surrounded
by four Zn atoms due to the strongest Coulomb repulsion,
so it is the highest among all the calculated structures,
which explains the abnormal trend of the band gap.

Our analysis above clearly shows that for the isovalent
Ga0.5In0.5P, the wavefunctions of the band-edge states
are delocalized; therefore, their energies follow the ensem-
ble averages of the ordered structures, as the cluster ex-
pansion theory predicts.16 However, for the nonisovalent
Zn0.5Sn0.5P, the wavefunctions of the band-edge states
are localized, so their energies are determined by the lo-
cal atomic configurations, not by the ensemble average of
the lattice. This explains why the ensemble average rule
fails for the nonisovalent alloys.

Not only the band gap but also the total energies of
the nonisovalent alloys deviate from the ensemble average

rule. Figure 3 shows the calculated total energies of the
ordered and random structures for the Ga0.5In0.5P and
Zn0.5Sn0.5P alloys. For the Ga0.5In0.5P, the CH structure
has the lowest total energy, the CP structure has the
highest total energy, and the total energy of the CA is
in between. The total energy of the random structure is
again close to the ensemble averaged value of the ordered
structures. This is the typical trend of the total energies
for the isovalent alloys. However, for the Zn0.5Sn0.5P,
the CH and CA structures have similar total energies,
the energy of the CP structure is ∼0.1 eV per cation
site higher, and the random structure has the highest
energy (∼ 0.14 eV per cation site higher than that of the
CH structure). This abnormal trend is again due to the
nonisovalent effect. In the nonisovalent alloys, to fulfill
the octet rule, the local environment around a common
anion atom should be charge neutral. For the CH and
CA structures, because all the P atoms are surrounded by
two Zn and two Sn atoms, the octet rule is satisfied and
thus the total energies are similar and low. For the CP
structure, because all the P atoms are either surrounded
by one Zn and three Sn atoms or by one Sn and three
Zn atoms, the octet rule is not satisfied, which raises the
total energy. For the random structure, all types of the
first-neighbor motifs exist. For the P atoms surrounded
by Sn4, Sn3Zn, SnZn3, and Zn4, the octet rule is not
satisfied, and thus the energy of the random structure is
very high.

Now, we turn to the discussion of the thermodynamic
properties of these two alloys. The alloy phase-diagrams
are calculated using the cluster expansion approach as
implemented in the ATAT code29. The cluster expansion
coefficients are fitted to the energy calculated by the PBE
functional. The equilibrium structures of the alloys at
various temperatures are calculated by the Monte Carlo
simulations in a 128000-atom cell.

We have calculated the phase diagrams for the co-
herently strained Ga0.5In0.5P and Zn0.5Sn0.5P. The to-
tal energies per cation site of the equilibrium structures
and the probabilities of the first-neighbor motifs of the
P atoms: A4, A3B, A2B2, AB3, and B4, as a func-
tion of the temperature, are displayed in Fig. 4. In a
fully random alloy, these probabilities are 0.0625, 0.25,
0.375, 0.25, and 0.0625, respectively, which are shown
as the dashed lines in the figure. For the free-standing
GaxIn1−xP, the most stable phase at zero temperature
is the phase-separated state: i.e., the alloy separates into
GaP and InP. However, for the coherently (no broken
bonds) strained Ga0.5In0.5P

30, where the lattice constant
is fixed at the averaged value of GaP and InP, the CH
structure is the most stable. At high temperatures, the
entropy term plays a more important role and the disor-
dered structures become more stable. An order-disorder
phase transition occurs around T = 350 K for the co-
herently constrained Ga0.5In0.5P

31, where the total en-
ergies and the probabilities of the first-neighbor motifs
of the P atoms change dramatically. After the phase
transition, the total energies and the probabilities of the
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FIG. 4. The total energies per cation site and the probabilities
of the first-neighbor motifs of the P atoms in the equilibrium
structures as a function of the temperature for (a) the co-
herently strained Ga0.5In0.5P on a lattice matched substrate,
and (b) the Zn0.5Sn0.5P alloys. The dashed lines indicate the
corresponding total energies and probabilities in the random
structure.

first-neighbor motifs of the P atoms are close to those of
the random alloy, which indicates the disordered alloy is
close to random. For the Zn0.5Sn0.5P, as the temperature
increases, a phase transition occurs around T = 1100 K.
However, different from the isovalent alloy case, the to-
tal energies are still ∼0.1 eV per cation site lower than
that of the random alloy after the phase transition. Sim-
ilarly, the probabilities of the first-neighbor motifs of the
P atoms are also quite different from those in the ran-
dom alloy. Specifically, the probability of the P atoms
surrounded by two Zn atoms and two Sn atoms is much
higher, and the probabilities of the other four types are
much lower, indicating that even after the phase tran-

sition, a strong short-range ordering still exists in the
Zn0.5Sn0.5P alloy. This is because for the nonisovalent
alloys, the local motifs A4, B4, A3B, and AB3 have much
higher energies, as discussed before, so the alloy tends to
suppress the existence of those motifs even at the disor-
dered phase. To study the disordered Zn0.5Sn0.5P alloy,
we have built a SQS that has the same correlation func-
tions as the calculated disordered alloy at 1200 K. In
this case, we find that the calculated probabilities of the
first-neighbor motifs Zn4, Zn3Sn, Zn2Sn2, ZnSn3, and
Sn4 are 0, 0.1875, 0.625, 0.1875, and 0, respectively, sig-
nificantly different from the values in the random alloy.
The calculated band gap of this disordered alloy is ∼1.2
eV, which is in good agreement with the experiment32.
As the temperature increases further, the total energies
and the probabilities of the motifs change only slowly
towards the values in the random alloy. We find that
even at an unrealistic high temperature (T = 20000 K),
the calculated total energy of the disordered alloy is still
more than 20 meV per cation site lower than that of the
random alloy, and the probabilities of the first-neighbor
motifs of the P atoms have not achieved the values in the
random alloy. These results suggest that for the noniso-
valent alloys, the random alloy is not achievable under
the equilibrium growth conditions in the experiments.
In summary, we show that the wavefunctions of the

VBM and CBM states of the nonisovalent alloys are
highly localized. This strong localization causes these
states sample only a particular region in the lattice, not
the whole lattice, which explains the failure of the ensem-
ble average rule that is observed in the isovalent alloys.
We find that for the isovalent alloysEg(CH) > Eg(CA) ∼
Eg(Random) > Eg(CP), but for the nonisovalent alloys
Eg(CH) > Eg(CA) > Eg(CP) > Eg(Random). More-
over, we show that the disordered structures of the iso-
valent alloys are close to random, but for the nonisova-
lent alloys the random phase is not achievable under the
equilibrium growth conditions. These findings are im-
portant in designing new optoelectronic devices based on
the nonisovalent alloys.
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