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We study the behavior of the recently proposed “strange correlator” [Phys. Rev. Lett. 112,
247202 (2014)] in spin-1 Heisenberg antiferromagnetic chains with uniaxial single-ion anisotropy.
Using projective quantum Monte Carlo, we are able to directly access the strange correlator in
a variety of phases, as well as to examine its critical behavior at the quantum phase transition
between trivial and non-trivial symmetry protected topological phases. After finding the expected
long-range behavior in these two symmetry conserving phases, we go on to verify the topological
nature of two-leg and three-leg spin-1 Heisenberg antiferromagnetic ladders. This demonstrates the
power of the strange correlator in distinguishing between trivial and non-trivial symmetry protected
topological phases.

I. INTRODUCTION

The study of many body effects like the Haldane phase
and the fractional quantum Hall effect led to the dis-
covery of an entire class of quantum mechanical ground
states – topologically ordered phases – that fall out-
side the standard Landau framework. Unlike conven-
tional states of matter, topological phases are not broken-
symmetry ground states characterizable by a local order
parameter. Instead, they have an underlying topological
structure that distinguishes them from disordered (topo-
logically trivial) phases. A finite gap separates the lowest
excitations from the ground state in the bulk, but there
exist one or more gapless edge states, which is the defin-
ing characteristic of this class of phases. The theoreti-
cal prediction and subsequent experimental discovery of
topological (band) insulators have ushered in a period of
heightened interest in topological phases.

While many experimentally realized topological
phases, such as fractional quantum Hall states and topo-
logical insulators, can be described within the frame-
work of non-interacting electrons, a natural question that
arises in the study of these phases is the role of interac-
tions. To address this, a minimal generalization of the
free fermion topological phase, known as the symmetry
protected topological (SPT) phase, was proposed. An
SPT state is defined as the ground state of an interact-
ing many body system that is comprised of a gapped
bulk state that preserves all the symmetries of the sys-
tem and a gapless non-trivial edge state that is protected
by one or more symmetries. In keeping with its minimal
character, phases with long-range topological order (de-
fined by long-range entanglement) are excluded from the
SPT classification. Instead, SPT states are character-
ized by short-range entanglement. Significant progress
has been made over the past few years in the understand-
ing of SPT states. This includes a formal mathematical
classification of these states,1,2 as well as detailed inves-
tigations of proposed SPT phases (for both interacting
fermions and bosons). The relative simplicity allows us
to understand the emergence of topological phases from
the interplay of strong correlations, symmetry and topol-
ogy in these systems and, in turn, provides deeper insight

into more complex topological states such as spin liquids
and non-Fermi liquid metals.

While several SPT states have been discovered and
studied in detail, only a handful of microscopic Hamilto-
nians with SPT ground states are known to date. Even
more worryingly, given a Hamiltonian, there exists no
well-established probe to determine if the ground state
has SPT character. Although a degenerate entanglement
spectrum is often used as an indicator of SPT order,3 this
method may fail to correctly identify SPT phases pro-
tected by an off-lattice symmetry. Additionally, the re-
lation between the low-lying entanglement spectrum and
the ground state wave function has been called into ques-
tion.4 Recently, a strange correlator has been proposed
as a direct probe of the SPT character of a wave func-
tion and has been demonstrated to identify some well
known SPT phases successfully.5 In this work, we shall
present details on how to evaluate the strange correlator
in quantum Monte Carlo (QMC) simulations and use it
to probe the topological nature of the ground state of
spin-1 Heisenberg chains and ladders.

II. MODEL

The Haldane phase of the spin-1 Heisenberg antifer-
romagnetic chain remains the earliest and most well-
understood of all interacting SPT phases. This simple
model has a surprisingly rich ground state phase dia-
gram. In addition to the Haldane phase, a topologically
trivial quantum paramagnetic phase (the so-called large-
D phase) appears when strong uniaxial easy-plane single-
ion anisotropy is introduced. For spin-1 Heisenberg an-
tiferromagnetic chains coupled into a ladder geometry,
the topological nature of the ground state exhibits an
even/odd effect: trivial SPT character for even-leg lad-
ders and non-trivial SPT character for odd-leg ladders.
Our goal is to demonstrate that the strange correlator
correctly identifies the varying SPT character of these re-
spective ground states, as well as to examine the critical
behavior of the strange correlator at the quantum phase
transition between the Haldane and large-D phases.

To this end, we study spin-1 Heisenberg antiferro-
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FIG. 1: (Color online) Illustration of the three lattice geome-
tries considered in this work: (a) chain, (b) two-leg ladder,
and (c) three-leg ladder. The spin exchange couplings J and
K are shown as red and black lines, respectively. Empty black
circles represent lattice sites.

magnetic chains and ladders with uniaxial single-ion
anisotropy, described by the Hamiltonian

H = J
∑
〈ij〉

~Si · ~Sj +K
∑
[ij]

~Si · ~Sj +D
∑
i

(Szi )
2
. (1)

Here, 〈ij〉 refers to neighbors along a chain, while [ij]
refers to neighbors between adjacent chains (see Fig. 1).
In the following, we set the spin exchange coupling J
to unity, thereby defining the energy scale of our sys-
tem. This leaves the interchain coupling K and single-ion
anisotropy D as our only Hamiltonian parameters. For
the ladder geometries, we further set D = 0, while for the
chain geometry the parameter K becomes meaningless.
We use QMC methods to study finite-size systems of size
N and length L, where N = L, 2L and 3L for chain,
two-leg ladder and three-leg ladder geometries, respec-
tively. Periodic boundary conditions are employed along
the length of the system.

III. METHODS

To investigate the above model in the ground state
limit, we use a projective variant of the stochastic se-
ries expansion QMC method.6,7 The main idea is as fol-
lows: instead of expanding the density matrix as a Tay-
lor series of Hamiltonian operations, we project out the
ground state by repeated Hamiltonian operation on a
trial wave function. While the presence of a trial wave
function explicitly removes the usual periodicity in the
imaginary-timelike dimension of the operator string, it
can be thought of as a set of vertices of infinite weight.
Thus, we can still utilize the directed loop equations of

Syljůasen and Sandvik,8 minimize bounce probabilities in
the loop algorithm, and obtain efficient global updates.

Now we describe our projective QMC scheme in detail.
First, let us examine the effect ofm repeated Hamiltonian
operations on a trial wave function,

(H− C)m |ψ〉 = (H− C)m
∑
α

cα|α〉. (2)

Here, we have expanded |ψ〉 in the basis of energy eigen-
states |α〉 with coefficients given by cα = 〈α|ψ〉. The
constant C is chosen to make (H− C) negative definite.
Thus, as long as c0 6= 0, the projection of |ψ〉 will be
dominated by the ground state terms,

(H− C)m |ψ〉 =
∑
α

cα (Eα − C)m |α〉. (3)

This can be made explicit by rewriting the expression as(
H− C
E0 − C

)m
|ψ〉 =

∑
α

cα

(
Eα − C
E0 − C

)m
|α〉. (4)

The ground state is approached as m→∞. In addition
to the power-based projector (H− C)m, it is also possible
to use an exponential projector exp [−β (H− C)]. A de-
tailed description of the exponential projector has been
given by Farhi et al.9

Having a valid ground state projector, we can evaluate
ground state observables as

〈O〉 =
〈ψ| (H− C)mO (H− C)m |ψ〉

〈ψ| (H− C)2m |ψ〉
. (5)

These observables are calculated at the “middle” of the
(open) operator string. Appropriate sampling weights
can be derived by expanding the projector (H− C)m as
a summation over all possible operator strings. Each op-
erator string consists of a product of 2m bond operators.
This is completely analogous to the corresponding expan-
sion of the density matrix into a summation over operator
strings in the standard stochastic series expansion QMC
technique,6,7 with the added simplicity that the length
of our operator string remains fixed due to our choice of
a power-based projector.

Within the same formulation, we can also easily com-
pute the overlap of the ground state wave function with
an arbitrary wave function |Ω〉, as required for calculat-
ing the so-called strange correlator5 – defined in our case
as

C(r − r′) =
〈Ω|
(
S+
r S
−
r′ + S−r S

+
r′

)
(H− C)2m |ψ〉

〈Ω| (H− C)2m |ψ〉
. (6)

Here, |Ω〉 is a trivial symmetric product state,

(H− C)2m |ψ〉 projects out the ground state |Ψ〉, and
S+
r S
−
r′ + S−r S

+
r′ are standard off-diagonal spin correla-

tions. Thus, Eq. 6 describes a correlation function at
the imaginary time boundary between the states |Ω〉 and
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|Ψ〉. This imaginary time boundary maps onto a spa-
tial interface between the two states via a Lorentz trans-
formation. Now, it has been demonstrated that certain
space-time correlation functions (defined in terms of lo-
cal operators) should possess either long range order or
algebraic decay at the interface between trivial and non-
trivial SPT states in one and two dimensions.5 The same
Lorentz transformation maps the space-time correlation
at the spatial interface to the strange correlator at the
imaginary time interface. Thus, the nature of the strange
correlator provides a direct and reliable probe for the
SPT nature of the ground state of the Hamiltonian, H.

Interestingly, within our projective QMC formulation,
the strange correlator is simply a correlation function
measured at the “ends” of the operator string. This can
perhaps most easily be seen by comparing Eq. 6 with an
equal-time correlation function

Γ(r−r′) =
〈ψ| (H− C)m

(
S+
r S
−
r′ + S−r S

+
r′

)
(H− C)m |ψ〉

〈ψ| (H− C)2m |ψ〉
.

(7)
This correspondence highlights the physical interpreta-
tion of the strange correlator as a correlation function at
the temporal boundary of the time-evolved ground states
|Ψ〉 and |Ω〉.

In the current work, we choose both the trivial product
state and the trial wave function to be the product state
of zero spin projection along the z-axis,

|ψ〉 = |Ω〉 =
∏
i

|0〉i. (8)

This choice conserves the on-site symmetry of the Hamil-
tonian in Eq. 1. Also, note that in combination with
the choice of the local operator φ(r), this definition has
the convenient feature that C(0) = 2. Another conve-
nience arises when taking into account the usual sublat-
tice rotation of π along the z-axis of the spin space that
is needed to ensure negative-definite off-diagonal vertex
weights in the bond expansion of the Hamiltonian. For a
projective QMC implementation, this sublattice rotation
should also be applied to the trial wave function. Here
we note that the current choice of |ψ〉 is invariant under
such a transformation. This transformation introduces a
shift of π in the momentum of spin excitations. Hence-
forth, we assume that the momentum vector is measured
from the shifted point, i.e. k → k + π.

In order to improve the statistical sampling of the
strange correlator at the ends of the operator string, as
well as normal observables at the middle level of the op-
erator string, we introduce a bias in our loop updates to
preferentially start the loop at these levels of the opera-
tor string. Satisfaction of detailed balance is contingent
upon equal probabilities of starting forward and reverse
loops, which is not affected by our added bias. This is
because loops starting at different levels of the operator
string are not connected to each other.8

In the next section, we proceed to analyze the strange
correlator in the ground state thermodynamic limit. Us-

ing system sizes of length 16 ≤ L ≤ 96, we are able
to accurately determine the proper scaling limits of the
strange correlator in several symmetric phases. Analo-
gous to the ground state scaling of the operator string
length in finite-temperature stochastic series expansion
QMC, we choose m ∝ L2 to converge to the ground state.

IV. RESULTS

This section is organized as follows. First, we con-
sider the behavior of the strange correlator in the spin-1
Heisenberg antiferromagnetic chain with uniaxial single-
ion anisotropy. This system has both trivial and non-
trivial SPT states – the large-D and Haldane phases, re-
spectively. These two phases are separated by a continu-
ous phase transition, which allows for the investigation of
critical behavior of the strange correlator. Subsequently,
we examine the behavior of the strange correlator in the
spin-1 Heisenberg antiferromagnetic two-leg and three-
leg ladders. The ground states of spin-1 ladders are ex-
pected to exhibit the following even-odd effect: an even
(odd) number of legs leads to a trivial (non-trivial) SPT
ground state. Hence, this is a good place to test the
power of the strange correlator to distinguish trivial and
non-trivial SPT states. Finally, we look at the finite-size
scaling behavior of an order parameter associated with
the strange correlator.

A. Chain

Following Haldane’s seminal conjecture that the
ground state of integer spin Heisenberg antiferromagnets
in one dimension should be gapped,10,11 it was quickly
realized that the ground state of the spin-1 Heisenberg
antiferromagnetic chain is closely related to the exact
ground state (the so-called AKLT state) of a Hamilto-
nian constructed by a sum of spin-2 projectors on each
bond (the AKLT model).12 The AKLT state is comprised
of S = 1/2 singlets on each bond. For periodic boundary
conditions, the ground state is a gapped, valence bond
solid, but for open boundary conditions, the chain has
two unpaired S = 1/2 moments at each end resulting
in a fourfold degenerate ground state. In the language
of SPT’s, the unpaired spins at the end form the edge
states whereas the singlets on the bonds constitute the
(gapped) bulk. This topological character can be cap-
tured explicitly by the string order parameter,13 which
is also finite in the Haldane phase of the spin-1 Heisen-
berg antiferromagnetic chain. In other words, the Hal-
dane phase is adiabatically connected to the AKLT state.
In the presence of uniaxial single-ion anisotropy, there
is a distinct topologically trivial quantum paramagnetic
phase for strong easy-plane values of the anisotropy –
the so-called large-D phase. The Haldane and large-D
phases are separated by a Gaussian phase transition at
the critical value Dc ≈ 0.97.
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In Fig. 2, we plot the strange correlator as a function
of distance for a 64-site chain. Results are shown for
values of the single-ion anisotropy in the Haldane and
large-D phases, as well as in the vicinity of the critical
point separating these two phases. By fitting the strange
correlator to the appropriate asymptotic scaling forms in
the region L < 4r < 3L, we confirm the expected be-
havior for trivial and non-trivial SPT phases. In the
non-trivial Haldane phase (D = 0) the strange correlator
approaches a constant value, C(r) ∼ C(∞) = 0.64 over
the fitting range indicated, in accordance with its non-
trivial SPT character. On the other hand, in the trivial
large-D phase (D = 2) the strange correlator should in-
stead decay exponentially to zero, C(r) ∼ e−r/ξ, with a
correlation length ξ = 3.76. This exponential decay is
most clearly seen as a linear regime on the log-normal
plot in Fig. 2(a). Near the critical point (D = 1), the
strange correlator decays algebraically as C(r) ∼ r−η

with an exponent η = 1.00 just like a traditional correla-
tion function does at the boundary of a continuous phase
transition as a result of the diverging correlation length.
Here, this algebraic decay shows up as a linear regime in
the log-log plot of Fig. 2(b).

B. Two-leg ladder

The two-leg spin-1 Heisenberg ladder (with D = 0) has
been shown to have a topologically trivial SPT ground
state.14 This can be understood by considering the lim-
iting case of strong rung interactions, J � K. In this
limit, the ground state is well approximated as a product
of rung singlets. By definition, such a state is topolog-
ically trivial. When coupled with results from a previ-
ous QMC study that demonstrated a lack of any phase
transition,15 this leads to the conclusion that the ground
state of the isotropic two-leg spin-1 Heisenberg ladder is
always topologically trivial.

Here, we calculate the strange correlator for antiferro-
magnet rung interactions with J = K = 1. As seen in
Fig. 3, the strange correlator at long distances quickly
decays to zero as our system size approaches the thermo-
dynamic limit. This is true both for correlations within
a single leg of the ladder (∆x = 0) as well as for correla-
tions between opposite legs of the ladder (∆x = 1). Thus,
we see that the strange correlator correctly identifies the
ground state of the spin-1 Heisenberg antiferromagnetic
two-leg ladder as a topologically trivial state.

C. Three-leg ladder

In contrast to the two-leg spin-1 ladder, the ground
state of the three-leg spin-1 ladder is a topologically non-
trivial SPT state.16 This can be seen in Fig. 4, where the
strange correlator converges to a non-zero value as our
system size approaches the thermodynamic limit. As be-
fore, the long distance behavior is the same for correla-
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FIG. 2: (Color online) Strange correlator in the Haldane (D =
0) and large-D (D = 2) phases, as well as in the vicinity of the
critical point (D = 1). The long-range order and exponential
decay in the Haldane and large-D phases, respectively, are
readily apparent in the log-normal plot of the upper panel,
while the lower panel illustrates algebraic decay near Dc using
a log-log plot. Solid lines are fits to C(r) = C(∞), C(r) ∼
r−η + (L− r)−η, and C(r) ∼ e−r/ξ + e−(L−r)/ξ in the region
L < 4r < 3L (black, red and blue lines, respectively). Taking
J = 1, we find 2m = L2 is sufficient to converge to the ground
state limit.

tions within a single leg of the ladder (∆x = 0, inner
or outer legs) as well as for correlations between dif-
ferent legs of the ladder (∆x = 1 or ∆x = 2). Once
again, we see that the strange correlator correctly iden-
tifies the ground state SPT character, this time finding
a non-trivial SPT ground state for the spin-1 Heisenberg
antiferromagnetic three-leg ladder.

D. Finite-size scaling

In order to make a more quantitative statement on the
scaling properties of the strange correlator in the ther-
modynamic limit, we define a finite-size order parame-
ter ΨL = 1

N

∑
~r C(~r) based on the corresponding static

structure factor (see Eq. A.1 in the appendix). In Fig. 5,
we show the system size dependence of ΨL for various
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FIG. 3: (Color online) Strange correlator in the two-leg spin-
1 ladder with D = 0 and J = K = 1. We find 2m = L2 is
sufficient to converge to the ground state limit.
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FIG. 4: (Color online) Strange correlator in the three-leg spin-
1 ladder with D = 0 and J = K = 1. Correlations involving
the middle leg of the ladder are shown in the left panels,
while those involving only the outer legs are shown in the
right panels. We find 2m = 3L2 is sufficient to converge to
the ground state limit.

SPT phases. As expected, within the non-trivial SPT
phases (chain and three-leg ladder with D = 0), we find
ΨL approaches a constant value exponentially with sys-
tem size as ΨL = Ψ∞ +

(
a− be−L/ξ

)
/L (Eq. A.6 in

the appendix). From the fit we extract Ψ∞ = 0.64 and
ξ = 9.58 for the Haldane phase of the spin-1 chain, in
agreement with our previous fit of C(r) for a single sys-
tem size. For the three-leg ladder, the corresponding
estimates are Ψ∞ = 0.29 and ξ = 29.3. The finite value
of the order parameter in the thermodynamic limit con-
firms the non-trivial SPT character of the ground state.
For the trivial SPT phases (chain with D = 2, two-leg
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FIG. 5: (Color online) Finite-size scaling of the order pa-
rameter for the strange correlator in chain (left panel) and
ladder (right panel) geometries. Lines are obtained as fits
to the data using the finite-size scaling forms derived in the
appendix. Parameters are the same as in earlier figures.

ladder with D = 0), ΨL instead scales exponentially to
zero with system size. Fitting the simulation data to the
same form of the finite-size order parameter, Eq. A.6,
we obtain with Ψ∞ = 0, and ξ = 4.15 for the chain
and Ψ∞ = 0 and ξ = 13.1 for the two-leg ladder. The
correlation length of the chain is reasonably close to the
value obtained from a direct fit to C(r). In the last sce-
nario, we probe the behavior of ΨL near the critical point
(chain with D = 1) and find that it follows a scaling
form ΨL = a/L+ b/Lη (Eq. A.11 in the appendix). The
exponent η = 0.84 extracted is substantially less than
the value estimated directly from C(r), but this is not a
surprise considering the quasi-long-range nature of cor-
relation functions at the critical point. The behavior of
the finite size order parameter in the different parame-
ter regimes confirms that the strange correlator follows
the usual critical behavior across the phase boundary be-
tween trivial and non-trivial SPT phases.

The critical behavior at the quantum phase transition
between the Haldane and large-D phases is captured by
a conformal field theory that maps onto a free Gaussian
model.17 The critical exponents for this Gaussian transi-
tion can be expressed in terms of a single parameter K
(the Luttinger parameter). For the equal-time Green’s
function G(r) = 〈Sx0Sxr + Sy0S

y
r 〉 the anomalous dimen-

sionality should be given by ηG = 1/2K (we introduce
a subscript to distinguish the critical exponents of the
Green’s function and the strange correlator), while the
critical exponent governing the correlation length is ex-
pected to be ν = 1/(2 − K). Similar relations can be
derived through the well-known bosonization technique.

The Gaussian transition has been well-studied,17–21

with recent results from the density matrix renormal-
ization group obtaining Dc = 0.96845(8) and K =
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FIG. 6: (Color online) Finite-size scaling of the order param-
eter across the Gaussian critical point of the Heisenberg AFM
chain with single-ion anisotropy for the normal Green’s func-
tion (top panels) and the strange correlator (bottom panels).
Lines are shown as guides to the eye. We find 2m = 4L2 is
sufficient to converge to the ground state limit.

1.321(1).21 To test our method, in the top panels of Fig. 6
we plot the equal-time Green’s function at half the sys-
tem size, G(L/2), multiplied by LηG to obtain a dimen-
sionless parameter. As can be seen in the left panel, this
dimensionless parameter is independent of the system
size at the critical point Dc, while the right panel demon-
strates finite-size data collapse. Interestingly, when we
plot the strange correlator using an exponent ηS = 2ηG,
we see a similar curve crossing and finite-size collapse
(lower panels, Fig. 6). This gives a value ηS = 0.757 that
is lower than our estimate from fitting ΨL in Fig. 5, yet
reasonably close considering the distance of D = 1 from
Dc. It remains to be seen why this relation works so
well here, and whether or not it applies generally at the
boundary between two distinct SPT phases.

V. DISCUSSION

In one dimension, a non-local order parameter can
be defined to distinguish between trivial and non-trivial
SPT phases.22 For the Haldane phase of the spin-1
Heisenberg antiferromagnetic chain, this is non other
than the original string order parameter.13 Similar non-
local order parameters can also be defined on two-leg15

and three-leg16 ladders. However, note that such non-
local order parameters can either measure hidden symme-
try conservation or hidden symmetry breaking, depend-
ing upon their construction.22 Thus, the four-body string
order parameter of Todo et al.15 is in fact evidence for a
trivial SPT state in the two-leg ladder.

While carefully constructed string order parameters
may allow for the characterization of SPT phases in one

dimension, they are only valid in the presence of dihedral
symmetry (D2 or Z2 × Z2).22 Additionally, they do not
extrapolate easily to higher dimensions. The strange cor-
relator is thus a powerful tool for the generic investigation
of SPT properties regardless of on-site symmetry, and
extends easily to higher dimensions. As demonstrated
by You et al.,5 the strange correlator can easily distin-
guish trivial and non-trivial SPT states in one and two
dimensions. In three dimensions, a long-range or quasi-
long-range strange correlator still implies non-trivial SPT
order; however, due to the possibility of topologically or-
dered edge states, it becomes possible for a non-trivial
SPT state to have a short-range strange correlator.5

Further insight into the strange correlator may be ob-
tained by taking into consideration the edge modes in
non-trivial SPT states. Taking the Haldane ground state
as a concrete example, and recalling its relation to the
AKLT state, we can see that there should be free spin-
1/2 degrees of freedom at the spatial boundary between
the Haldane phase and the trivial large-D phase. These
free states will evolve in time as steady-states, mean-
ing they possess long-range correlations in time. Af-
ter a Lorentz transformation, temporal correlations at
the spatial boundary between the Haldane and large-
D phases transform into real-space correlations at the
temporal boundary between these non-trivial and trivial
SPT states. Thus, a long-range strange correlator can be
viewed as evidence for free edge modes in one dimension.

Edge states can also explain the even/odd effect in
spin-1 ladders with time-reversal symmetry. For even-
legged ladders, the spin-1/2 edge states along each chain
become coupled into an overall integer spin state, and it
is possible to form a singlet, thereby removing the edge
degrees of freedom. However, for odd-leg ladders the to-
tal edge spin will be half an odd integer, and by Kramer’s
theorem must be at least doubly degenerate. In this case
the edge state can only be removed by breaking the sym-
metry or undergoing a bulk phase transition.

VI. CONCLUSION

In conclusion, we have implemented a projective QMC
method that is able to calculate the strange correlator
in a wide variety of phases. Using this method to study
the spin-1 Heisenberg antiferromagnetic chain, we have
verified the topological nature of this prototypical SPT
system. Adding a uniaxial single-ion anisotropy, we find
evidence of critical behavior in the strange correlator
at the quantum phase transition between the Haldane
and large-D phases. Thus, the strange correlator can
be used as an order parameter for phase transitions be-
tween trivial and non-trivial SPT states. We have also
calculated the strange correlations in two-leg and three-
leg ladders to verify their relative trivial and non-trivial
SPT phases. Although the topological characterization
of these phases was known from past work, the QMC
methods implemented here are easily extended to higher
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dimensions. Further, the strange correlator should con-
tinue to maintain at least quasi-long-range behavior in
two dimensions.5 This paves the way for applications to
systems in two dimensions, where string order becomes
ill defined.23
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Appendix: Finite-Size Scaling Forms

Here we derive finite-size scaling forms for the order
parameter, which can be defined as the structure factor
per site

ΨL =
S(0)

N
=

1

N

∑
~r

C(~r). (A.1)

This expression can be converted into an integral in the
continuum limit that is obtained as L→∞:

S(0) =

∫ L

0

C(r)dr. (A.2)

Assuming that the correlation function approaches the
asymptotic form C(r) ∼ e−r/ξ for r > R, we replace the
integral from 0 to R by a “core charge” C0. This yields
a simple expression for the structure factor,

S(0) = C0 +A

∫ L−R

R

[
e−r/ξ + e−(L−r)/ξ

]
dr, (A.3)

where we take into account the periodicity of C(r) for
finite simulation cells with periodic boundary conditions.
This gives

S(0) = C0 + 2Aξ
[
e−R/ξ − e−(L−R)/ξ

]
, (A.4)

which ultimately is the same as

S(0) = a− be−L/ξ, (A.5)

i.e. we cannot uniquely determine C0 and R. This leads
to finite-size scaling form

ΨL = Ψ∞ +
(
a− be−L/ξ

)
/L, (A.6)

where Ψ∞ 6= 0 allows for an exponential decay to a non-
zero value, as is the case for ordered phases.

At a critical point, the expected asymptotic scaling
form becomes C(r) ∼ r−η, so instead we find

S(0) = C0 +A

∫ L−R

R

[
r−η + (L− r)−η

]
dr, (A.7)

which after integration becomes

S(0) = C0 +
2A

1− η

[
(L−R)

1−η −R1−η
]
. (A.8)

Again, we cannot uniquely determine C0 and R, which
leaves the general scaling form

S(0) = a+ b (L−R)
1−η

. (A.9)

For small R/L this can be replaced by the simpler form

S(0) = a+ bL1−η. (A.10)

Thus, we have used the following finite size scaling form
for the order parameter near the critical point:

ΨL = a/L+ b/Lη. (A.11)

The above finite-size scaling forms can also be de-
rived for higher dimensions d > 1 by using the relation
ΨL = S(0)L−d. In this case, the correlation function at
a critical point is defined as C(r) ∼ r2−(d+z+η), where z
is the dynamic critical exponent for ground state phase
transitions. For the Gaussian phase transition separating
the Haldane and large-D phases, we expect z = 1.20
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