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Abstract

The GW approximation to the electron self energy has become a standard method for ab initio

calculation of excited-state properties of condensed-matter systems. In many calculations, the GW

self energy operator, Σ, is taken to be diagonal in the density functional theory (DFT) Kohn-

Sham basis within the G0W0 scheme. However, there are known situations, where this diagonal

G0W0 approximation starting from DFT is inadequate. We present two schemes to resolve such

problems. The first, we called sc-COHSEX+GW, involves construction of an improved mean-field

(MF) using the static limit of GW, known as COHSEX (Coulomb hole and screened exchange)

which is significantly simpler to treat than GW. In this scheme, Σ(ω) is constructed and taken

to be diagonal in the COHSEX orbitals after the system is solved self-consistently within this

formalism. The second method is called off diagonal-COHSEX GW (od-COHSEX+GW). In this

method, one does not self-consistently change the mean-field starting point but diagonalizes the

COHSEX Hamiltonian within the Kohn-Sham basis to obtain quasiparticle wave functions and

uses the resulting orbitals to construct the GW Σ in the diagonal form. We apply both methods

to a molecular system, silane, and to two bulk systems, Si and Ge under pressure. For silane both

methods give good quasiparticle wave function and energy. Both methods give good band gaps

for bulk silicon and maintain good agreement with experiment. Further, the sc-COHSEX+GW

method solves the qualitatively incorrect DFT mean-field starting point (having a band overlap)

in bulk Ge under pressure.
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I. INTRODUCTION

The GW approximation to the electron self energy has become the method of choice

for treating the electronic excited-state properties of materials from first principles1–3. This

approach, typically implemented starting from a DFT mean-field, has been shown to work

extremely well for a wide variety of condensed matter systems – metals4, semiconductors

and insulators,2,3 and nanostructures5. However, there are a few cases where some of the

common approximations used in most ab initio GW calculations are inadequate.

While in most cases, approximate Kohn-Sham DFT band structures provide an excellent

starting point for GW calculations, in some cases they predict a qualitatively incorrect intial

band structure. Some notable cases of this failure are in the strongly-correlated systems,

such as Mott insulators6,7. However, sometimes incorrect ordering of bands can occur even

in simple semiconductor systems such as bulk Ge8.

Another commonly used approximation in ab initio GW calculations is that the DFT

wave functions are the same as the quasiparticle wave functions. Some examples where

this approximation may breakdown occur in the calculation of electron affinity in molecular

systems and defect levels in solids. For instance, in molecular systems, quasiparticle states

of interest could have a mean-field energy level below the vacuum level whereas the actual

quasiparticle level (after the self-energy correction) may be above the vacuum level. The

former is a localized bound state; the latter is a resonant state9. A similar problem can

occur with defect states in solids. The defect level within DFT (because of band-gap un-

derestimation) can be within the conduction band continuum (a resonant state), however

after the GW self-energy correction the level is within the band gap of the solid (a localized

state)10.

There have been several attempts to address the mean-field starting band structure for

GW6,11–16. For strongly correlated systems, the LDA+U (Local density approximation +

onsite Hubbard interaction) method has become the method of choice. This method has

been shown to work well for systems containing d- and f-shell electrons6,15. This however

involves selecting the proper Hubbard “U”. Recently, some progress has been made in cal-

culating this “U” from ab initio methods15,17,18. However this method is not useful in simple

semiconductors such as bulk Ge under pressure. Going beyond the Kohn-Sham formulation

of DFT19 – the generalized Kohn-Sham (GKS) DFT – has been used to construct a different
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starting mean-field14,16. However, while there are some attempts to make GKS more reliable

in predicting accurate electronic structures20,21, the most commonly-used GKS functionals

give varying results22. Existing GKS formulations offer a different starting point, it is not

clear a priori whether it is better. In some cases, it has shown to be a better mean-field,

while in other cases not so16,23. Another method is the QPscGW approach of Faleev et

al.11 that iteratively constructs a mean-field starting point such that, by construction, the

quasiparticle wave functions and mean-field orbitals are close. This approach is conceptually

elegant, however, as we discuss below, this approach has very high computational cost.

Alternatively, several groups12,13 have constructed a ω-independent Hamiltonian in the so

called COHSEX approximation and carried the calculation using Kohn-Sham DFT orbitals

as a basis to varying levels of self-consistency for a mean-field starting point for a subsequent

GW calculation. While in principle the COHSEX offers a good mean-field starting point,

in practice using Kohn-Sham orbitals as a basis makes current schemes cumbersome, as

discussed below.

Most current solutions to this issue involve expanding the quasiparticle wave functions in

terms of the mean-field orbitals24. Subsequently, the off-diagonal elements of Σ are calculated

on a grid of frequencies. This is conceptually and numerically difficult. It is also not clear

a priori how many states should be included in the expansion. Further, the off-diagonal

matrix elements of the GW Hamiltonian in the Kohn-Sham basis can sometimes converge

slowly with respect to the Hamiltonian matrix size. As a result, one can obtain results that

suffer owing to a small basis set used for constructing the Hamiltonian matrix – whether it

be the GW13,24, or COHSEX12 or the QPscGW11 Hamiltonian.

In this paper, we present two alternative methods based on the COHSEX approximation

starting point. These methods allow us to efficiently construct both an improved mean field

and quasiparticle wave functions without the shortcomings of the above-mentioned methods.

The first method is a fully self-consistent COHSEX followed by GW (sc-COHSEX+GW)

method, where a new mean field and approximate quasiparticle wave functions are ob-

tained from a self-consistent solution to the COHSEX Hamiltonian. The second, the off

diagonal COHSEX followed by GW (od-COHSEX+GW) method, allows for a computa-

tionally less intensive treatment of effectively using just the off-diagonal matrix elements (in

the Kohn-Sham basis) within a one-shot COHSEX Hamiltonian to obtain the approximate

quasiparticle wave functions. Both approaches have been implemented within a plane wave
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basis set. The main advantage of these methods over previous ones is that our methods

are conceptually simple, transparent and one can work completely in a plane wave basis.

Despite a much more complete basis set than the limited number of Kohn-Sham orbitals

traditionally used, these methods are computationally efficient. Both approaches do not re-

quire an explicit construction of the Hamiltonian. As in typical DFT calculations, only the

Hamiltonian times the wave function is required. We apply these methods to the molecular

example of silane and bulk solid examples of silicon and germanium under pressure. These

methods make significant improvement to the electron affinity of silane and a better and

well-defined starting mean field for Ge under pressure. In silicon, the od-COHSEX+GW

gives virtually identical quasiparticle energies to a conventional G0W0 calculation. The sc-

COHSEX+GW on the other hand as expected overestimates the band gaps for reasons to

be discussed below.

II. METHODS

Current state-of-the-art ab initio calculation of quasiparticle energies (i.e., the one-

particle excitations) of real materials is based on the GW approximation to the electron

self energy. Within the many-body Green’s function formalism, quasiparticle energies and

wave functions can be obtained by solving the Dyson equation1,2 :

[

−1

2
∇2 + Vion(r) + VH(r)

]

ψQP(r) +

∫

Σ(r, r′,EQP)ψQP(r′)dr′ = EQPψQP(r) (1)

where Vion(r) is the ionic potential, VH(r) is the Hartree potential, Σ is the self-energy

operator within the GW approximation, and EQP and ψQP are the quasiparticle energies

and wave functions, respectively. The self energy operator is a nonlocal frequency-dependent

operator that incorporates the many-electron effects. It should be noted that Eq (1) is not

an Hermitian eigenvalue problem. The eigenvalues, EQP, are complex with the imaginary

part related to the quasiparticle lifetime. To solve Eq (1), the dynamic Σ is to be evaluated

at EQP in a self-consistent way.

Solving Eq (1) is challenging as the self-energy operator is a functional of the many-

body Green’s function. Typically, instead of solving Eq (1), the quasiparticle energies are

calculated within a first-order perturbation theory approximation starting from a mean-

field calculation2,3. As we noted in the introduction, DFT in the Kohn-Sham formulation
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is often chosen as the starting point for GW calculation. Further, the self energy operator

is constructed using the mean field G and W, called the G0W0 approximation. We will use

the notation, ΣGW({EDFT, ψDFT, ε−1
DFT}; EQP), to indicate that the self energy, Σ(r, r′,E),

is constructed using DFT eigenvalues, EDFT, eigenfunctions, ψDFT, and dielectric matrix,

ε−1
DFT and evaluated at the quasiparticle energy, EQP. When the quasiparticle energies are

calculated as:

EQP = EDFT + 〈ψDFT|ΣGW({EDFT, ψDFT, ε−1
DFT}; EQP)− VXC|ψDFT〉 (2)

it is called the diagonal G0W0 approximation. In Eq (2) VXC is the exchange-correlation

potential within DFT and the self energy ΣGW is evaluated self-consistently at the quasipar-

ticle energy EQP. The DFT eigenvalues, eigenfunctions and exchange-correlation potential

are obtained by solving the self-consistent Kohn-Sham equations:

[

−1

2
∇2 + Vion(r) + VH(r) + VXC(r)

]

ψDFT(r) = EDFTψDFT(r) (3)

where VXC(r) is constructed within a suitable approximation – common approximations be-

ing the local density approximation (LDA)25 and the generalized-gradient approximation

(GGA)26. As seen from Eq (2), the diagonal G0W0 approach assumes that the DFT mean

field solutions (often LDA or GGA) is a good starting point. It also assumes that DFT eigen-

functions are a good approximation to the quasiparticle wave functions. These assumptions

are valid for many bulk materials and nanostructures as discussed in Ref. [2]. However, as

discussed previously, there are known limitations of these approximations in specific cases.

Let us first discuss the case where ψQP 6≈ ψDFT. As we noted in the introduction,

current methods to address this problem is to diagonalize the full G0W0 matrix13,24,27,

Hij = EDFTδij + 〈ψDFT
i |ΣGW({EDFT, ψDFT, ε−1

DFT}; EQP) − VXC|ψDFT
j 〉, constructed in the

DFT eigenfunction basis ψDFT
j . While in principle, all DFT eigenstates should be used

in the expansion, in practice, owing to the cost of constructing the off-diagonal matrix ele-

ments, 〈ψDFT
i |ΣGW({EDFT, ψDFT, ε−1

DFT}; EQP)|ψDFT
j 〉, the matrix is limited to a small number

of DFT basis states (rows/columns). A priori, it is not obvious how many DFT wave func-

tions should be used in the expansion. All the matrix elements of the self-energy operator

do not contribute equally to the self energy of the state of interest. As a result, there can

be several states with small contribution followed by a state with large contribution. This

makes checking for convergence cumbersome. Additionally, all the matrix elements should
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(HDFT
0 + VXC)ψ

DFT = EDFTψDFT

{ψDFT,EDFT} → ε−1
DFT

(HDFT
0 + ΣCOHSEX({ψDFT, ε−1

DFT}))ψi = Eiψi

EQP = Ei + 〈ψi|ΣGW({EDFT, ψDFT, ε−1
DFT}; EQP)

− ΣCOHSEX({ψDFT, ε−1
DFT})|ψi〉

(H i
0 + ΣCOHSEX({ψi, ε−1

i−1}))ψi = Eiψi

{ψi,Ei} → ε−1
i

EQP = Ei + 〈ψi|ΣGW({Ei, ψi, ε−1
i }; EQP)

− ΣCOHSEX({ψi, ε−1
i−1})|ψi〉

sc-COHSEX+GWod-COHSEX+GW

FIG. 1. Outline of the od-COHSEX+GW and the sc-COHSEX+GW methodologies. The H i
0

refers to the kinetic, ionic and Hartree potentials constructed with density from ψi. See text for

details.

in principle be evaluated at EQP for each separate quasiparticle level, which is challenging to

evaluate in a self-consistent fashion. Thus, diagonalizing the full G0W0 matrix with sufficient

rows and columns and appropriate energy dependence is extremely difficult.

Instead of constructing and diagonalizing the full G0W0 matrix in the ψDFT basis, we

propose the od-COHSEX+GW approach as shown in the left side of Fig. 1. In this approach,

using the DFT eigenvalues and eigenfunctions, we construct the COHSEX operator in a

plane wave basis set up to the convergent plane wave DFT wave function cutoff. In particular,

in the COHSEX operator, the screened exchange (SEX) and Coloumb hole (COH) terms,

which are computed from the DFT eigenfunctions and eigenvalues, are expressed as matrices

in the plane wave basis. We then diagonalize the COHSEX Hamiltonian, (HDFT
0 +ΣCOHSEX)

using an iterative alogrithm such as Lanczos algorithm. Here HDFT
0 is defined as the DFT

Hamiltonian, shown in Eq (3), without the exchange-correlation term, VXC. It is worthwhile

to point out that solving this eigensystem iteratively only requires one to compute (HDFT
0 +

ΣCOHSEX)ψ products, where ψ is some trial quasiparticle wave function. In the next sections,

we provide the exact expressions for evaluating ΣCOHSEXψ within the plane wave basis set

as well as its computational complexity.

After solving this eigensystem, one then does a diagonal G0W0 calculation as shown in

the left side of Fig. 1, but now in the basis of the od-COHSEX quasiparticle wave functions,
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called the od-COHSEX+GW approach. This approach, which is equivalent to diagonalizing

the G0W0 matrix in the static limit in a complete plane wave basis, is an effective scheme

for the inclusion of the off diagonal G0W0 matrix elements of the Kohn-Sham basis. It can

also be seen as a transformation to a basis within which the G0W0 matrix (still constructed

from G0 and W0 using the DFT eigenvalues and eigenfunctions) is nearly diagonal.

For the problem related to the starting mean-field band structure, we propose the self-

consistent COHSEX method. Here one could replace the DFT mean-field starting solutions

completely by replacing the DFT mean-field Hamiltonian with a self-consistent COHSEX

(sc-COHSEX) mean-field Hamiltonian. This approach is outlined on the right side of Fig. 1.

As before, we use the DFT eigenfunctions and eigenvalues to construct an initial polariz-

abilty. However, in this second approach, the COHSEX operator is updated self-consistently

as we diagonalize the COHSEX Hamiltonian. The eigenvalues and eigenfunctions from this

diagonalization are used to construct a new polarizabilty and dielectric matrix. This process

is repeated to reach self-consistency in the dielectric matrix. In practice, for the systems

considered, we find that one/two updates of the polarizability are sufficient. We then do a

standard diagonal G0W0 calculation, in the basis of the sc-COHSEX orbitals, using the sc-

COHSEX eigenvalues, eigenfunctions and updated polarizabilty as our mean-field starting

point. This approach is the sc-COHSEX+GW approach.

We now compare our sc-COHSEX method with previous self-consistent quasiparticle

methods of Bruneval et al.12 and QPscGW11. In the work of Bruneval et al.12, a similar

self-consistent COHSEX approach is used, with the important difference that they work

in the DFT Kohn-Sham orbital basis. In particular, they construct the off diagonal matrix

elements of the COHSEX operator using only valence band and low-energy conduction band

states. This restricts the degrees of freedom that the quasiparticle wave functions have. We

avoid this problem by working directly in a plane wave basis with a large cutoff to construct

and diagonalize the sc-COHSEX Hamiltonian operator. Using this complete basis removes

any bias on the low-energy orbitals and more importantly on the dielectric matrix. The

QPscGW approach11 does not make use of the COHSEX approximation. It seeks a mean

field that gives eigenvalues closest to the quasiparticle energies iteratively. However, the

QPscGW approach also suffers from the same problem of working in a restricted basis as

formulated in Ref 12. In this case, the restricted basis is required due to the extremely

high computational costs of constructing the Σ matrix that includes some dynamical effects,
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because one must sum over a large number of empty states as well as integrate over fre-

quencies when constructing each matrix element of Σ. Additionally, this method (as well as

the sc-COHSEX+GW methods described above) tends to over-estimate band gaps because

the gap in the self-consistent mean field used to construct the RPA polarizability is higher

than the optical gap of the system. It is well known28,29 that self-consistency in the RPA

polarizability would be canceled by vertex (or excitonic) effects in the final dielectric re-

sponse, and so including only self-consistency without higher order corrections leads to too

large gaps. The od-COHSEX+GW approach, on the other hand, does not suffer from this

problem. In the od-COHSEX+GW approach, we continue to use the DFT (LDA or GGA)

RPA polarizability and Σ, but account for the fact that the quasiparticle wave functions

may no longer be the Kohn-Sham orbitals.

III. IMPLEMENTATION IN A BASIS OF PLANE WAVES

We here describe our plane waves implementation of the methods developed in Sec.

II. In applying the Hamiltonian, (H i
0 + ΣCOHSEX), to an arbitrary wave function, ψ, only

the ΣCOHSEXψ products are different than their corresponding DFT counterparts. In this

section, we only give details of these new products implementation. We adopt the following

convention for the Fourier transformation from real to reciprocal space. The wave function

ψn,k(r) of band n at Bloch wave vector k transform according to:

ψn,k(r) =
1√
Ω

∑

G

ei(k+G)·run,k(G) (4)

with Ω the volume of the unit cell and un,k(G) is the Fourier transform of the cell periodic

part of the wave function, un,k(r). For spin unpolarized systems the screened exchange

operator, ΣSEX, within the COHSEX approximation is given as1,2:

ΣSEX(r, r
′) = −

occ.
∑

n

ψn(r)ψ
∗

n(r
′)W (r, r′) (5)

= −1

2

∑

n,k

fn,kψn,k(r)ψ
∗

n,k(r
′)W (r, r′) (6)

whereW (r, r′) is the screened Coulomb interaction at ω = 0 and fn,k = {2 if occupied, 0 if unoccupied}
is the occupation of band n with wave vector k. The screened Coulomb interaction is given
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in terms of the bare Coulomb interaction v(r, r′) as:

W (r, r′) =

∫

dr′′ε−1(r, r′′)v(r′′, r′) (7)

=
∑

q,G,G′

ei(q+G)·rWq(G,G
′)e−i(q+G′)·r′ (8)

=
∑

q,G,G′

ei(q+G)·rε−1
q (G,G′)vq(G

′)e−i(q+G′)·r′ (9)

where ε−1(r′′, r′) is the static RPA dielectric matrix, q is a Bloch wave vector, Nq is the

number of such wave vectors in our discretized Brillouin zone, and ε−1
q (G,G′) and vq(G

′) are

the Fourier transforms of the dielectric matrix and bare Coulomb interaction respectively,

defined analogously to Eq (8). The action of the screened exchange operator on a wave

function of band m at wave vector q, ψm,q(r), can be written as:
∫

Ωs

dr′ΣSEX(r, r
′)ψm,q(r

′)

= −1

2

∑

n,k

fn,kψn,k(r)
∑

G

e−i(q−k+G)·r
∑

G′

Yn,k,m,q(G
′)ε−1

q−k(G,G
′)vq−k(G

′) (10)

where Ωs is the volume of the entire crystal and Yn,k,m,q(G
′) is the Fourier transform of the

co-density:

ψ∗

n,k(r)ψm,q(r) =
1

Ω

∑

G

Yn,k,m,q(G)ei(q−k+G)·r (11)

Similarly the Coulomb hole operator in the COHSEX, ΣCOH, can be expressed in terms of

the screened and bare Coulomb interactions as:

ΣCOH(r, r
′) =

1

2
[W (r, r′)− v(r, r′)] δ(r− r′) (12)

The application of the ΣCOH operator on a wave function of band m at wave vector q,

ψm,q(r), can be written as:

∫

Ωs

dr′ΣCOH(r, r
′)ψm,q(r

′) ≡ VCOH(r)ψm,q(r) (13)

where VCOH(r) is a local, cell-periodic potential whose Fourier transform VCOH(G) is given

as:

VCOH(G) =

∫

Ω

drVCOH(r)e
−iG·r (14)

=
1

2

∑

q,G′

[

ε−1
q (G+G′,G′)− δG,0)

]

vq(G
′) (15)
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Using Eqs (10) and (15), ΣCOHSEX can be applied to any wave function in the Brillouin zone.

We note that the difference in the od-COHSEX+GW approach and the sc-COHSEX+GW

approach is only in the wave functions and dielectric matrices used to construct the operator.

If one takes the screened Coulomb operator to be the bare Coulomb operator (i.e. ε−1 = 1),

then the above expressions reduce to the Hartree-Fock expressions. Eqs (10) and (15) can be

easily implemented within any code that performs GKS calculations. The above expressions

can be further reduced based on symmetries as shown in appendix A.

IV. COMPUTATIONAL COMPLEXITY

Here we analyze the scaling properties of the algorithms proposed in Sec. III. For

the purpose of this analysis, we consider only a Γ point sampling of the Brillouin zone.

We assume that the mean-field wave functions are expanded in a basis of plane waves

with a kinetic energy cutoff E
wf
cut. We restrict our analysis for the case of norm-conserving

pseudopotentials where the charge density can be expanded in a basis of plane waves with a

cutoff Eden
cut = 4Ewf

cut corresponding to Nden
G plane waves and Nden

r grid points in real-space.

The screened Coulomb interaction is described by a smaller cutoff Es
cut corresponding to N s

G

plane waves.

The calculation of the co-density (Eq (11)) can be performed using Fast Fourier trans-

forms (FFT) and requires Nden
FFT = Nden

r ln(Nden
r ) floating point operations. As a result, the

application of ΣSEX to a wave function as given in Eq (10) requires Nv(N
s
G

2+Nden
G +Nden

FFT)

floating point operations, where Nv is the number of occupied states. The first term in this

expression for the number of floating point operations, NvN
s
G

2, comes from the sum over G

and G′ upto Es
cut in Eq (10). The second term is a result of the diagonal approximation of

ε−1
q (G,G′) beyond the Es

cut till the E
den
cut . This diagonal approximation leads to just a sum

over G in Eq (10). The third term is due to the calculation of the co-density.

The construction of the VCOH(r) operator in Eq (15) only requires N s
G

2 +Nden
FFT floating

point operations. Its application to a wave function (Eq (13)) can be done in Nden
FFT float-

ing point operations. If the size of Krylov subspace required for iterative diagonalization

is NKrylov then the floating point operations required for determining a mean-field wave

function within od-COHSEX approach would be

Nod−COHSEX
flops = NKrylov[Nv(N

s
G

2 +Nden
G +Nden

FFT) +Nden
FFT] +N s

G
2 +Nden

FFT
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As N s
G, N

den
r , Nden

G and Nv scale linearly with the size of the system as measured by the

number of atoms Nat, the overall scaling of this calculation is N3
at. The number of floating

point operations for application of Σ to determine the mean-field wave functions in the sc-

COHSEX approach (for a given ε) is NvN
od−COHSEX
flops . This is because in the sc-COHSEX

approach all the occupied wave functions have to be computed. Further, one would recalcu-

late a new ε−1
i in each iteration (as described in Fig 1). Overall, this would make the scaling

of the calculation N4
at.

It is also worthwhile to consider the scaling of the traditional methods, where the quasi-

particle wave function is expanded in terms of Nb mean-field wave functions. In these

approximations, if the off diagonal Σ matrix elements are included in the static limit, the

cost of evaluating each Σ matrix element remains the same as Nod−COHSEX
flops . However, as

the number of wave functions is Nb, the total cost is NbN
od−COHSEX
flops . It must be pointed out

that Nb also scales linearly with the size of the system, Nat. This is because as the size of the

system increases, the number of wave functions in a fixed energy range also increases. This

would lead to the best case scaling of N4
at. For the self-consistent calculation, the scaling

behavior would remain the same. In case the off diagonal matrix elements include frequency

effects, the number of floating point operations needed also get multiplied by a factor related

to the integration in the frequency domain.

Thus, despite working in a nearly complete plane wave basis, the od-COHSEX and sc-

COHSEX approaches are more efficient compared to the traditional approaches to the prob-

lem.

V. RESULTS AND DISCUSSION

To illustrate the application of our methods, we examine the silane molecule. It has been

shown13,27 that the Kohn-Sham LUMO level is below the vacuum level in DFT, but the

physical LUMO quasiparticle energy is above the vacuum level, i.e., the molecule possesses

a negative electron affinity. This leads to a qualitative difference in the spatial extent of the

DFT and quasiparticle wave function – the Kohn-Sham wave function is localized, while the

quasiparticle one mixes with the continuum states and is a resonant state.

Our DFT calculations were performed using plane waves and pseudopotentials in a super-

cell geometry30 as implemented in PARATEC31. We expanded the wave functions in plane
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waves up to an energy cutoff of 75 Ry. We used the Γ point sampling of the Brillouin zone

and spherical truncation of the Coulomb interaction to avoid silane-silane interactions. For

the GW calculations, we used the BerkeleyGW32 package. We used a dielectric matrix en-

ergy cutoff of 6 Ry. In order to converge the self energy with respect to bands, we explicitly

included states upto 6 Ry above the vacuum level and then add to it a static-remainder33

term. The dynamical contributions to the self-energy were treated within a generalized plas-

mon pole model2,34. We performed all calculations at three supercell volumes in a simple

cubic lattice corresponding to lattice constants of 22.5 au, 25 au and 30 au. All the results

presented were extrapolated to infinite volume limit.

Table I shows the calculated ionization potential and LUMO energies from different meth-

ods and experiment. In particular, with the traditional diagonal only G0W0 method, the

LUMO quasiparticle energies range from 0.6 – 1.1 eV. In the table, the full-Σ approach of

Refs [9] and [13] refers to the approach where the full G0W0 matrix has been diagonalized.

This full-Σ result (within the limitation of a small number of DFT eigenfunction expansion)

would be the ‘exact’ result that sc-COHSEX+GW and the od-COHSEX+GW approaches

should be compared to. In the full-Σ approaches of Refs [27], [9] and [13] the LUMO quasi-

particle energy is found to be nearly 1 eV lower than the corresponding diagonal G0W0

energies and in much better agreement with the quantum monte carlo (QMC) results. The

results with our new methods for the LUMO quasiparticle level agrees well with the full-Σ

and QMC numbers.

The HOMO (bottom panel) and LUMO (top panel) charge distributions within LDA and

within our sc-COHSEX and od-COHSEX approaches are plotted in Fig. 2. As expected,

all the HOMO wave functions show an exponential decay into the vacuum. Comparing

the HOMO wave functions between the three methods, one can see that they do not change

significantly even though the sc-COHSEX and od-COHSEX approaches overbind the HOMO

mean-field level. This is consistent with the fact that after the GW correction to the mean

field, the ionization potential (from Table I) does not change much in these approaches. The

LUMO wave functions on the other hand change substantially between the three methods.

Within LDA, the LUMO wave function decays exponentially into the vacuum region. This

is because the LDA wave function is ∼ 0.5 eV below the vacuum level. The sc-COHSEX and

od-COHSEX LUMO wave functions on the other hand are much more delocalized. This is

consistent with the results shown in Table I that shows the LUMO mean-field energy within
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FIG. 2. Polar contour plots of the modulus square of the quasiparticle wave function in a plane

defined by Si (circle at the origin) and two H atoms (small circles along the radial direction). The

radial direction in the plot is in Å, while the angle formed between the Si–H bonds is 109.47◦.

For the LUMO |ψ5(r)|2 and for HOMO
∑

n=2,3,4 |ψn(r)|2 is plotted. HOMO (bottom panels) and

LUMO (top panels) quasiparticle wave function of the silane molecule within (a) LDA+GW, (b)

od-COHSEX+GW and (c) sc-COHSEX+GW.

sc-COHSEX and od-COHSEX approaches to be ∼ 0 eV. The GW correction to these LUMO

states are negligible.

To examine whether the quasiparticle wave functions within the three approaches are close

to their mean-field counterparts, in Fig. 3 (b) we plot the contribution to the second-order

perturbation correction24 to the LUMO quasiparticle energy, EQP
LUMO, from ΣGW(ELUMO)−

ΣMF (where MF stands for mean-field) from intermediate states 1 to 40. The LDA mean-

field (ΣMF = VXC) starting point from states 9, 15, 29 and 40 show large corrections to

the quasiparticle energy. This corresponds to large off diagonal elements in the Σ matrix

in the Kohn-Sham orbital basis which illustrates a failure of LDA to correctly describe the
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Starting HOMO LUMO

Mean Field MF MF+G0W0 MF MF+G0W0

LDA –8.53 –12.55 –0.48 0.82

LDA9 –8.4 –12.7 –0.6 1.1

LDA13 –8.42 –12.67 –0.50 0.63

Full-Σ13 — –12.66 — –0.42

Full-Σ9 — –12.7 — 0.3

od-COHSEX –14.36 –12.49 –0.01 –0.01

sc-COHSEX –14.06 –12.86 –0.01 0.00

QMC9 — –12.6 — 0.2

Experiment35 — –12.6 — —

TABLE I. HOMO and LUMO quasiparticle energies of the silane molecule calculated with the

present and other approaches. All values are in eV.

LUMO quasiparticle orbital. If one accounts for these second order corrections, the LUMO

quasiparticle energy becomes close to those from more accurate approaches. However, this

comes at an additional cost of evaluating off diagonal Σ matrix elements in the Kohn-Sham

basis. It should be noted that in this case expansion of the quasiparticle wave function in

eigenstates within a few eV of the LUMO mean-field level are sufficient to get the correct

result. However, the number of eigenstates in this energy range will depend on the size of

the supercell. If the supercell is much larger, this number can become quite large making the

calculation much more expensive. Further, predicting this energy range is also not straight

forward. Also seen in Fig. 3 (b), the contributions in both the sc-COHSEX+GW approach

and the od-COHSEX+GW approach are small. In both new approaches, the off-diagonal

elements of Σ in the new COHSEX orbital basis are small and are effectively included in

the mean-field starting point (sc-COHSEX) or treated adequately within the static approx-

imation (od-COHSEX approach). This means that the quasiparticle wave functions are

well described by the sc-COHSEX and od-COHSEX wave functions respectively. We ana-

lyzed the LUMO mean field wave function within od-COHSEX and sc-COHSEX in terms

of the LDA wave functions in order to examine the difference in the LUMO quasiparticle

15



0.0

0.5

1.0

|〈n
L
D
A
|5〉

|

(a) LDA

sc− COHSEX

od− COHSEX

5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

|〈n
|Σ

G
W
−
Σ
m
f|5

〉|2
E
n
−
E
5

(b) LDA + GW

sc− COHSEX+ GW(× 10 )

od− COHSEX+ GW(× 10 )

FIG. 3. Top panel shows the overlap |〈nLDA|5〉| vs n in silane within the LDA, sc-COHSEX

and od-COHSEX approaches. Bottom panel shows the contributions (in eV) to the second order

perturbation correction from each state n to the quasiparticle energy of the LUMO, state 5, in

silane within the LDA+GW, sc-COHSEX+GW and od-COHSEX+GW approaches. As indicated

in the legend, the corrections in the latter two approaches are multiplied by a factor of 10 for

clarity.

wave functions within the three methods. Fig. 3 (a) shows the overlap between the new

mean-field LUMO wave functions and LDA wave functions. As can be seen in Fig. 3 (a)

the major contributions to the od-COHSEX and sc-COHSEX LUMO wave functions comes

from the 5, 9, 15, 29 and 40 LDA states. These are the states within LDA mean field that

possess significant off diagonal matrix elements. This indicates that the od-COHSEX and

sc-COHSEX methods mix these orbitals appropriately to construct the LUMO quasiparticle

wave function such that the self-energy operator is diagonal in this basis.

We now turn our attention to an example of a failure of the mean field band structure.

An example for this case is bulk Ge. It is well known that within LDA8, the direct band gap

of bulk Ge can be negative, i.e., bulk Ge is often predicted to be a metal within DFT while

experimentally it is a well known semiconductor. This is a qualitative failure of the mean
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Γ− Γ Γ− L

Iter Mean-field MF MF+G0W0 MF MF+G0W0

0 LDA –0.38 –0.15 0.00 0.44

1 sc-COHSEX+GW 0.64 0.45 1.07 0.77

2 sc-COHSEX+GW 0.54 0.50 0.97 0.80

3 sc-COHSEX+GW 0.57 0.51 0.99 0.80

Experiment36,37 0.35 0.6

TABLE II. Direct gap at Γ and indirect band gap (Γ–L) for bulk Ge at P = −3.5 GPa calculated

within various approximations. All values are in eV.

field band structure. With care, GW is known to resolve this problem2,8; however, often this

is done by iterating the eigenvalues used to construct G and W. We studied bulk Ge under

negative hydrostatic pressure. The pressure coefficients of various band gaps of bulk Ge have

been calculated38–41 and measured36,37. As one applies a negative hydrostatic pressure on

Ge, the band gaps are expected to become smaller and the failure of the LDA Kohn-Sham

gap more severe. We performed our calculations at P = −3.5 GPa. These calculations were

done with a 8 × 8 × 8 k-point sampling of the Brillouin zone, 40 Ry cutoff for the wave

functions and 8 Ry cutoff for the dielectric matrix. The generalized plasmon pole model2,34

was used to extend the static dielectric matrix to finite frequencies. It should be noted that

we used a pseudopotential containing nonlinear core correction to determine the structural

properties and pressure. However, we used a pseudopotential without any nonlinear core

correction as a mean field starting point for the GW calculation. This is because there is no

obvious way to generalize the nonlinear core correction to GW calculations as the self energy

operator in GW calculations do not explicitly depend on the charge density. As the core

charge density is built into the pseudopotential, its use may lead to erroneous results. For

this reason and more importantly the fact that the exchange interaction with the semicore

states is significant, it is well-known and standard practice in GW calculations to take the

semicore states (of the same principal quantum number as the valence states) as explicit

states in the pseudopotential generation. To calculate the dielectric matrix at q = 0, a

100 × 100 × 100 k-point sampling was used in the LDA where bulk Ge was found to be a

metal.

17



Direct Gap Fundamental Gap

Mean-Field MF MF+G0W0 MF MF+G0W0

LDA 2.56 3.29 0.53 1.29

LDA2 2.57 3.35 0.52 1.29

LDA12 2.57 3.20 0.51 1.14

sc-COHSEX+GW12 — 3.69 — 1.56

od-COHSEX+GW 3.79 3.32 1.82 1.29

sc-COHSEX+GW 3.74 3.69 1.72 1.63

Experiment37 — 3.40 — 1.17

TABLE III. Direct gap at Γ and indirect band gap for silicon calculated within various approxi-

mations. All values are in eV.

Table II shows the results of our calculation on bulk Ge at P = −3.5 GPa. As can be seen

from the table, the Γ− Γ gap within LDA is negative. This is due to the well-known band

inversion at the Γ point. However, when one performs a one-shot diagonal G0W0 calculation

with parameters mentioned above, there is still no band gap opening. It is conceivable that

iterating G and W with updated eigenvaules may open a band gap in such a case – however a

band opening should correspond to a qualitative changes in the spatial dependence of G and

W as well. Simple eigenvalue iteration within the diagonal approximation would completely

miss such a spatial dependence change. Similarly, the od-COHSEX+GW approach also

does not open the band gap. This is because the od-COHSEX does not change the DFT

mean field starting point of the GW calculation. The first iteration of sc-COHSEX opens

up a gap and the ordering of the levels at the Γ point becomes correct. Similarly, at the L

point, the mean field LDA has a zero gap while in the first iteration of sc-COHSEX, a gap

opens up. Subsequent iterations, only change the result quantitatively – with two iterations

sufficient to get convergence. It should be noted that our results in Table II are without any

spin-orbit correction while experimental band gap includes this effect. As mentioned earlier,

in the absence of vertex corrections and electron-phonon renormalization, it is expected that

sc-COHSEX+GW would overestimate band gaps.

Table III shows the result of application of these approaches to bulk Si. These calculations

were done with a 6 × 6 × 6 k-point sampling of the Brillouin zone, 35 Ry cutoff for the
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wave functions and 12 Ry cutoff for the dielectric matrix. The generalized plasmon pole

model2,34 was used to extend the static dielectric matrix to finite frequencies. Table III

shows our calculated values of the direct and indirect band gaps in silicon. As can be seen

in the table, the od-COHSEX+GW approach gives the same gaps as previous calculations

using the diagonal Σ approximation within the Kohn-Sham basis2. Our, as well as previous

sc-COHSEX12 approaches, agree with one another. However, both overestimate the gaps

slightly due to the aforementioned reasons.

VI. CONCLUSION

In summary, we presented two approaches for going beyond the diagonal Σ constructed

within G0W0 and the DFT mean field. Both approaches construct the quasiparticle Hamil-

tonian in the static approximation of GW within a plane wave basis and diagonalize it. The

sc-COHSEX+GW approach, can be viewed as a diagonal G0W0 approach with an improved

mean-field starting orbitals and energies where the off diagonal matrix elements of Σ−ΣMF

are small. The od-COHSEX+GW approach does not change the mean-field starting point

of a typical DFT+GW calculation but constructs a new basis of COHSEX orbitals in which

the off diagonal matrix elements of Σ − ΣDFT are small. We showed that both methods

give good quasiparticle wave functions and energies for the molecular states of silane (in

particular the LUMO) and that with both approaches the off diagonal elements of Σ in the

COHSEX orbital basis are small. Further, the sc-COHSEX+GW method gives an alter-

nate mean-field starting point for GW calculations. In the case of bulk Ge under pressure,

we find that sc-COHSEX+GW fixes a failure of the LDA band structure by correctly pre-

dicting a semiconducting band structure. In bulk Si, od-COHSEX+GW gives band gaps in

good agreement with experiment and previous calculations, while sc-COHSEX+GW slightly

overestimates them as in other self-consistent GW methods.
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Appendix: Use of symmetry

Using symmetries of the crystal and the atoms, the calculation can be reduced to getting

eigenvalues and eigenfunctions at k in the irreducible part of the Brillouin zone. However,

for evaluating ΣCOHSEXψ, wave functions in the full Brillouin zone are required. In order to

construct the wave functions in the full Brillouin zone from those in the reduced Brillouin

zone the following relation for constructing the cell periodic part of the wave function,

un,k′(G) at k′ = R(k) can be used:

un,R(k)(G) = un,k(R
−1(G))e−iG·τ (A.1)

where the symmetry operation is defined by a reciprocal-space rotation matrix R and a

fractional translation τ such that r′ = R−1r + τ . Similarly, one can construct the screened

Coulomb interaction at a q1 defined as q1 = R(q) +GR, where GR is a G-vector chosen to

ensure that q and q1 are in the first Brillouin zone, then one can use the relation2,42 :

ǫ−1
q1
(G,G′) = e−i(G−G′)·τǫ−1

q (G1G
′

1) (A.2)

where G1 = R−1(G +GR).
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