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To gain further insight into the properties of interacting topological insulators, we study a one-
dimensional model of topological Kondo insulators which can be regarded as the strongly interacting
limit of the Tamm-Shockley model. Treating the model in a large N expansion, we find a number of
competing ground-state solutions, including topological insulating and valence bond ground-states.
One of the effects to emerge in our treatment is a reconstruction of the Kondo screening process
near the boundary of the material (“Kondo band bending”). Near the boundary for localization into
a valence bond state, we find that the conduction character of the edge state grows substantially,
leading to states that extend deeply into the bulk. We speculate that such states are the one-
dimensional analog of the light f-electron surface states which appear to develop in the putative
topological Kondo insulator, SmB6.

PACS numbers:

I. INTRODUCTION

Topological insulators1–11 have attracted great atten-
tion as a new class of band insulator with gapless sur-
face or edge states, robustly protected by combination of
time-reversal symmetry and the non-trivial topological
winding of the occupied one-particle wavefunctions. The
surface states of a topological insulator are “massless”
excitations carried by an odd number of Dirac cones in
the Brillouin zone.

Various proposals have been made for strongly corre-
lated electron analogues12–19 of topological band insu-
lators. To date the best candidate strongly correlated
topological insulator is SmB6, a local moment metal
which transforms into a Kondo insulator, once the mo-
ments are screened at low temperatures (< 70K)20. This
material was first predicted to be a topological Kondo
insulator13 and recently shown to exhibit conducting in-
gap surface states, which develop below 4K21–23. While
these results are consistent with a topological Kondo in-
sulator, a definitive observation of Dirac cone excitations
with polarized quasiparticles has not yet been reported.
However, tentative data of the Dirac cone surface states
have become available in both quantum oscillation24 and
ARPES measurements25–28. One of the unexpected fea-
tures of these measurements is the presence of “light”,
high-velocity surface quasiparticles, with the Dirac point
far outside the gap. These tentative results are puzzling,
because their group velocities appear 10 to 100 times
larger than that expected in a heavy fermion band29,30.

These results provide motivation for the current pa-
per. Here we introduce a simple one dimensional “p-wave
Kondo lattice” which gives rise to a topological Kondo
insulator that can be studied by a variety of methods.
In this initial study we carry out the simplest mean-field
treatment of our model, an approach which is technically
exact in the large N limit, using it to gain insight into

the nature of the edge states and to propose variational
ground-states for the model. This work is also an im-
portant warm-up exercise for a three dimensional model.
The model is schematically depicted in Fig. 1. It can
be regarded as a strongly interacting limit of the Tamm-
Shockley model31–33.

FIG. 1: (Color online) Schematic illustration of the 1D p-
wave Kondo insulator Hamiltonian (1). The model contains
a chain of Heisenberg spins coupled by an antiferromagnetic
nearest neighbor Heisenberg coupling, plus a tight-binding
chain of conduction electrons (c). Each localized moment is
coupled to the conduction sea via a Kondo “cotunneling” term
that exchanges spin between a localized moment at site j and
a p-wave combination of conduction electron states formed
between neighboring sites j − 1 and j + 1.

.

A second goal of this work is to gain insight into the im-
pact of the boundary on the Kondo effect, a phenomenon
we refer to as “Kondo band bending”. In the conven-
tional Kondo insulator model, the hybridization between
local moments and conduction electrons is local and the
strong-coupling ground state involves a Kondo singlet at
every site, with minimal boundary effects. In the case
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of non-trivial topology the Kondo singlets are non-local
objects34–36 (Fig. 1) which are partially broken at the
boundary. We seek to understand how this influences
the Kondo effect and the character of the edge states at
the boundary.

II. THE MODEL

Our model describes a conduction electron fluid inter-
acting with an antiferromagnetic Heisenberg spin chain
via a Kondo co-tunneling term with p-wave character.
The Hamiltonian is given by

H = Hc +HH +HK , (1)

where

Hc = −t
∑
jσ

(c†j+1σcjσ + H.c), (2)

HH = JH
∑
i

Sj · Sj+1, (3)

HK =
∑
j,αβ

JK(j)

2
Sj ·p†jασαβpjβ . (4)

Here the site index runs over the length of the chain,
j ∈ [1, L], t is the nearest neighbor hopping matrix ele-
ment, JH is a nearest neighbor Heisenberg coupling and
JK(j) is the Kondo coupling at site j. The chemical po-
tential of the conduction electrons has been set to zero,
corresponding to a half-filled conduction band. In con-
trast to the conventional ’s-wave’ Kondo model, here the
Kondo effect is non-local. In particular, the electron
Wannier states that couple to the local moment have p-
wave symmetry

pjσ ≡ cj+1σ − cj−1σ. (5)

The Kondo coupling now permits the process of “co-
tunneling” whereby an electron can hop across a spin
as it flips it. The odd-parity co-tunneling terms are a
consequence of the underlying hybridization with local-
ized p-wave orbitals. When this hybridization is elimi-
nated via a Schrieffer-Wolff transformation, the resulting
Kondo interaction contains an odd-parity form factor.

The boundary spins have a lower connectivity, giving
rise to a lower Kondo temperature which tends to localize
them into a magnetic state. To examine these effects in
greater detail, we take the Kondo coupling JK(j) = JK
to be uniform in the bulk, but to have strength αJK at
the boundary,

JK(j) =

{
αJK endpoints (j = 1 or L),
JK bulk (j ∈ [2, L− 1]).

(6)

By allowing the end couplings to be enhanced by a factor
α we can crudely compensate for the localizing effect of

the reduced boundary connectivity. In real 3D Kondo in-
sulators, this surface enhancement effect (“Kondo band-
bending”) would occur in response to changes in the va-
lence of the magnetic ions near the surface. For Sm and
Yb Kondo insulators, the valence of the surface ions is
expected to shift to a more mixed valent configuration,
enhancing α, while in Ce Kondo insulators, the opposite
effect is expected.

To formulate the model as a canonical field theory, we
rewrite the spin Sj using Abrikosov pseudo-fermions fjσ,
as

Sj =
∑
σσ′

f†jσσσσ′fjσ′ , (7)

with the associated “Gutzwiller” constraint nf,j = 1 at
each site. After applying the completeness relations for
the Pauli matrices in (4) we obtain the Coqblin-Schrieffer
form of the Kondo interaction,

HK = −
∑
jαβ

JK(j)
(
f†jαpjα

)(
p†jβfjβ

)
, (8)

where we have imposed the constraint. In an analo-
gous fashion, the local moment interaction (3) can be
re-written as

HH = −JH
∑
jαβ

(f†j+1αfjα)(f†jβfj+1β). (9)

If we now cast the Hamiltonian inside a path integral,
we can factorize the Kondo and Heisenberg interactions
using a Hubbard-Stratonovich decoupling,

H → Hc +
∑
jσ

[
V ∗j (c†j+1σ − c†j−1σ)fjσ + H.c.+

|Vj |2

JK(j)

]

+
∑
jσ

[
∆jf

†
j+1σfjσ + H.c. +

|∆j |2

JH

]
+
∑
j

λj(nf,j − 1), (10)

with the understanding that auxiliary fields Vi, ∆j and
λj are fluctuating variables, integrated within a path in-
tegral. The last term imposes the constraint nf,j = 1 at
each site.

In this formulation of the problem Vi determines the
Kondo hybridization on site i and ∆i is the order param-
eter for resonating valence bond (RVB)-like state formed
on the link i between local moments. In translating our
mean-field results back into the physical subspace of spins
and electrons it is important to realize that the f-electron
operators (which are absent in the original spin formu-
lation of the model) represent composite fermions that
result from the binding of spin flips to conduction elec-
trons as part of the Kondo effect. By comparing (10)
with (4), we see that the f-electron represents the follow-
ing contraction between conduction and spin operators:

Sj · σαβpjβ ≡
(

2V ∗

JK

)
fjα,
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p†jβσβα · Sj ≡
(

2V

JK

)
f†jα. (11)

At low energies, these bound-state objects behave as in-
dependent electron states, injected into the conduction
sea to form a filled band and create a Kondo insulator.

A. Homogeneous mean field approximation

In the homogeneous mean field treatment of the Hamil-
tonian (10) we assume that the bulk fields Vj , ∆j and λj
are constants. The saddle-point Hamiltonian then be-
comes a translationally invariant tight binding model.
For periodic boundary conditions, taking ∆j = ∆, Vj =
V , we obtain

H = HTB + L

(
|V |2

JK
+
|∆|2

JH
− λ
)
. (12)

HTB can be written in momentum space as

HTB =
∑
k

(c†kσ, f
†
kσ)

H(k)︷ ︸︸ ︷(
−2t cos k −2iV ∗ sin k
2iV sin k 2∆ cos k + λ

)(
ckσ
fkσ

)
.

(13)
This model is represented schematically in Fig. 2(a).

FIG. 2: (Color online) Illustrating the tight-binding model.
(a) Real space structure. (b) Dispersion of quasiparticles,
showing band inversion at k = π(13)

B. Large N limit

The mean-field treatment replaces the hard constraint
nf = 1 by an average 〈nf 〉 = 1 at each site. This replace-
ment becomes asymptotically exact in a large N exten-
sion of the model, in which the fermions have N possible
spin flavors, σ ∈ [1, N ]. Provided all terms in the Hamil-
tonian grow extensively with N, the path integral can be

rewritten with an effective Planck constant ~eff = 1/N
which suppresses quantum fluctuations as N → ∞ and
~eff → 0. To scale the model so that the Hamiltonian
grows extensively with N , we replace

JH → JH/N, JK → JK/N, (14)∑
j

λ(nf,j − 1)→
∑
j

λ(nf,j −Q). (15)

where the last term imposes nf,j = Q rather than unity
at each site. We shall examine the case where Q = N/2,
corresponding to a particle-hole symmetric Kondo lat-
tice. We shall restrict our attention to solutions where
λ = 0, which gives rise to an insulating state in which
both the conduction and f-bands are half-filled.

C. Topological class D

The mean-field Hamiltonian (13) can be classified ac-
cording to the periodic table of free fermion topolog-
ical phases11,37,38. The particle hole symmetry Ξ :
ΞH(k)Ξ† = −HT (k) is equivalent to the transforma-

tion ck → c†π−k, fk → f†π−k. In the two band basis of
Hamiltonian (13) Ξ = τz, where τ denotes a Pauli ma-
trix acting in orbital space. According to the periodic
table, symmetric Ξ corresponds to class D.

One way to see the non-trivial topology is to observe
the evolution of the Hamiltonian throughout the Bril-
louin zone by writing it as a vector in three dimensional

space: H(k) = ~h(k) ·~τ + ε0(k) with ε0(k) = (∆− t) cos k.
For real V ,

~h(k) =

 0
2V sin k

−(∆ + t) cos k

 .
At k = 0 and k = π, the vector ~h(k) aligns along the

ẑ axis: if the sign of the scalar product ~h(0) · ~h(π) of

the two vectors is positive, vector ~h(k) traces a simply-
connected path on the 2-sphere that may be contracted to
a point, so the phase is topologically trivial. By contrast,
a negative sign corresponds to a topologically non-trivial
path that connects the poles of the sphere, indicating the
topological phase. This can be summarized as

(−1)ν = sign(~h(0) · ~h(π)), (16)

where ν = 0 for trivial and ν = 1 for topological phases.

In our model ~h(0) · ~h(π) = −(t + ∆)2 and hence ν = 1
for any uniform solution with finite V .

The consequence of the topological invariance can be
seen in the non-zero electric polarization P . A particle-
hole transformation reverses the polarization, and since
the Hamiltonian is invariant under this transformation
it follows that ΞPΞ† = −P , allowing only two possible
values of polarization: P = 0 or P = e/2 since P is
defined modulo e. This is in fact the topological index of
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the chain. P can be computed via the Berry connection
Ak = i〈uk|∂k|uk〉39 of the occupied bands, defined via
periodic part of the Bloch function, uk.

P = e

∫ 2π

0

dk

2π
Ak =

{
e/2 topological
0 trivial

. (17)

The validity of this relation depends on the use of a
smooth Berry connection Ak, which usually requires that
we carry out a gauge transformation on the raw eigen-
states. For example, consider the special case where
t = ∆ = V . The negative energy eigenstates then
take the form ψk = (cos(k/2),−i sin(k/2))eiφ(k): choos-
ing φ(k) = k/2, the eigenstates then become continuous.
If the orbital basis is centro-symmetric, the Berry phase

only depends on ψk: Ak = i〈uk|∂k|uk〉 = iψ†k∂kψk. Com-
puting the Berry connection, we obtain

Ak = ie−ik/2
(
cos k2 , i sin k

2

)
∂k

(
cos(k/2)
−i sin(k/2)

)
eik/2

= 1
2 (cos2(k/2) + sin2(k/2)) = 1

2

so that

P = e

∫ 2π

0

dk

2π
Ak =

e

2
,

resulting in a non trivial half integer charge (per spin
component) on the edge.

D. Edge states

The key property of topological insulators and super-
conductors is that at the particle-hole symmetric point,
they develop zero energy edge states. A single non-
degenerate state at zero energy can not be shifted up
(or down) because particle-hole symmetry would then
require at least two states with opposite energies, devel-
oping out of the single zero energy mode.

Though our ultimate goal is to consider non-uniform
mean field solutions, we begin by examining the form
of the topologically protected edge states for the mean-
field Kondo lattice (13) with constant bond parameters.
There is an interesting relationship with the topologi-
cal Kitaev model40, which we now bring out. The Ki-
taev model involves the formation of a “canted” valence-
bond solid between nearest neighbor Majorana fermions,
formed from symmetric and antisymmetric combinations
of particles and holes, as shown in Fig. 3a. The edge
states are then the Majorana fermions that are unable
to form bonds. We shall show that at the special point
where the all bond strengths are equal, the mean-field
Kondo model has a similar structure to the Kitaev chain,
involving the formation of a canted valence bond struc-
ture between antisymmetric and symmetric combinations
of f and conduction electrons as shown in Fig. 3b.
In contrast to the Kitaev model, here the edge-state
fermions are conventional fermions with spin.

(a)

c+c††

c-c†† (b)

FIG. 3: (Color online) (a) Majorana decomposition of Kitaev
model; (b) t = ∆ = V limit of the tight binding model (13)

To demonstrate the edge state wave function we can
choose f and c hopping to be equal t = ∆, keeping the
hybridization as a free parameter. The Hamiltonian (13)
can be rewritten in the following simple form:

H(∆=t) = (∆ + V )
∑
jσ

(s†j+1σajσ + H.c.)

+ (∆− V )
∑
jσ

(s†j−1σajσ + H.c), (18)

where

ajσ = (fjσ − cjσ)/
√

2, (19)

sjσ = (fjσ + cjσ)/
√

2. (20)

The two terms in Hamiltonian (18) correspond to “right
facing” and “left facing” bonds between a chain of “a”
and “s” sites. In the particular limit that ∆ = V , the
Hamiltonian consists entirely of right-facing bonds, as
illustrated in Fig. 3b, with edge on the left and right
composed of symmetric and antisymmetric combinations
of conduction and f electrons. Note that at first glance
this model breaks inversion symmetry, but in fact there
is an additional U(1) gauge invariance for f electrons:
the phase of f can be rotated, effectively interchanging
between antisymmetric aj and symmetric sj operators.

For all values of V and ∆, the zero-mode ψ0 can be
found solving H(∆=t)ψ0 = 0 with the ansatz

ψ0 =
∑
j

vjs
†
j + uja

†
j . (21)

Solving for {uj , vj} in the case of (V∆) > 0 we can find
left and right edge solutions. The left-hand edge state is
given by

uj = 0,

vj =

{ (
V+∆
V−∆

)(j−1)/2

odd

0 even
.

(22)

Hence, unless hybridization V or effective hopping ∆ is
zero the decay is exponential. The fact that veven =
0 is due to particle hole symmetry: one can show that
the zero-mode of bipartite lattice is defined only on one
sublattice in a one-dimensional finite chain.

III. MEAN FIELD SOLUTION

We now consider a finite slab of material, examining
the departures in V and ∆ which develop in the vicinity
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of the boundaries a phenomenon we refer to as “Kondo
band-bending”. The allowed values of Vj and ∆j are
determined by the self-consistency equations

Vj = −JK(j)
〈
(cj+1σ − cj−1σ)†fjσ

〉
,

∆j = −JH
〈
f†jσfj+1σ

〉
.

(23)

These equations derive from the requirement that the
acton is stationary with respect to Vj and ∆j at each site.
The phase diagram is determined by the values of JH ,
JK and the edge parameter α. To explore the parameter
space we carried out a series of a numerical calculations
in which we seeded inhomogeneous order parameters Vj
and ∆j and diagonalize the Hamiltonian (10) at particle
hole symmetric value of λ = 0. At each step we find
the new values of Vj and ∆j in accordance with the self-
consistency conditions (23). Iterating this loop until a
convergent solution was found we vary the length of the
chain to find the solution free of small size effects.

To examine the bulk properties, we began by impos-
ing periodic boundary conditions. Using this procedure,
we identified two bulk phases: a Kondo insulator and a
metallic valence bond solid. The results of mean field
calculations with periodic boundary conditions are pre-
sented in Fig. 4. The bulk phase diagram is of course
independent of the edge parameter α.

2 f-electrons

form VBS 

state

Kondo Insulator

JK/t

JH/JK

I
IIMetal

f-electrons 

hybridize 

with conduction

electrons

0 2

FIG. 4: Schematic phase diagram of the bulk ground state
contains a metallic phase (I) and an insulating phase (II).
Phase II can be further divided depending on the properties
of its surface states see Fig. 7.

We proceed with open boundary conditions and exam-
ine the nature of the bound states solutions that develop
at the ends where the mean field parameters depart from
the bulk values.

A. Phase I: Metallic VBS state

In this phase the RVB order parameter ∆j becomes
an alternating function of space, while Vj is zero. Conse-
quently, the f-electrons form a valence bond solid (VBS)
state, co-existing with the unperturbed conduction sea.
Dispersionless “spinon” bands above and below the Fermi
energy, as shown in Fig. 5b. The gap between f-states is
provided by the amplitude of ∆j (justifying the notation)

which is in turn equal to JH/4. The metallic VBS phase
is summarized in Fig. 5a,b.

The metallic phase does not have surface states and be-
haves the same way for open and closed boundary con-
ditions. We found VBS state to be the lowest energy
configuration in the left part of phase diagram as shown
in Fig. 4.

Since there are two degenerate configurations of the
VBS, one of the important classes of excitation of this
state is a domain-wall soliton formed at the interface of
the two degenerate vacua. In an isolated VBS, such as the
ground-state of the Majumdar Ghosh model, or the Su-
Schrieffer-Heeger model, such solitons are spin-1/2 exci-
tations. However, in the 1D Kondo lattice, the Kondo in-
teraction is expected to screen such isolated spins, form-
ing a p-wave Kondo singlet exciton. In the metallic VBS,
these solitonic excitons will be gapped excitations. How-
ever, as the Kondo coupling grows, at some point the
excitons will condense, and at this point the VBS melts,
forming a topological Kondo insulator.

x

x

V

t

Δ
f

c

Δ

0

0

t

f

c

x

x

V

Δ

0

0

Δ

(a) (c)

0
-JH/4

-t

t

DOS

E

JH/4

0

DOS

E

-t

t

nf (E=0)

0

Surface  
state

x

(b) (d)

FIG. 5: Cartoon representation of two distinct phases in Fig.
4. We plot spatial dependence of Vj and ∆j and density of
states (DOS). Phase I (a and b): Metallic states with sup-
pressed hybridization. It does not support surface states.
Phase II (c and d): Kondo topological insulator that support
surface states. Inset in d is the profile of a typical surface
state decaying into the bulk as a function of distance.
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B. Phase II: Kondo insulator

In the Kondo insulating phase the hopping ∆j and Vj
are both finite in the bulk and generally suppressed at
the ends of the chain. This gapped heavy Fermi liquid
is stabilized by large Kondo coupling as shown in Fig.
5(c,d). We find that the Kondo insulating phase exhibits
two different kinds of boundary behavior. In the mean
field theory, we can characterize these two phases by the
fractional conduction electron character nc ∈ [0, 1] of the
edge state. The first is adiabatically connected to the
“Kitaev point” (see below) in which conduction electrons
and composite f-electrons hybridize to form the a surface
state with nc > 0. In the second state, the edge state is a
purely localized spin, unhybridized with the conduction
electrons (nc = 0).

1. “Kitaev” point

For general values of {JK , JH , α} there is no analytic
solution. However at the point where {JK , JH , α} =
{2, 4, 2} ∆j = Vj = t are constants in space. We now
show that at this point each spin component of the mean-
field theory corresponds to a two copies of the Kitaev
chain, with a single fermionic zero mode at each bound-
ary, as can be seen from the form of the wave function
in equation (22). We refer to this particular point in the
phase diagram as the ’Kitaev point’.

At this point, following (18), the mean-field Hamilto-
nian takes the form

H(∆=t) = 2t

L−1∑
j=1

∑
σ

(s†j+1σajσ + H.c.), (24)

where sjσ and ajσ are the symmetric and antisymmetric
combination of states 1√

2
(fjσ ± cjσ). This Hamiltonian

commutes with the zero modes

[H, s1σ] = 0, [H, aLσ] = 0 (25)

so for each spin, there is one fermionic zero mode per
edge, each involving a hybridized combination of conduc-
tion and f-electrons with nc = 1

2 . To see the connection
with the Kitaev model, we divide both sjσ and ajσ into
two Majorana fermions as follows,

sjσ =
1√
2

(γ1
jσ + iγ2

jσ), ajσ =
1√
2

(γ3
jσ − iγ4

jσ). (26)

Using (24), the Hamiltonian now splits into two indepen-
dent components,

H(∆=t) = −i2t
L−1∑
j=1

∑
σ

(γ1
j+1γ

4
j + γ2

j+1γ
3
j ), (27)

corresponding to a pair of Kitaev chains per spin com-
ponent. This is natural, because each Kitaev chain has
one Majorana zero mode per edge. Since a pair of Majo-
ranas make one normal fermion, this corresponds to one
fermionic zero mode per edge.

t

f

c

Δ

FIG. 6: (Color online) Magnetic phase (red color in Fig 7).

C. Magnetic Edge state.

In the magnetic edge state, the boundary spins do not
undergo the Kondo effect, forming an unhybridized mag-
netic edge state. If the boundary parameter α = 1, the
Kondo temperature at the boundary is smaller than in
the bulk, because the terminal boundary spins have only
one nearest neighbor. This means on cooling, that the
boundary Kondo interaction is unable to scale to strong
coupling before a gap develops in the bulk, leading to an
unquenched boundary spin. When α > 1, the Kondo ef-
fect is able to develop at the boundary, occurs at the
boundary, provided JK is not at weak coupling. At
smaller values of JK , the decoupled magnetic phase de-
velops, denoted by the red region in Fig. 7 (a). In this
phase, there is no hybridization of the edge state with the
bulk conduction electrons (nc = 0), and the topological
edge state disappears.

IV. RESULTS AND DISCUSSION

A. Where are the light surface states?

One of the interesting features of current experiments
on the Kondo insulator SmB6, is that the putative topo-
logical surface states seem to involve high-velocity quasi-
particles, rather than the heavy, low-velocity particles
predicted by current theories. Our mean-field results on
the one-dimensional p-wave Kondo chain suggest that
this may be because the change in character of the Kondo
effect at the boundary leads to edge states with a large
conduction electron component.

For a relatively high magnetic interaction, JH , the
one-dimensional edge states in our mean-field treatment
develop majority conduction electron character, forming
“light” edge states which penetrate deeply into the bulk.

In a non-interacting topological insulator, the transi-
tion to a topologically trivial phase occurs via a quantum
phase transition in which the bulk gap closes. In this
case, the penetration depth grows with inverse propor-
tion to the bulk gap ∆g.

ξ = vF /∆g. (28)

However, in the p-wave Kondo chain, the transition to
a metallic VBS is a first order transition at which the
bulk gap remains finite. In this case, the rapid growth
in the penetration depth of the edge state is associated
with an increase in the conduction character, driving the
enhanced group-velocity of the edge-states (28). This is a
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nc

c-weight in the edge state

Magnetic

nc=0

(a)

JK/t

JH
JK

Bulk gap

0

2

5

(c)(b)

0

1

2

¢g
 veffective

(t) (at)

Metal Metal

JK/t JK/t

J
H
/
J
K

FIG. 7: (Color online) The surface phase diagram. With
the addition of a renormalized Kondo coupling at the surface
α = Jboundary

K /JK . (a) Red color represent pure f-states with
no c-electron mixing, nc = 0. Inset is the cut along α = 2.
(b) is the bulk gap ∆g in units of t for α = 2, identifying
the “Kitaev point” as the black dot. (c) displays the inferred
group velocity measured in units of at, derived from the nu-
merically measured penetration depth of the edge states using
v = ∆gξ. The mean field calculations were done on a chain
of 70 unit cells.

novel and interesting consequence of the response of the
Kondo effect to the boundary - “Kondo band-bending”.

To demonstrate this behavior, we have carefully exam-
ined the properties of the edge states in our model. The
phase diagram showing the evolution in the conduction
character of the end states is shown in Fig. 7a. Within
the bulk topological insulator phase, the character of the
edge states varies dramatically, ranging from equal f- and
c- character to edge states of predominantly conduction
electron character near the first order boundary. Fig. 7b
shows the dependence of the insulating gap ∆g, showing
that it remains finite at the first order phase boundary
to the VBS metal.

We can estimate the effective velocity of the edge states
by combining the numerically measured coherence length
of the edge state and the bulk gap, according to

veffective = ∆gξ. (29)

This quantity is found to increase dramatically near the
first order boundary into the metallic VB state (see Fig.
7c), unlike a non-interacting topological insulator, here

the increase in ξ is due to a rapidly increasing amount
of conduction character in the edge-states, and is not ac-
companied by a gap closure, so that the effective velocity
of the edge states veffective rises considerably.

B. Strong-coupling ground state wave function

An alternative way to understand a Kondo insulator
is through the character of its strong-coupling wavefunc-
tion. In an conventional Kondo insulator, the strong cou-
pling ground-state is an array of Kondo singlets. If we
write

A†j =
∑
σ=± 1

2

f†jσc
†
j,−σsign(σ), (30)

then the strong coupling ground-state of the s-wave
Kondo insulator is simply a valence bond solid of Kondo
singlets:

|KI〉 =

L∏
j=1

A†j |0〉

= , (31)

where a line denotes a valence bond between a conduction
electron (open circle) and a local moment (closed circle).

What then is the corresponding ground-state for the
topological Kondo insulator? We can construct varia-
tional wavefunctions for the topological Kondo insula-
tor by applying a Gutzwiller projection to the mean-
field ground-state. Unlike the s-wave Kondo chain, to
preserve the topological ground-state, we need to con-
sider large values for both the Kondo and the Heisen-
berg coupling. An interesting point to consider is the
Kitaev point, where the singlet structure of the mean-
field ground-state becomes highly local. By projecting
the mean-field ground-state we obtain

|TKI〉 = PG
∏
j

Zj |0〉, (32)

where

Zj =
∑
σ=± 1

2

a†jσs
†
j+1,−σsignσ (33)

with a†jσ = (f†jσ + c†jσ)/
√

2 and s†jσ = (f†jσ −
c†jσ)/

√
2 as before, whereas PG =

∏
j(nf↑(j)−nf↓(j))2.

Now the valence bond-creation operator

Z†j =
1

2

∑
σ

(f†jσf
†
j−σ + f†jσc

†
j+1,−σ

− c†jσf
†
j+1,−σ − c†jσc†j+1,−σ)sign(σ) (34)

is non-local. The projected wavefunction of the topolog-
ical Kondo insulator (TKI) now involves a multitude of
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configurations forming a one-dimensional resonating va-
lence bond (RVB) state between the local moments and
conduction electrons. Schematically,

|TKI〉 =
∑

, (35)

where we associate a minus sign with left-facing Kondo
singlets and conduction electron pairs. In this picture,
the edge-states correspond to unpaired spins or conduc-
tion electrons at the boundary.

|edge, σ〉 = PGs
†
1σ

∏
j

Z†j |0〉 (36)

=
∑

+
∑

.

At the current time, except in the large N limit, we do
not yet know if there is a particular combination of JK ,
JH and hopping t for which the short-range RVB wave-
function is an exact ground-state for the TKI.

C. Further outlook

It is important to emphasize that one has to be careful
when extrapolating exact results from large N limit to
lower spin systems. For example, the Valence Bond state
as found in the part of our phase diagram is certainly
an artifact of the large N approximation, if considered
strictly in the 1D Heisenberg model. However, a more
careful study should be done to connect to a physical
N = 2 regime. Even for SU(2), the valence bond state
is stabilized by adding a small next nearest neigbor cou-
pling, and the Majumdar Ghosh case J2 = J1/2 provides
a special solvable example. We clearly know two lim-
its of this model, first (JK = 0) is the one that forms
VBS states second, (JK >> 1) when charge gap opens
up. Thus a strict extrapolation of our work to N = 2
requires that we take a family of Majumdar-Ghosh-like
models, in which next nearest neigbor Heisenberg cou-
pling scales as 1/N , thus bringing us back to our model
in the paper. Same caution should be applied when ex-
trapolating the results to higher dimension. For example
decoupled magnetic phase in 3D would not trivialize the
surface state and we leave this question for future studies.

One of the interesting unsolved questions is why dif-
ferent methods of growing SmB6 sometimes suppress the
topological surface states. On the one hand, when grown
in Al flux, SmB6 has robust surface states with a low tem-
perature plateau conductivity, whereas the crystals pro-
duced with the floating zone method exhibit no plateau
conductivity, even though the samples are thought to be
cleaner41. Based on our simple one-dimensional model,
we speculate that this may be because the ordered sur-
face supports localized magnetic moments which in three
dimensions, magnetically order. By contrast, for reasons

not currently clear, the Al flux grown samples appear to
sustain non-magnetic surface states, possibly due to a va-
lence shift at the surface, giving rise to topological surface
states. A more detailed understanding of the situation
awaits an extension of our current results to a three di-
mensional model along the lines of33. This is work that
is currently underway.

Finally, we note that the model we have discussed in
this paper can also be engineered in a framework of ul-
tracold atoms where a double well lattice potential is
populated with mobile atoms in s and p orbitals42. This
may provide a setting for a direct examination of the 1D
edge states.
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