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A general form of a many-body Hamiltonian is considered, which includes an interacting fermionic
sub-system coupled to non-interacting extended fermionic and bosonic systems. We show that the
exact dynamics of the extended bosonic system can be derived from the reduced density matrix of
the sub-system alone, despite the fact that the latter contains information about the sub-system
only. The advantage of the formalism is immediately clear: While the reduced density matrix of
the sub-system is readily available, the formalism offers access to observables contained in the full
density matrix, which is often difficult to obtain. As an example, we consider an extended Holstein
model and study the nonequilibrium dynamics of the, so called, “reaction mode” for different model
parameters. The effects of the phonon frequency, the strength of the electron-phonon couplings,
and the source-drain bias voltage on the phonon dynamics across the bistability are discussed.

Strongly correlated systems show a remarkable range
of interesting phenomena, some of which can be explained
with the current arsenal of theoretical tools [1, 2]. Their
behavior when driven away from equilibrium (e.g., by
a finite bias voltage) is less well understood [3]. This is
because theoretical tools that provide a reliable and accu-
rate description under equilibrium conditions are difficult
to converge for open quantum systems driven away from
equilibrium [4, 5]. For example, Kondo physics in equilib-
rium has been understood within renormalization group
theory for several decades [6], while the spectral proper-
ties under bias [7] were only recently solved exactly by
newly developed a numerical real-time quantum Monte
Carlo formalism [8, 9], confirming the voltage splitting
of the Kondo peak [10]. The lack of a robust theoreti-
cal framework to nonequilibrium many-body physics has
been the driving force for developing theoretical tools
to understand both the dynamics and the approach to
steady-state when strong correlations are dominant.

One such powerful tool is based on the Nakjima–
Zwanzig reduced density matrix (RDM) formalism [11–
13] combined with a proper impurity solver to obtain
the memory kernel [14]. This approach has been ap-
plied recently to study charge and spin relaxation near
the Kondo crossover temperature of the Anderson impu-
rity model [15] and to study localization and bistability
in the nonequilibrium extended Holstein model [16, 17].
The Nakjima–Zwanzig formalism, by construction, pro-
vides access to the dynamics of observables within the
reduced space only. Here, we expand the methodology
and show how to extract the dynamics of a certain class
of observables that were traced out. Our approach is
particularly suitable for systems with strong electron-
phonon couplings, which give rise to highly interesting
phenomena [18–22]. In light of this, we apply the for-
malism to analyze nonequilibrium phonon dynamics in
the extended Holstein model. While the nonequilibrium

phonon distribution in the steady state of this model has
been analyzed in great detail (see e.g. [23–27] and refer-
ences therein), so far there are only very few theoretical
studies of time-dependent phonon dynamics, which all
involve significant approximations [28–31]. The method-
ology presented in this paper facilitates a numerically
converged treatment of this nonequilibrium many-body
problem.

To outline the reduced density matrix formalism, con-
sider a general Hamiltonian for a many-body quantum
system comprising bosons and fermions

H = Hs +Hf +Hb + Vsf + Vsb, (1)

where Hs =
∑
ij εijd

†
idj +

∑
ijnm Vijnmd

†
id
†
jdndm and

Hf =
∑
kq εkqc

†
kcq are the interacting and non-

interacting parts of the Hamiltonian for the fermionic de-
grees of freedom and Hb =

∑
α ~ωα

(
b†αbα + 1

2

)
describes

the bosonic degrees of freedom. The coupling between
the sub-space “s” and “f ” is described by Vsf and of-
ten is chosen in the form of a hopping between sites,∑
ik

(
tikd

†
i ck + h.c.

)
, but the formalism developed below

is not limited to this choice. The coupling between the in-
teracting fermions and bosons is taken to the lowest order
in dimensionless boson coordinates, xα = 1√

2

(
b†α + bα

)
:

Vsb =
∑
ij,α

Mα
ijd
†
idjxα. (2)

Here, d†i/di and c
†
k/ck are fermionic creation/annihilation

operators at site i and k, respectively, and b†α/bα are
bosonic creation/annihilation operators for mode α. The
above many-body Hamiltonian is a general form cover-
ing different generic models, e.g., Fermi-Bose Hubbard
model [32], the spin-boson model [33], and the Anderson-
Holstein quantum impurity model [34, 35]. Thus, devel-
oping an approach to extract the time-dependent solution
of this generic model is of great importance.
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Using the projection operator P = ρf (0)⊗ρb (0)Trf,b,
where ρf (0) ⊗ ρb (0) is the initial density matrix in the
“b” and “f ” sub-spaces and the trace Trf,b is performed
only for these degrees of freedom, one can derive an ex-
act equation of motion for the RDM of sub-space “s”
(referred to as the “system”) [16]:

i~
∂

∂t
σ (t) = Lsσ (t) +ϑ (t)− i

~

ˆ t

0

dτκ (τ)σ (t− τ) , (3)

where σ (t) = Trf,b ρ (t) and ρ (t) is the full time-
dependent density matrix obeying the Liouville–Von-
Neumann equation ρ̇ = i

~ [H, ρ]. In the above equation,
Ls = [Hs, · · · ] is the system’s Liouvillian,

ϑ (t) = Trf,b

{
Lve−

i
~QLtQρ (0)

}
(4)

is a super-operator matrix, that depends on the choice of
initial conditions and Lv = [Vsf +Vsb, · · · ]. By construc-
tion, ϑ (t) vanishes for an uncorrelated initial state [16],
i.e. when ρ(0) = σ(0)⊗ ρf (0)⊗ ρb (0), where σ(0) is the
system initial density matrix. The memory kernel super-
operator, κ (τ) , which describes the non-Markovian de-
pendency of the time propagation of the system, is given
by [16]

κ (t) = Trf,b

{
Lve−

i
~QLtQL (ρf (0)⊗ ρb (0))

}
(5)

with Q = 1− P.
The calculation of the RDM in Eq.(3) requires as in-

put the knowledge of the time-dependent memory ker-
nel. The difficulty in solving the many-body quantum
Liouville–Von-Neumann equation for ρ (t) is now shifted
to obtaining κ (t). However, simplifications can be made
and rely on the fact that often the memory kernel is
short-lived (the time scale is typically governed by a
large energy scale), i.e., the system “forgets” its history
rapidly [36]. Therefore, one can develop suitable quan-
tum impurity solvers to calculate the memory until it
decays and obtain the dynamics of the RDM at all times
using Eq. (3).

The Nakjima–Zwanzig formalism, by construction,
provides access to the dynamics of observables within
the reduced space only. Observables that depend also on
non-system degrees of freedom (∈ f, b) can, in principle,
be calculated by introducing additional sets of Nakjima–
Zwanzig like equations. For example, for open quantum
systems, the current which depends both on s and f op-
erators requires the introduction of an additional mem-
ory term with a longer decay time [36]. The drawback
of this extended Nakjima–Zwanzig formalism for non-
system operators is that each observable requires the in-
troduction of an additional memory term, which is often
difficult (or perhaps impossible) to calculate.

We propose an alternative formalism suitable for a cer-
tain class of observables that does not require any addi-
tional calculation of memory terms or the inclusion of

the boson degrees of freedom in the system part. More
specifically, we show that the time evolution of the expec-
tation values of the positions and momenta of the bosonic
variables can be obtained from the RDM (or from the
lesser two-time Green function, G< (t, t)) of the system
alone, despite the fact that σ (t) (or G< (t, t)) does not
contain any information about the bosonic bath that was
traced out. The derivation given below is rather simple
but the result is powerful. It offers a way to extract in-
formation which is not directly accessible. We illustrate
the approach for the extended nonequilibrium Holstein
model and discuss the correlations between the phonon
and electron dynamics.

Consider the Heisenberg equation of motion for bα (t)
and b†α (t) generated by the general Hamiltonian of
Eq. (1):

ḃα (t) = −iωαbα (t)− i√
2~

∑
ij

Mα
ijd
†
i (t) dj (t)

ḃ†α (t) = iωαb
†
α (t) +

i√
2~

∑
ij

Mα
ijd
†
i (t) dj (t) , (6)

where the dimensionless position and momentum of each
boson mode is given by xα (t) = 1√

2

(
b†α (t) + bα (t)

)
and

pα (t) = i√
2

(
b†α (t)− bα (t)

)
, respectively. Taking the ex-

pectation value over the initial density matrix, ρ(0), we
find that:

〈ẋα (t)〉 = ωα 〈pα (t)〉 (7)

〈ṗα (t)〉 = −ωα 〈xα (t)〉 − 1

~
∑
ij

Mα
ij

〈
d†i (t) dj (t)

〉
,

where 〈· · · 〉 ≡ Tr[ρ(0) · · · ]. The expectation value of the
site populations and coherences can be expressed in terms
of the RDM (for the same sake by the elements of the
Green function of the system) by〈
d†idi

〉
=

∑
n1, . . . nN

σn1,...nN ,n1,...nN δni,1 (8)

〈
d†idj

〉
=

∑
n1, . . . nN
n

′

1, . . . n
′

N

σn1,...nN ,n1,...nN δni,1δnj ,0δn′
i,0
δn′

j ,1

Eqs. (7) and (8) imply that if the RDM of the system is
known the average positions and momenta of the boson
modes can be obtained by solving for Eq. (7) with the
RDM given as an input. This is the main result of this
letter. We now illustrate this for the extended Holstein
model.

In this model, Hs = εd†d includes a single level,
Hf =

∑
k∈L,R εkc

†
kck, and Hb =

∑
α ~ωα

(
b†αbα + 1

2

)
.

The coupling between the system and the fermionic and
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bosonic baths is given by Vsf =
∑
k tkd

†ck + h.c. and
Vfb = d†d

∑
αMα

(
b†α + bα

)
, respectively. tk and Mα de-

termine the strength of the hybridization and electron-
phonon couplings, respectively. The former is modeled
by a tight-binding spectral density with an overall cou-
pling determined by Γ while the latter is modeled by an
Ohmic spectral density J (ω) = π~

2 ηωe
− ω
ωc , where the di-

mensionless Kondo parameter, η = 2λ
~ωc , determines the

overall electron-phonon couplings, ωc is the characteristic
phonon bath frequency, and λ =

∑
α
M2
α

~ωα = 1
π

´
dω
ω J(ω)

is the reorganization energy (or polaron shift), which also
determines the shifting of the dot energy upon charging.

The reduced density matrix was recently solved for this
model [16, 17] by employing two different approaches
to calculate the memory kernel and solving Eq. (3)
for σ (t): (i) a two-time nonequilibrium Green func-
tion (NEGF) [37] method within the self-consistent Born
approximation (SCBA) [17] suitable for weak electron-
phonon couplings and (ii) the multilayer multiconfigu-
ration time-dependent Hartree (ML-MCTDH) [38, 39],
which is numerically exact but more demanding. The
results obtained in a wide range of parameters revealed
dynamics on multiple timescales. In addition to the short
and intermediate timescales associated with the separate
electronic and phononic degrees of freedom, the electron-
phonon coupling introduces longer timescales related to
the adiabatic or nonadiabatic tunneling between the two
charge states (〈d†d〉 = 1 and 〈d†d〉 = 0). The analysis
shows, furthermore, that the value of the dot occupa-
tion may depend on the initial preparation of the phonon
degrees of freedom, suggesting the existence of bistabil-
ity [16, 17, 23, 40, 41]. Intriguingly, the phenomenon
of bistability persists even on timescales longer than the
adiabatic/nonadiabatic tunneling time.

In Fig. 1 we show the correlation between the dy-
namics of the average dot occupation, the reaction
mode 〈Q (t)〉 =

∑
αMα 〈xα (t)〉 /

√∑
αM

2
α, and its cor-

responding momentum, 〈P (t)〉 =
〈
Q̇ (t)

〉
/Ω, where

Ω =
´
dωJ(ω)´
dω

J(ω)
ω

= ωc is the reaction mode frequency.
These results were obtained for weak electron-phonon
couplings by solving the memory kernel required to ob-
tain the RDM using the two-time NEGF with in the
SCBA. Within this limit, the NEGF–SCBA provides an
accurate description of the RDM in comparison to the
numerically exact ML-MCTDH-SQR approach [38, 39].
We consider 4 different initial conditions for the sys-
tem and boson bath, namely all combinations of ini-
tial occupied/unoccupied (nd (0) = 0/1) dot and shifted
(〈xα (0)〉 = − 2Mα

~ωα )/unshifted (〈xα (0)〉 = 0) phonon
modes. These shifted/unshifted values of 〈xα (0)〉 cor-
respond to the location of the minimum of diabatic po-
tential energy of the occupied/unoccupied dot.

At long times, the dot population (lower panels of
Fig. 1) decays to a unique value (closer to the empty
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Figure 1: nd (t) = 〈d†d〉(t), 〈P (t)〉, and 〈Q (t)〉 for differ-
ent initial conditions: Black - unoccupied (nd (0) = 0) with
〈xα (0)〉 = 0, Red - occupied (nd (0) = 1) with 〈xα (0)〉 = 0,
Blue - unoccupied with 〈xα (0)〉 = − 2Mα

~ωα and Green - oc-
cupied with 〈xα (0)〉 = − 2Mα

~ωα . The model parameters are
λ/Γ = 0.77, εd/Γ = 1.5625, ∆µ/Γ = 0.625, and temperature
T = 0.

state) regardless of the initial preparation of the system
and phonon bath, with a typical decay time inversely
proportional to Ω for the shifted bath and to Γ for the
unshifted bath. The average position 〈Q (t)〉 and its cor-
responding momentum 〈P (t)〉 follow the population dy-
namics. At t = 0, 〈Q(0)〉 assumes two different values
corresponding to the left/right potential minimum. Re-
gardless of the initial conditions, the motion of the re-
action mode is overdamped (i.e. no oscillations are ob-
served). This is known to occur for the reaction mode
of a bosonic bath with Ohmic spectral density. At long
times, the average position decays to values correspond-
ing to the more stable well, consistent with the behavior
of the dot populations. The typical time scale for ap-
proaching the steady-state value is given by Ω (and not
by Γ) regardless of the initial conditions and varies only
slightly for an unoccupied initial dot.

The qualitative behavior of the dot population changes
when the coupling to the boson bath increases. In Fig. (2)
we show the results for a larger value of λ = εd and dif-
ferent bias voltages ∆µ, still within the validity of the
NEGF-SCBA. In this case, both potential minima are
degenerate and the related spin-boson model (at equi-
librium) shows a localization transition at temperature
T = 0, which is broadened and finally disappears as T
is increased. The appearance of two distinct values of
the dot population at long times at small bias voltages
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Figure 2: Same as Fig. 1 for different values of the bias volt-
age. The model parameters are λ/Γ = εd/Γ = 1.5625 and
ωc = 100cm−1.

(∆µ) is consistent with the equilibrium results for the
spin-boson model. The bias voltage plays a similar role
of temperature, and as its value increases the bistability
disappears.

Turning to discuss the transient behavior of 〈Q (t)〉 and
〈P (t)〉, we find that similar to the previous case of weaker
electron-phonon couplings, the average position of the re-
action coordinate follows closely the transient behavior of
the dot population. At long times 〈Q (t)〉 assumes two
values roughly corresponding to the two minima of the
potential energy along the reaction mode, with vanishing
differences as ∆µ increases. The corresponding average
momenta always decays to zero at long times, regardless
of the initial conditions of the dot and boson bath, sug-
gesting that on the time scale observed 〈P (t)〉 decays to
its vanishing steady-state value.

The relation between the behavior of nd(t) and 〈Q (t)〉
at steady state can be derived analytically. Since at
steady-state 〈ṗα (t)〉 = 0, one finds from Eq. (7) that each
boson mode must satisfy the relation 〈xα〉 = −Mα

~ωαnd
and thus, the difference in xα between the two differ-
ent initial distributions of the phonon modes is given by
Mα∆xα = −M2

α

~ωα∆nd, where ∆nd is the corresponding
difference between the two dot populations at steady-
state. Summing both sides over α, the reaction mode
difference, ∆Q =

∑
αMα∆xα/

√∑
αM

2
α, must satisfy

the relation

∆Q = − λ√∑
αM

2
α

∆nd, (9)

where as before λ =
∑
α
M2
α

~ωα . This is in agreement with
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Figure 3: Same as Fig. 1 for λ/Γ = 3.1 and εd/Γ = 3.125.

the result obtained in Fig. 2.
So far, we have discussed the appearance of two

bistable solutions in the so called adiabatic limit, where
ωc � Γ. In Fig. 3 we show results for larger val-
ues of ωc in the regime where ωc ≈ Γ. The value of
the electron-phonon coupling (reorganization energy) is
somewhat larger than the perturbation regime for which
the NEGF-SCBA is accurate. Therefore, we obtain
the input required to generate the memory kernel and
the RDM from the numerically exact ML-MCTDH ap-
proach [38, 39]. Similar to the adiabatic limit with weaker
electron-phonon couplings (shown in Fig. 2), the long
time behavior of nd (t) depends on the initial conditions
of the phonon bath. However, unlike the adiabatic limit,
here we find an additional time scale at long times which
is associated with the transition from one diabatic po-
tential surface to the other. Intriguingly, however, the
bistability prevails at times longer than the tunneling be-
tween the two diabatic surfaces. As the phonon frequency
increases, the value of ∆nd decreases and eventually dis-
appears when ωc � Γ.

Similar to the adiabatic limit, Q (t) shows the same be-
havior as nd (t), including the long time decay associated
with the aforementioned tunneling between the diabatic
surfaces, and the long time value of ∆Q is correlated
with that of ∆nd, in agreement with Eq. (9). Unlike the
transient behavior of the reaction coordinate, its corre-
sponding momentum decays to its steady-state value on a
much faster time scale (typically on a time scale given by
Ω−1) and does not show the long time relaxation behav-
ior associated with the phonon tunneling. This implies
that the tunneling process is not driven by inertia, but is
rather in the over-damped limit.
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In summary, we have expanded our recently developed
nonequilibrium quantum dynamics methodology, which
combines reduced density matrix theory with an impurity
solver to obtain the memory kernel, to describe phonon
dynamics in correlated open quantum systems. Although
the phonon degrees of freedom are formally not part of
the reduced system, the structure of the equations of mo-
tion allows the calculation of phonon observables based
solely on the density matrix and memory kernel of the re-
duced system. The application to a Holstein-type model
for phonon-coupled electron transport in nanosystems re-
veals the intricate interplay between electron and phonon
dynamics in these systems, including the phenomenon of
bistability.
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