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We present theoretical calculations of quasiparticle energies in closed-shell molecules using the
GW method. We compare three different approaches: a full-frequency G0W0 (FF-G0W0) method
with density functional theory (DFT-PBE) used as a starting mean field; a full-frequency GW0

(FF-GW0) method where the interacting Green’s function is approximated by replacing the DFT
energies with self-consistent quasiparticle energies or Hartree-Fock energies; and a G0W0 method
with a Hybertsen-Louie generalized plasmon-pole model (HL GPP-G0W0). While the latter two
methods lead to good agreement with experimental ionization potentials and electron affinities for
methane, ozone, and beryllium oxide molecules, FF-G0W0 results can differ by more than one
electron volt from experiment. We trace this failure of the FF-G0W0 method to the occurrence of
incorrect self-energy poles describing shake-up processes in the vicinity of the quasiparticle energies.

PACS numbers: 31.15.A-, 33.15.Ry, 31.15.V-

Introduction.—Accurate knowledge of the energy
of quasiparticle excitations is necessary to interpret
photoemission1,2, inverse photoemission, tunnelling3,
transport4 and other single-particle excitation experi-
ments. The determination of quasiparticle energies is
also an important step in the calculation of optical ab-
sorption and reflectivity spectra5.

The GW method6,7, in which the electron self energy
is evaluated to first order in the screened Coulomb inter-
actionW and the one-electron Green’s function G, is the
current state-of-the-art approach for calculating accurate
quasiparticle energies in crystalline bulk solids, surfaces
and nanostructures from first principles. To simplify
such calculations, additional approximations are often in-
voked. Most studies employ a one-shot procedure, where
the self energy is evaluated using the Green’s function
and screened Coulomb interaction from a DFT mean-
field calculation. In addition, many studies employed
generalized plasmon-pole models7–9 to avoid the explicit
calculation of the screened interaction at non-zero fre-
quencies.

In recent years, many studies have applied the GW
method to molecular systems10–18. Despite these efforts,
it is not yet clear to what degree the approximations
which are commonly used in GW calculations on ex-
tended systems are valid or effective in molecular sys-
tems. Previous studies explored the dependence of the
results of one-shot GW calculations on the mean-field
starting point19–21. Other studies investigated the ef-
fect of self-consistency by iterating Hedin’s equations,
but neglected vertex corrections20,22,23. Also, several
works on molecules employed a generalized plasmon-pole
model12,13. Plasmon-pole models were originally intro-
duced for calculations on the homogeneous electron gas6,
where the inverse dielectric function exhibits a single,

sharp plasmon peak, and later extended to crystals us-
ing additional sum rules7.
In this article, we explore the importance of self-

consistency and the validity of generalized plasmon-pole
models in GW calculations for molecular systems. In-
stead of focusing on quasiparticle energies, we investi-
gate the frequency-dependent self energies. We observe
that the self energies exhibit many poles whose posi-
tions depend sensitively on the degree of self-consistency
used in the GW calculation. These poles describe shake-
up processes, where in addition to the quasiparticle an
electron-hole pair is created24. In non-selfconsistent cal-
culations with a DFT starting mean field, we find that
self-energy poles can occur erroneously close to the quasi-
particle energies leading to significant disagreement with
experiment for such excitations. Including effects of self-
consistency by replacing the DFT-PBE orbital energies
by self-consistent quasiparticle energies — or equivalently
for molecules by Hartree-Fock energies — moves the self-
energy poles away from the quasiparticle energies and
gives good agreement with experiment. Remarkably, we
find that non-selfconsistent calculations employing a gen-
eralized plasmon-pole model7 that conserves sum rules
also yield accurate results.
Methods.—The energies En of quasiparticle excitations

are the poles of the interacting one-electron Green’s func-
tion and can be calculated by solving the quasiparticle or
Dyson’s equation

h(r)Ψn(r) +

∫
dr′Σ(r, r′, En)Ψn(r

′) = EnΨn(r), (1)

where h(r) = − 1
2
∇2 + Vion(r) + VH(r). Here, with Vion

and VH denote the ionic potential and the Hartree po-
tential, respectively, and Ψn is the quasiparticle wave
function. And, Σ is the electron self energy, which we
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calculate in the GW approximation as

Σ(r, r′, ω) = i

∫
dω′

2π
e−iηω′

G(r, r′, ω − ω′)W (r, r′, ω′)

(2)

with η = 0+. As mentioned, G denotes the interacting
Green’s function and W the screened Coulomb interac-
tion.
Expressing Eq. (1) in the basis of mean-field orbitals

ψn and neglecting off-diagonal matrix elements of the self
energy, the quasiparticle equation becomes

En = ǫn +Σn(En)− V xc
n , (3)

where ǫn and V xc
n denote the orbital energies and

exchange-correlation potential matrix elements from
a mean-field theory calculation and Σn(En) =
〈ψn|Σ(En)|ψn〉.
In practice, G andW , which are needed to construct Σ,

must be evaluated within certain approximations. In the
G0W0 approximation, one uses G and W from a mean-
field calculation.
Going beyond the G0W0 approximation is challeng-

ing. In principle, one could iterate Eqns. (3) and (2)
and recalculate G and W using the quasiparticle ener-
gies. However, because of the neglect of the vertex cor-
rections, this procedure is not guaranteed to converge
accurately to the physical result25. Another possibility
is to update only the Green’s function in Eq. (2), while
keeping the screened interaction W0 from a DFT mean-
field theory. This method is motivated by the obser-
vation that, for many molecular and other large band
gap systems, the mean-field energies from DFT-PBE dif-
fer significantly from the experimental quasiparticle en-
ergies. DFT-PBE energy differences, however, are often
serendipitously close to neutral excitation energies (see
below), which are the poles of the screened interaction.
This method, the GW0 approximation, can yield excel-
lent results for both molecular and extended systems23,25.
Even with the G0W0 approximation, the calculation of

the self energy for molecules is computationally challeng-
ing. To evaluate the frequency integral in Eq. (2), it is
necessary to compute G and W on a sufficiently fine fre-
quency grid. Each evaluation of W requires a sum over
all empty states to calculate the polarizability and then
a matrix inversion to obtain its inverse. To reduce the
computational effort, a generalized plasmon-pole model
is often used to extend the zero-frequency inverse dielec-
tric matrix to finite frequencies7,12,14.
The generalized plasmon-pole model of Hybertsen and

Louie7 assumes the inverse dielectric matrix (ω > 0) can
be expressed as

Imǫ−1
GG′(ω) = AGG′δ(ω − ω̃GG′), (4)

where G and G
′ are reciprocal lattice vectors (we as-

sume a periodic supercell approach) and ω̃GG′ denotes
an effective excitation energy. Both AGG′ and ω̃GG′ are

determined by imposing the f-sum rule and the Kramers-
Kronig relation7.

Computational details.—We calculate self energies and
quasiparticle properties for the beryllium oxide (BeO)
molecule, methane (CH4), and ozone (O3). We first
carry out DFT calculations with the PBE exchange-
correlation functional, a plane wave basis, and norm-
conserving pseudopotentials. For this, we employ the
QUANTUM ESPRESSO program package26. We then
calculate the quasiparticle energies in the full-frequency
G0W0 (FF-G0W0) approximation using a basis of Kohn-
Sham orbitals11,21,27. Because of the large computational
expense, carrying out self-consistent FF-GW0 calcula-
tions is challenging. To approximate the result of a FF-
GW0 calculation, we update the DFT-PBE energies by
solving Eq. (3) with the Hartree-Fock approximation for
the self energy and use the resulting Green’s function,
which still has a simple quasiparticle form, in Eq. (2). Be-
cause screening is weak in a molecule, the Hartree-Fock
energies are often much closer to the final quasiparticle
values than DFT-PBE energies, and the Hartree-Fock
Green’s function is a good approximation to the self-
consistent interacting Green’s function. Finally, we com-
pute the G0W0 self energy using the generalized plasmon-
pole approximation of Hybertsen and Louie (denoted HL
GPP-G0W0). For all GW calculations, we employ the
BerkeleyGW program package28.

To obtain converged results, we use 950 empty states
in the calculation of the screened interaction and the self
energy. In addition, we employ a static remainder cor-
rection to approximately include the effects of missing
unoccupied states in the self energy29. In the calculation
of the screened interaction, we use supercell reciprocal
lattice vectors of kinetic energy up to 12 Ry (CH4), 24
Ry (BeO) and 30 Ry (O3). Finally, we employ a trun-
cated Coulomb interaction to avoid interactions between
periodic replicas30.

Results.—Figure 1(a) shows the graphical solution of
the quasiparticle equation for the highest occupied molec-
ular orbital (HOMO) of the CH4 molecule from the FF-
G0W0, FF-GW0 and HL GPP-G0W0 approaches. All
self energies are smooth functions of frequency in the
vicinity of the quasiparticle solution. At more negative
energies, the self energies exhibit many poles. The on-
set of these singularities occurs at less negative energies
in the FF-G0W0 method with the first pole occurring
at ∼ −21 eV. The slower decay of the corresponding tail
leads to a ∼ 0.55 eV difference of the HOMO energy com-
pared to FF-GW0 and HL GPP-G0W0, which agree very
well with each other and with experiment (see Table I).

Figure 1(b) shows the self energies associated with the
lowest unoccupied orbital (LUMO) of CH4. Here, no
poles of the self energy are located in the vicinity of
the quasiparticle solution and all three approaches are
in good agreement.

Figure 2(a) shows the graphical solution of the quasi-
particle equation for the HOMO of BeO. The FF-G0W0

solution nearly coincides with a pole of the self energy,
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TABLE I: Comparison of quasiparticle energies from various theoretical approaches with experiment31: DFT-PBE, Hartree-
Fock (HF), full-frequency G0W0 (FF-G0W0), full-frequency GW0 (FF-GW0) and G0W0 with the Hybertsen-Louie generalized
plasmon-pole approximation (HL GPP-G0W0). In all calculations, a DFT-PBE starting mean field was employed. All energies
are given in eV.

DFT-PBE HF FF-G0W0@PBE FF-GW0@PBE HL GPP-G0W0@PBE Exp.
CH4 HOMO −9.44 −14.63 −13.64 −14.21 −14.16 −14.35
CH4 LUMO −0.80 0.60 0.16 0.18 0.16 −

BeO HOMO −6.24 −11.35 −8.76 −10.46 −10.56 −10.1
BeO LUMO −4.83 −0.88 −2.65 −2.16 −2.41 −

O3 HOMO −7.96 −14.31 −11.43 −12.97 −12.72 −12.73
O3 LUMO −6.16 −1.07 −2.53 −2.55 −1.86 −2.10
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FIG. 1: Graphical solution of the quasiparticle equation for
the HOMO (a) and the LUMO (b) of methane. The quasi-
particle energies En are given by the values of ω at the in-
tersections of ω − ǫn and ReΣn(ω)− V xc

n
. Shown are self en-

ergies from full-frequency G0W0 theory, full-frequency GW0

theory and G0W0 theory with the generalized Hybertsen-
Louie plasmon-pole approximation. All calculations employed
a DFT-PBE starting point.

while for the other methods the self-energy poles are lo-
cated at more negative energies and the quasiparticle so-
lution occurs in a region where the self energy is smooth.
The FF-GW0 result differs from experiment by 0.36 eV
and agrees well with the HL GPP-G0W0 result. In con-
trast, the FF-G0W0 quasiparticle energy differs from ex-

-15

-10

-5

 0

 5

 10

 15

-14 -12 -10 -8 -6 -4 -2  0

R
eΣ

n(
ω

)-
V

nxc
 (

eV
) 

ω (eV)

a)
        FF-GW0@PBE

FF-G0W0@PBE

HL GPP-G0W0@PBE

ω-εn

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4

R
eΣ

n(
ω

)-
V

nxc
 (

eV
) 

ω (eV)

b)
        FF-GW0@PBE

FF-G0W0@PBE

HL GPP-G0W0@PBE

ω-εn

FIG. 2: Graphical solution of the quasiparticle equation for
the HOMO (a) and the LUMO (b) of the beryllium oxide
molecule. The quasiparticle energies En are given by the val-
ues of ω at the intersections of ω − ǫn and ReΣn(ω) − V xc

n
.

Shown are self energies from full-frequency G0W0 theory, full-
frequency GW0 theory and G0W0 theory with the generalized
Hybertsen-Louie plasmon-pole approximation. All calcula-
tions employed a DFT-PBE starting point.

periment by 1.34 eV. A similar situation occurs for the
LUMO, see Fig. 2(b). Again, the FF-G0W0 quasiparti-
cle solution nearly coincides with a self-energy pole. Such
large deviations of FF-G0W0 from measured ionization
potentials have been pointed out before by Blase et al.15

for a number of gas-phase molecules.
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FIG. 3: (a): Graphical solution of the quasiparticle equation
for the HOMO of ozone. The quasiparticle energies En are
given by the values of ω at the intersections of ω − ǫn and
ReΣn(ω) − V xc

n
. Shown are self energies from full-frequency

G0W0 theory, full-frequency GW0 theory and G0W0 theory
with the generalized Hybertsen-Louie plasmon-pole approxi-
mation. All calculations employed a DFT-PBE starting point.
(b): Resulting spectral functions for the HOMO of ozone.
Arrows denote the position of shake-up features. Note that
some solutions of the quasiparticle equation do not give rise
to peaks in the spectral function because they are suppressed
by strong peaks in the imaginary part of the self energy. The
solutions which give rise to peaks in the spectral functions are
marked by black dots.

Finally, Fig. 3(a) shows the self energy for the DFT-
PBE HOMO of ozone. Again, FF-GW0 and HL GPP-
G0W0 lead to excellent agreement with experiment; how-
ever, FF-G0W0 yields a significant discrepancy of 1.3 eV
because the quasiparticle energy is located in the vicinity
of a self-energy pole.

We thus find a strong correlation between the accuracy
of the self-energies poles and the accuracy of the resulting
quasiparticle energies. For all three molecules, FF-GW0

and HL GPP-G0W0 lead to self-energy poles separated
by multiple electron volts from the quasiparticle energy of
the DFT-PBE HOMO and LUMO and give good agree-
ment with experiment. In contrast, we find significant
disagreement between experiment and FF-G0W0 results
when the quasiparticle energies are close to the incor-
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FIG. 4: Imaginary part of the inverse dielectric matrix for
the BeO molecule in a supercell calculations. Shown are the
full-frequency result (FF) and the Hybertsen-Louie general-
ized plasmon-pole (HL GPP) model for G = G

′ = [001]2π/a0

and G = G
′ = [400]2π/a0 (multiplied by a factor of 10) with

a0 denoting the linear dimension of the supercell. Arrows
denote the positions of the effective excitations in the gener-
alized plasmon-pole model. The molecular axis is along the
z-direction.

rectly computed self-energy poles. To understand the
differences in the positions of the self-energy poles, we
express the FF-G0W0 self energy as the sum of a bare
exchange contribution and a frequency-dependent corre-
lation contribution given by

〈m|Σc(ω)|m〉 =
∑
nI

|VmnI |
2

ω − ǫn − ΩIsgn(ǫn − µ) + iη
, (5)

where µ denotes the chemical potential and VjnI is a fluc-
tuation potential27,32. Also, ΩI is a pole of the screened
interaction W and corresponds to a neutral excitation
energy of the system6. For molecular systems, the poles
of the screened interaction within the random-phase ap-
proximation are typically quite close to energy differ-
ences of the DFT-PBE mean-field theory used to cal-
culate W 33. Table II shows that DFT-PBE energy dif-
ferences agree very well with experimental optical exci-
tation energies in the three molecules indicating that the
screened interaction from DFT-PBE is reasonable accu-
rate. In contrast, Hartree-Fock energy differences differ
by multiple electron volts from experiment, as expected
as electron-hole attractions in optical excitations are ne-
glected within Hartree-Fock theory.
According to Eq. (5), the FF-G0W0 self-energy poles

occur at ω = ǫn −ΩI (if n is an occupied state). Even if
the values of ΩI were accurate, the FF-G0W0 self-energy
poles would be incorrectly positioned if the mean-field
energies ǫn differ from the quasiparticle energies. In our
approximate FF-GW0 method, the DFT-PBE orbital en-
ergies are replaced by Hartree-Fock energies, which are
closer to the correct quasiparticle energies and more neg-
ative by multiple electron volts (see Table I). This FF-
GW0 approach thus moves the self-energy poles to more
negative energies. In the HL GPP-G0W0 method, DFT-
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TABLE II: Comparison of lowest experimental neutral sin-
glet excitation energies of the molecules34–38 with energy
differences from density-functional theory (DFT-PBE) and
Hartree-Fock (HF) calculations. The neutral excitation ener-
gies are the poles of the screened interaction. All energies are
given in eV.

DFT-PBE HF Exp.
CH4 8.64 14.03 9.87-10.5
BeO 1.41 10.47 1.48
O3 1.80 13.24 2.0

PBE energies are used in Eq. (5), but for each WGG′

all poles are replaced by a single effective pole. To con-
serve sum rules7, the energy of the effective pole must
be larger than the smallest ΩI , see Figure 4. In effect,
this also results in a shift of the self-energy poles to more
negative energies. We thus find that different reasons are
responsible for the shift of the self-energy poles to more
appropriate values in FF-GW0 and HL GPP-G0W0 ap-
proaches. We note that while the resulting self energies
agree quite well in the vicinity of the quasiparticle so-
lution, they disagree at higher energies where shake-up
structures are important. This could result in inaccura-
cies of the generalized plasmon-pole approximations for
the so-called inner valence states24.
For unoccupied states in the sum in Eq. (5), the self-

energy poles are located at ω = ǫn +ΩI . The orbital en-
ergies in Hartree-Fock are again closer to the true quasi-
particle energies than those from DFT-PBE (see Table I),
resulting in a shift of the self-energy poles to more posi-
tive energies. The increase of the effective ΩI in the HL
GPP-G0W0 theory has the same effect. The above dis-
cussion shows that use of FF-G0W0 is particularly prob-
lematic for molecules with a small DFT-PBE HOMO-
LUMO gap, resulting in self-energy poles in the vicinity
of the quasiparticle energy.
Finally, we discuss the physical meaning of the singular

structures in the self energy. These poles give rise to ad-
ditional peaks in the spectral function [see Fig. 3(b)] de-
scribing so-called shake-up processes where an electron-
hole pair is excited in addition to a quasiparticle24. Also,
in electronic systems with open shells, the self-energy

poles are responsible for the multiplet structure arising
from the coupling of angular momenta of the outer va-
lence shell and of the hole left behind in the photoemis-
sion process11. In extended systems, additional features
in spectral functions arising from the shake-up of plas-
mon modes, known as plasmon satellites, have received
much attention recently1,39,40.

Conclusions.—We have computed self energies and
quasiparticle properties for three molecules using three
approximate GW methods employed a DFT-PBE mean-
field starting point. Results of the full-frequency G0W0

approximation can differ significantly (by more than 1
eV) from experimental findings. We have traced this
failure of the full-frequency G0W0 method to the occur-
rence of inaccurate self-energy poles in the vicinity of the
quasiparticle energy. Both a full-frequency GW0 method
and G0W0 with the generalized plasmon-pole approxima-
tion shift the self-energy poles away from the quasipar-
ticle energies and lead to excellent agreement with ex-
periment. The generalized plasmon-pole model is there-
fore a valuable approximation for molecular systems re-
ducing the computational cost significantly compared to
full-frequency self-consistent approaches. We expect that
the effects of self consistency are important for a wide
range of molecules, particularly those with a mean-field
HOMO-LUMO gap of similar or smaller size than the
typical quasiparticle shifts.
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