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We develop and exactly solve a model for electrons driven by pulsed or continuous ac fields.
The theory includes both the photoexcitation process as well as the subsequent acceleration of the
electrons. In the case of an ac response, we examine both the nonequilibrium density of states
and the current. In the case of pulsed light for high harmonic generation, we find the radiated
light assumes a nearly universal behavior, with only limited dependence on the parameters of the
system, except for the amplitude of the driving field, which determines the range of high harmonics
generated and a tendency toward a narrowing of the peaks in a charge density wave versus a metal.
This type of high harmonic generation can potentially be used for the creation of solid-state-based
ultrafast light sources.

PACS numbers: 78.47.je, 78.20.-e, 72.20.Ht, 72.40.+w

I. INTRODUCTION

Recent experimental work has shown that high har-
monic generation of light can be seen from a solid ma-
terial when it is illuminated by a large amplitude fem-
tosecond light pulse1,2. The light generation comes from
the photoexcitation and subsequent acceleration of elec-
trons and holes in the material and the oscillations that
occur as the electrons and holes are accelerated towards
the Brillouin zone boundary (which are called attosec-
ond Bloch oscillations1,2). Theoretical descriptions of
this phenomena have been performed within Boltzmann
and semiclassical approaches and within a many-body
formulation. The semiclassical approaches include the
dipolar matrix element that couples different symmetry
bands together to allow the field to photoexcite electrons
and leave behind holes1,3–6. The many-body formulation
has primarily worked with a single band approach, and
hence has not yet examined the photoexcitation process
in detail7,8. In this work, we examine a simple band
model that has a gap due to a checkerboard ordering
pattern of the underlying lattice potential and the corre-
sponding charge-density-wave structure that results for
the electronic band structure. Because the resulting two
bands have the same symmetry and originate from the
same single band when the checkerboard potential van-
ishes, one can directly excite from the lower to the upper
band with a formalism that uses just the Peierls substitu-
tion to describe the nonlinear effects of the driving elec-
tric field (the dipolar matrix element between these bands
vanishes since they have the same symmetry). Hence,
this model is able to properly describe the whole pro-
cess for high harmonic generation in the solid within a
fully quantum model. Furthermore, because it is effec-
tively a noninteracting problem, the full nonequilibrium
dynamics, including all of these quantum-mechanical ef-
fects, can be solved exactly using an efficient parallel al-

gorithm. In addition, this Green’s function method can
be straightforwardly generalized via nonequilibrium dy-
namical mean-field theory to incorporate many-body ef-
fects due to electron-electron scattering.

High harmonic generation is an important subject
within the optics community because the high harmonic
pulses can be employed to generate sources of light.
These light sources can then be used to selectively drive
excitations in specific materials, allowing an experiment
to focus on excitation by collective modes with frequen-
cies in a narrow range of energy. In high harmonics
generated from crystals, the field amplitude of the high
harmonics can become comparable to that of the funda-
mental, making it a possible source for light generation9.
Furthermore, since the high order harmonics generated
from solids are temporally localized to the center of the
driving pulse8, the high order harmonics can have short
durations into the attosecond regime, allowing for ultra-
short pulsed light generation.

In this paper, we first summarize the formalism needed
to solve the nonequilibrium problem exactly in Sec. II.
This includes both the formal solution for the Green’s
functions in the presence of the field, and how to apply
the Green’s functions to calculate physical observables.
In Sec. III, we focus on two different scenarios. The
first is the case of applying an ac driving field. In this
case, one generates a current with the same period as
the driving field, but as the amplitude is increased, the
current develops significant oscillatory structure within
the period, which gives rise to higher harmonic genera-
tion. Performing a Fourier transform of the current, we
show that the higher harmonics develop additional os-
cillatory structure, similar to that of beats. Next, we
consider the case of a pulse driving the system. Here, we
find results that look very similar to those of single-band
calculations, indicating that the details for how the pho-
toexcitation takes place does not play a significant role
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in determining the structure of the high harmonic gen-
eration spectra except for an overall narrowing effect on
the harmonic peaks. This is a particularly surprising re-
sult, since the simple Landau-Zener theory for tunneling
shows that the ability to excite from the lower band to
the upper band depends exponentially on the field am-
plitude, and hence one would expect the photoexcitation
to take place primarily at the points where the field am-
plitude is maximal. But we find results similar to earlier
calculations which did not take the photoexcitation pro-
cess into account at all7,8, indicating that the details of
the photoexcitation do not play a significant role and in-
stead primarily cause a narrowing effect on the peaks.
This occurs even though the band has Pauli blocking, in
that once a state is occupied in the upper band no more
electrons can go into that state. Detailed calculations of
the population excited into the upper band as a function
of time show that the excitation occurs over an extended
region of time, and that for large amplitude pulses, there
are also de-excitation processes that reduce the number
of electrons in the upper band and repopulate the lower
band. These results are shown elsewhere10. We end the
paper by providing our conclusions in Sec. IV.

II. FORMALISM

We study a noninteracting charge-density-wave system
on a lattice in the presence of a uniform time-dependent
electric field. We work in a gauge that has a spatially uni-
form, but time dependent vector potential and no scalar
potential, so that the system retains translational invari-
ance throughout. The time-dependent electric field is de-
scribed via the Peierls’ substitution11, which is a simpli-
fied semi-classical treatment of the electromagnetic field
that is exact and nonperturbative. With the Peierls’ sub-
stitution, the hopping matrix has a time-dependent phase
factor12

tij(t) = tij exp

[
− ie
h̄c

∫ Rj

Ri

A(r, t) · dr

]
. (1)

From Maxwell’s equations, the corresponding electric
field E(r, t) is found from the derivative of the vector
potential A(r, t).

E(r, t) = −1

c

∂A(r, t)

∂t
. (2)

The time-dependent Hamiltonian then becomes

H(t) = −
∑
i,j

tij(t)c
†
i cj +

∑
i∈A

(U −µ)c†i ci−
∑
i∈B

µc†i ci, (3)

in the Schroedinger representation. Here, the symbols A
and B denote the two sublattices of the bipartite lattice,
where we have the checkerboard pattern, and the hopping
is only between nearest neighbors. At half filling for the
electrons, we have the chemical potential satisfy µ = U/2.

The operators c†i and ci denote the creation/destruction
operators for a spinless fermion at the ith lattice site and
they satisfy the canonical fermionic anticommutation re-

lations {ci, c
†
j}+ = δij . Note that because these electrons

are noninteracting, the spin degree of freedom is trivial
to include and hence is neglected here.

In a spatially uniform field directed along the diag-
onal of the hypercubic lattice in d-dimensions, A(t) =
A(t)(1, 1, . . . , 1), the time-dependent band structure in
momentum space for the U = 0 case is,

εk(t) = −
∑
ij

tij exp[−i(k− e

h̄c
A(t)) ·(RiA−RjB)]. (4)

So the effect of the Peierls’ substitution is to add a time-
dependent shift to the momentum in the noninteracting
electronic band structure at U = 0:

εk(t) = − lim
d→∞

d∑
l=1

t∗√
d

cos

[
a

(
kl −

eA(t)

h̄c

)]
(5)

where we have scaled the hopping to give a nontrivial re-
sult in the infinite-dimensional limit (t∗ will serve as the
energy unit and remains finite). Generalizations to other
spatial dimensions or to other directions of the electric
field are straightforward to do. The reason why we fo-
cus on infinite dimensions here is that it has been well
established that the infinite-dimensional limit is often
quite close to the three-dimensional limit, and the re-
sults here can be used as a noninteracting benchmark
for further studies that incorporate nonequilibrium dy-
namical mean-field theory to describe electron-electron
interactions13.

Transforming to momentum space, where

c†i (t) =
∑

k:εk<0

[e−ik·Ric†k(t) + e−i(k+Q)·Ric†k+Q(t)] (6)

with Q = (π, π, π, . . .), the momentum-space Hamilto-
nian in the Schrödinger representation becomes

HS(t) =
∑

k:εk<0

(
c†k c†k+Q

)
(7)

×
(
εk(t) + U/2− µ U/2

U/2 −εk(t) + U/2− µ

)(
ck

ck+Q

)
where the summation is restricted to the small Brillouin
zone with εk < 0 because the reduced translational sym-
metry (due to the checkerboard ordering of the charge
density wave) leads to a smaller Brillouin zone. The
time-dependent band structure εk(t) at U = 0 can then
be expanded with the difference formula of the cosine,

εk(t) = cos

(
eaA(t)

h̄c

)
εk + sin

(
eaA(t)

h̄c

)
εk (8)

which depends on the equilibrium band structure at U =
0

εk = − lim
d→∞

d∑
l=1

t∗√
d

cos(akl) (9)
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and the projection of the equilibrium velocity along the
field direction

εk = − lim
d→∞

d∑
l=1

t∗√
d

sin(akl). (10)

We will be solving for the Green’s functions in order
to determine the time evolution of the system. Normally,
the Green’s functions are defined in terms of the creation
and destruction operators in the Heisenberg representa-
tion. Because the Hamiltonian is noninteracting, we can
directly solve for the Heisenberg operators by solving the
equation of motion, which closes at the lowest order. De-
tails can be found in Ref. 14. Then the time evolution for
the creation and destruction operators for a small time
step ∆t at time t, satisfies

U(k, t, t−∆t) = cos

(
∆t

h̄

√
ε2
k

(
t− ∆t

2

)
+
U2

4

)
I

− i
(
εk(t− ∆t

2 ) U
2

U
2 −εk(t− ∆t

2 )

)

×
sin

(
∆t
h̄

√
ε2
k(t− ∆t

2 ) + U2

4

)
√
ε2
k(t− ∆t

2 ) + U2

4

. (11)

Here, we used the result that the chemical potential sat-
isfies µ = U/2 at half-filling to make the equation less
cumbersome. In these calculations, we start from a min-
imum time t0 producing the time-evolution operator as,

U(k, t, t0) = U(k, t, t−∆t)U(k, t−∆t, t− 2∆t) . . .

× U(k, t0 + ∆t, t0) (12)

where the 2×2 matrix structure involves repeated matrix
multiplication in this equation. For each k, the two-time
evolution operator is found from the identity

U(k, t, t′) = U(k, t, t0)U†(k, t0, t
′). (13)

Once the time evolution at each time pair is found, we
then calculate the nonequilibrium Green’s functions to
obtain the physical properties of the system.

The retarded Green’s function is defined as follows:

GRij(t, t
′) = −iθ(t− t′)〈{ci(t), c

†
j(t
′)}+〉, (14)

with 〈Ô〉 = Tr exp[−βH(t → −∞)]Ô/Z (for any op-

erator Ô and the equilibrium partition function Z =
Tr exp[−βH(t → −∞)]. Here β = 1/T is the inverse
temperature that the system is initialized in before the
field is turned on (in this work we will always start the
system at T = 0 or β = ∞). Substituting in the time-
evolution operators for the momentum-dependent oper-
ators produces for the local retarded Green’s function14

GRii(t, t
′) = −iθ(t− t′)

∑
k:εk<0

[U11(k, t, t′) + U22(k, t, t′)

± U12(k, t, t′)± U21(k, t, t′)]. (15)

Here Uab(k, t, t
′) and U†ab(k, t, t

′) represent the elements

of row a and column b in the U(k, t, t′) and U†(k, t, t′)
matrices, respectively, and the plus sign is for the A sub-
lattice and the minus sign is for the B sublattice. From
the above equation, we can see that the retarded Green’s
function only depends on the evolution between the two
times t and t′ and not on the previous history of the evo-
lution of the system. This is because the retarded Green’s
function determines the character of the quantum states
of the system, which is determined by the current Hamil-
tonian, and not on the complete history of the evolution
of the system.

Now we employ the average and relative time coordi-
nates which were introduced by Wigner for nonequilib-
rium Green’s functions15. The relative and average times
are defined via,

trel = t− t′, tave =
t+ t′

2
, (16)

respectively. The local retarded Green’s function in the
frequency domain is the Fourier transform of the local re-
tarded Green’s function with respect to the relative time
for a fixed average time:

GRii(ω, tave) =

∫
dtrele

iωtrelGRii(trel, tave). (17)

From this Green’s function, one can construct the
nonequilibrium local density of states

Ai(ω, tave) = − 1

π
ImGRii(ω, tave). (18)

In order to calculate the current as a function of time,
we need to use the lesser Green’s function, which de-
termines how the quantum states are filled. The lesser
Green’s function is defined as

G<ij(t, t
′) = i〈c†j(t

′)ci(t)〉, (19)

with the operators in the Heisenberg representation. Un-
like the retarded Green’s function, the lesser Green’s
function does not simplify to depend only on the rela-
tive time evolution from t to t′, but it also depends on
the history of the time evolution. We need the lesser
Green’s functions in momentum space, which has a 2× 2
matrix structure and is given explicitly in Ref. 14.

We take our starting time t0 as a time well before the
time we turn on the electric field. We assume the sys-
tem is in equilibrium at t0 and start the evolution from
there. To determine the expectation values for the dif-
ferent momentum-dependent Green’s functions, we must
convert those expectation values into the equilibrium
distributions found from diagonalizing the equilibrium
Hamiltonian into its two respective bands. Details can
be found in Ref. 14. The formula for the current is te-
dious, but straightforward to derive. It follows just as the
derivation does in equilibrium, but one needs to take into
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account the Peierls’ substitution. After some long alge-
bra, one finds that each spatial component of the current
becomes

〈jα(t)〉 =
∑

k:ε(k)<0

1

h̄
∇kαε(k−eA(t))[G<11(k, t, t)−G<22(k, t, t)].

(20)
Note that we are solving this problem in the infinite-

dimensional limit, but the solution is an exact solution
in any dimension, with the corresponding changes to a
number of formulas to take into account the finite dimen-
sionality of the system.

This approach can also be used to describe systems
that separate into two coupled momenta for each mo-
mentum point in the Brillouin zone like graphene. For
example, graphene has had its topological properties in
a field analyzed by a similar approach within the Flo-
quet formalism16 and with a transient Green’s function
approach17.

III. NUMERICAL IMPLEMENTATION

We solve this model in the infinite-dimensional case at
half filling with the units taken as e = h̄ = a = c =
t∗ = 1. In the limit of the infinite dimensions, the joint
density of states for the U = 0 case satisfies18

ρ(εk, εk) =
1

π
exp

[
−(ε2

k + ε2
k)
]
. (21)

Here the band structure εk and projection of the band
velocity on the direction of the field εk are functions of
k. Special attention needs to be paid to the points when
εk = 0. We only take 1/2 of the weight because those
momentum points are on the boundary of the reduced
Brillouin zone and each equivalent momentum point ap-
pears twice.

The accuracy of this calculation is both dependent on
the time step ∆t and energy step ∆εk (∆εk). The error
caused by ∆t can be evaluated with the accuracy of the
moments of the retarded Green’s function. We find this
error is less than 10−4 when we take ∆t < 0.02. Here
we use ∆t = 0.01. The error caused by the energy step
influences the maximum relative time to which we can
calculate. With ∆ε =0.005, we can achieve an accurate
lesser Green’s function as far as |trel| < 1300.

IV. AC RESPONSE

We begin by considering the response of the charge-
density wave system to a monochromatic ac field of am-
plitude E0 and frequency ω0 applied at t = 0 [E(t) =
θ(t)E0 sin(ω0t)]. There are three important energies that
can determine frequency-dependent responses of the sys-
tem: (i) the driving frequency ω0; (ii) the field amplitude
E0, and (iii) the gap of the charge-density-wave system
U . Figure 1, gives an example of the current response

to an ac field. Note how the current starts with a tran-
sient response which fairly rapidly approaches a periodic
“steady state” behavior. We call the current flow an at-
tosecond Bloch oscillation, because this has become the
standard nomenclature in the HHG field to describe the
periodic oscillating current that arises from the Bragg
diffraction as the momentum vectors reach the edge of
the Brillouin zone. The current flow starts with transient
behavior that eventually settles in to a periodic “steady
state” response. This evolution of the system is due to
partial decay of oscillations due to averaging effects be-
cause there is no damping in a noninteracting system. In
this figure, the field amplitude plays an important role in
determining the oscillatory response once the field am-
plitude becomes large enough. It does this by creating
additional structure inside the period of the oscillating
motion determined by the driving frequency. This more
complicated structure can be seen in a Fourier transform
of the data as giving rise to higher harmonics in the power
spectrum (see below).

FIG. 1. (Color online.) Driven ac current with U = 1, ω0=2.5
and different monochromatic ac field amplitudes: (i) E0 = 1
(top); (ii) E0 = 5 (center); and (iii) E0 = 10 (bottom).

Of course, the electrons must follow the ac field and
oscillate at a frequency ω0. In addition, we expect the
system to also oscillate at the gap U and at the driving
field amplitude E0. We examine the case with U = 1
and E0 = 1 for different ac driving frequencies. Fig-
ure 2 shows the Fourier transform of the current over the
time interval [0, 80] for this case. We are forced into con-
sidering a finite time interval, because the simulation is
limited by how far in time it can be evolved. Because
we are using a finite time window, peaks that might be
sharp over a larger window will become broadened due
to the truncation in the time domain. Nevertheless, this
method is quite good for determining what frequencies
are providing the dominant contributions to the time
trace. We see that peaks are located at U = E0 and
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FIG. 2. (Color online.) Fourier transform of the ac current
for U = 1 and E0=1 and different ω0. Note how most panels
have peaks at ω = 1 and ω = ω0. When ω0 = 1 higher
harmonics are also seen.

ω0. When ω0 is away from U = E0, the signal at U = E0

is more significant. It is interesting to note that in the
case ω0 = U = E0 = 1, peaks are observed at harmonics
of the fundamental frequency.

Next, we examine the case that fixes the charge den-
sity wave gap U = 1 and field driving frequency ω0 = 1
and varies the field amplitude. This result is plotted in
Figure 3. Note how increasing the field amplitude in-
creases the range of harmonic frequencies that are gen-
erated in the Fourier transform of the current. This is a
direct result of attosecond Bloch oscillations, which cre-
ate high harmonics as the electrons are Bragg reflected
at the small Brillouin zone boundary. More interesting,
is the fact that the power spectrum is not monotonic, but
has a beat-like structure to the amplitude of the differ-
ent harmonic signals. This structure appears to get more
complex as the field amplitude is increased.

We also calculate the case with fixed U = 1 and
ω0 = 2.5 and varying field amplitude E0. The result
for this case is shown in Figure 4. In this case, we do
not see significant harmonics when the field amplitude is
low (E0=0.5 ,1, and 2). We see that from E0 = 0.5 to 2,
there are only peaks at U and ω0. Higher harmonics be-
gin to emerge when E0 = 5. As the amplitude is further
increased, it becomes clear that we see harmonics at both
frequencies U and ω0. But, in cases when a frequency is
a high harmonic of both U and ω0, we find that there
can be either constructive or destructive interference of
the higher harmonic peaks.

Finally, we study the case with fixed E0 = 1 and
ω0 = 1, but changing U in Figure 5. When U increases,
we see the current amplitude decreases because of the
growing insulator gap magnitude. Peaks are observed at
frequencies ω = U and ω = E0 = ω0. The field ampli-
tude is too small to generate significant high harmonics.

FIG. 3. (Color online.) Fourier transform of the ac current
for U = 1 and ω0=1 with different E0.

FIG. 4. (Color online.) Fourier transform of the ac current
for U = 1, ω0=2.5 with different E0. Higher harmonics of
both frequencies are seen, and joint harmonics are sometimes
enhanced, sometimes reduced.

The largest harmonics are generated when U is near 1.

In addition to examining the current traces as func-
tions of time, or their Fourier transform as functions of
frequency, we can also examine the “steady state” density
of states of the system that sets in for long average times.
In equilibrium, the density of states has square-root sin-
gularities at the upper and lower band edges. These sin-
gularities give rise to long tails in the time domain, which
decay like the inverse square root of the time. When we
examine the retarded Green’s function for long average
times, the two times in the Green’s function either corre-
spond to both times being after the field was turned on,
or one time before and one after. When both times are
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FIG. 5. (Color online.) Fourier transform of the ac current
for ω0=1 and E0 = 1 with different U . Note the change in
the vertical scale for lower plot.

after the field has turned on, the system is determined
by its behavior as a quantum system in the presence of
the driving field, which will determine the “steady state”
density of states. In the mixed case of one time before
and one after, the system interpolates the Green’s func-
tion between the equilibrium and the nonequilibrium lim-
its19. In general, however, the tails in the time domain
are shorter than in equilibrium, because the nonequilib-
rium system does not have power law singularities in the
density of states. Because the ac field oscillates in time,
we expect the density of states to have a dependence on
the average time tave. Averaging the results for the den-
sity of states over this period is employed to construct
the time-averaged nonequilibrium density of states.

This is done in Figure 6. The top panel shows the
time-averaged local density of states for the A sublat-
tice. In a noninteracting metal, we expect to see features
at harmonics of the driving frequency, which will occur
at the integers for ω0 = 1. Indeed, we do tend to see
a sharp reduction of the density of states there, and a
smoothing out of all singularities. The most prominent
feature is near ω = 1, with other small integers show-
ing smaller features. This region is where the equilib-
rium density of states showed the divergence at the inner
band edge on the A sublattice. Near the other small in-
tegers, additional features can be seen, but they tend to
be small. Looking at the instantaneous density of states
at the different time steps shows that ω = 0 and ω = −1
have significant structures for specific times during the
period, but they are greatly reduced when averaged over
time. In fact, the averaging of the density of states pro-
duces the cancellation already over one half period, as
one can see that the right lower panel is the same as the
left lower panel. The results for the B sublattice are just
the mirror image of the top panel in Figure 6. It is likely

FIG. 6. (Color online.) Long-time local density of states
for the A sublattice and the case where the field is given by
E(t) = θ(t) sin(t) and U = 1.5. The upper panel shows the
time-averaged result, while the lower two panels show the
results for different times during the period. We examine the
period of 2π starting from the average time of tave = 100.

that the time-averaged DOS should relate directly to the
DOS that one can calculate within a Floquet formalism.

V. HIGH HARMONIC GENERATION

Next, we examine the phenomenon of high harmonic
generation in solids. In an experimental set-up, this will
correspond to applying a large amplitude pulsed field
rather than a continuous-beam ac field to the sample.
The resulting attosecond Bloch oscillations have higher
harmonics due to the nonlinear nature of the system
when the driving field amplitude is large.

Harmonic generation of light was observed in crys-
talline quartz by Franken in 1961 after the invention
of laser20. In this experiment, a monochromatic laser
with a wavelength of 694 nm was focused onto crystalline
quartz, and ultraviolet light with a wavelength of 347 nm,
or twice the frequency of the original laser, was created.
This result can be simply interpreted as the doubling of
the frequency of light as two photons combine to one in
a nonlinear process.

High harmonic generation was next observed in a
plasma generated from a solid material in 197721, and
later high harmonic generation was also observed in a
gas. High order harmonic generation from the gas phase
has complicated features and is still not fully understood.
One of the prevailing theories for high harmonic genera-
tion in gases is the three-step model. This model consid-
ers the nonlinear optical process as (i) tunnel ionization
of an electron, (ii) electron acceleration in the laser field
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away from the ion and then back toward the ion, and (iii)
recombination to its parent ion with an energy release in
the form of higher energy photons22–24.

Recently, Ghimire and collaborators reported the ob-
servation of high-order harmonic generation in a ZnO
crystal, which occurs in the solid due to attosecond Bloch
oscillations of photoexcited electrons1. In their exper-
iments, they focus linear polarized high-power, 9 cy-
cle mid-infrared laser pulses (3.2-3.7 µm) onto a single-
crystal ZnO wafer near normal incidence. They observed
high harmonic peaks beyond the band edge. This obser-
vation is fundamentally different from the gas-phase high
harmonic generation. Instead of the ionization and re-
combination of an electron, this phenomenon comes from
the acceleration of the electrons in the solid and electron-
hole pair excitation and de-excitation, essentially ocur-
ring due to attosecond Bloch oscillations. More recently,
Schubert et al.2 used a THz drive pulse to generate high
harmonics in gallium selenide.

Though the high harmonic generation is hard to ob-
serve in a solid-state experiment, it is very natural to
obtain the the theoretical description of the high har-
monic generation from these attosecond Bloch oscilla-
tions. When a time-dependent electric field E(t) is ap-
plied to the system, the electrons accelerate in momen-
tum space, and when electrons reach the boundary of the
Brillouin zone, Bragg reflections occur to fold them back
into the first Brillouin zone. This acceleration process
make electrons perform periodic motion in momentum
space. If the electric field is strong enough to have |aeE|
large compared to the width of the electronic band, and
the driving frequency is small, we would observe a dis-
crete energy spectrum since the electron wave functions
become localized. This kind of discrete energy spectrum
is called the Wannier-Stark ladder25. However, when the
driving frequency is large, the oscillating charged elec-
trons will radiate light, and the radiation pattern is de-
termined by harmonics of the driving frequency.

In our model, we study the Bloch electrons in a charge-
density-wave material, which allows us to model both the
excitation of the electrons into the upper band (and the
creation of holes in the lower band) and the subsequent
acceleration of those electrons and holes. As discussed
before, the Peierls’ substitution includes the electric field
effects to all orders. Also since we don’t have scattering
in this system, we are able to study high harmonic gener-
ation in this system exactly. Electromagnetic waves are
produced by the accelerating charge, which is described
by the time derivative of the electric current. So the light
spectrum is proportional to∣∣∣∣∫ dteiωt

d

dt
j(t)

∣∣∣∣2 = |ωJ(ω)|2. (22)

Our method can calculate the transient nonequilibrium
current under a strong electric field pulse in a charge-
density-wave system. Note that we are assuming that
the acceleration of electrons in the bulk dominates the
production of light and surface effects are minimal.

FIG. 7. (Color online.) Electrical current (top) in the charge-
density-wave insulator with U = 1 and generated by the elec-
tric field pulse E(t) = E0 sin(2t) exp(−t2/25) (bottom).

FIG. 8. (Color online.) Electrical current (top) in the charge-
density-wave insulator with U = 1 and generated by the elec-
tric field pulse field pulse E(t) = E0 cos(3t) exp(−t2/25) (bot-
tom)

Because the light pulse that is used in experiment is a
propagating light pulse, it cannot have any dc component
to it. A typical pulse we use here is

E(t) = E0 sin(ω0t) exp(−t2/σ2). (23)

Here σ is a time constant that determines the pulse
width. We can see that if σ > 2π/ω0, the electric field
pulse has a well defined frequency. Another pulse we will
use in this work is

E(t) = E0 cos(3t) exp(−t2/σ2). (24)
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FIG. 9. (Color online.) High harmonic generation for the
pulse E(t) = E0 sin(2t) exp(−t2/25) with U = 1. The red
curve is for the charge density wave, while the black curve
is for a metal7. Note how the basic structure of the two re-
sponses are similar, but the metal has a much higher cutoff
to the high harmonic spectra for the same amplitude. The
overall amplitude is smaller for the charge density wave case,
as expected, and the peak widths are somewhat narrower.

FIG. 10. (Color online.) High harmonic generation for the
pulse E(t) = E0 cos(3t) exp(−t2/25) with U = 1. The red
curve is for the charge density wave, while the black curve is
for a metal7.The behavior is similar to the lower frequency
case, but with the difference in the cutoff frequency for the
metal versus the insulator being even more striking.

This pulse also yields nearly a zero vector potential for
long times. So both pulses mimic the behavior of actual
experimentally realizable pulses.

Figures 7 and 8 show the electric field pulses we em-

ploy and the typical currents generated by them. This
current is calculated for the case U = 1 and σ = 5. For
a small amplitude (E0 = 1), the current (the black line
in the top panels) basically follows the vector potential,
which is the time integral of the electric field. The sine
pulse in Figure 7 with ω0 = 2 corresponds to a 7-cycle
pulse and the cosine pulse in Figure 8 corresponds to
a 9-cycle pulse. With such a low pulse amplitude, the
electron accelerates without hitting the Brillouin zone
boundary, and hence, it corresponds to a nearly linear
response regime. But when the field amplitude becomes
larger, the current shows nonlinear behavior. In addition
to the time-traces of the current, we also calculate the
Fourier transform of the current to determine the radi-
ated light spectrum. This Fourier transform is performed
over the time interval [−40, 80]. Here due to the symme-
try of a lattice (even under spatial inversions), the high
harmonic spectrum produces only odd harmonics of the
fundamental driving frequency7. When the field ampli-
tude becomes larger, we see more harmonics appear and
the peaks for lower harmonics develop additional struc-
ture. It appears that the 9-cycle pulse case produces
more recognizable peaks than the 7-cycle pulse, as ex-
pected. But for E0 = 1, the 7-cycle pulse case produces
a larger maximum HHG order.

FIG. 11. High harmonic generation for the charge-density-
wave insulator for the pulse E(t) = E0 cos(3t) exp(−t2/25)
and U = 3.

As we discussed above for ac driving fields, having U
equal to the electric field driving frequency ω0 enhances
the generation of higher order harmonics. The corre-
sponding high harmonic generation for U = 3 with the
9-cycle pulse is shown in Figure 11. It is quite com-
plicated how the charge-density-wave gap U affects the
high harmonic generation, as can be seen from a compar-
ison between the U = 1 and U = 3 cases. By selecting
U equal to the driving frequency of the pulse, a larger
maximum high harmonic generation order emerges, when
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compared to the U = 1 case. The charge-density-wave
gap U also affects the additional structure in the lower
harmonic peaks. For example, at E0 = 20, a clear split-
ting is seen in the center of each peak (for the low orders)
in the U = 1 case, but for the U = 3 case, the peaks have
not yet split.

One of the main differences with respect to the ac fields
is that in the case of a pulse, we no longer see an addi-
tional modulation of the harmonic amplitudes as we saw
in the ac driving case. This is probably due to the smaller
time range of the pulsed fields leading to broadened spec-
tral features that prohibit destructive interference from
occurring. Nevertheless, we do see that for some field am-
plitudes, higher harmonics have a higher amplitude than
the lower harmonics have. This behavior arises primar-
ily from the fact that the higher harmonics are generated
when the field amplitudes are the largest, and hence this
effect has a tendency to emphasize the higher harmon-
ics. Note further, that even though one cannot describe
the photoexcitation process as occurring instantly at the
point where the field amplitude is maximal, we do find
that the results for the high harmonic generation spectra
look remarkably similar to the results where one does not
take into account the photoexcitation process7,8 (except
for more narrowing of the harmonic peaks in the charge
density wave case and a smaller cutoff in the high har-
monic generation for the same pulse amplitude). Hence,
it appears that details of the photoexcitation process do
not play a significant role in the generation of high har-
monics. The single most important characteristic is the
amplitude of the pulsed field. The gap U introduces
small differences in the additional structure peak split-
ting and an enhancement of the high harmonic genera-
tion when the driving frequency is resonant with the gap
size (ω0 = U).

It is interesting to speculate on how these results will
change due to additional electron-electron interactions.
When the interactions are weak, it is well known that
the effect of scattering tends to raise the “noise floor” of
the HHG spectrum making it difficult to see the lower
amplitude high harmonics. But, since the highest fre-
quencies tend to occur in the response when the pulsed
field is near its maximal amplitude, the higher harmonic
signal often remains rather in tact even with weak scat-
tering8. But as the scattering is increased further, one
expects the current to start to develop complex oscilla-
tions that do not look like attosecond Bloch oscillations.
In this case, the amplitude of the high harmonic signal
may become too depressed to be able to viable as a light
source. The general rule seems to be that the best HHG
solid state sources will be ones that have weak electron
scattering effects.

VI. CONCLUSIONS

In this work, we have developed an exact solution for
the nonequilibrium problem of a charge-density-wave in-

sulator placed in a large ac or pulsed electric field. The
theory is completely self-contained including all effects
of the photoexcitation of electron-hole pairs and of their
subsequent acceleration in the large electric field, incor-
porating the nonlinear effects of the electric field within
an exact formalism. In the case of driving by an ac field,
we saw that the most interesting nonlinear effects oc-
cur when the electric field amplitude is large, and that
a Fourier transform of the temporal current traces dis-
play harmonics of the three important energy scales in
the system, the driving frequency of the field, the gap
of the charge density wave, and the energy gain due to
the acceleration in the electric field over one lattice spac-
ing. In addition, the regular, monochromatic nature of
the ac driving field led to interesting beat-like structure
for the strength of different harmonic peaks due to the
possibility of destructive interference. We also examined
the effects of the field on the density of states for the ac
field.

In the pulsed-field case, our main focus was on high
harmonic generation. Here, we found very similar behav-
ior to that seen in single-band models that ignored the
photoexcitation process. This includes how the strength
of the peaks is fairly flat as a function of frequency until
one hits a “critical frequency” where the peaks rapidly
drop in strength. The size of the critical frequency in-
creases with the magnitude of the pulse amplitude and is
larger in the metal than in the insulator. In addition, as
the amplitude is increased, we start to see complex struc-
ture develop within a single harmonic peak, starting for
the lower harmonics. We also see circumstances where
the peak magnitudes do not decay monotonically with
increasing frequency, but there is a peak at some inter-
mediate harmonic. Because all of these features are seen
in the single-band solutions, these results are strongly
suggestive of the response having a universal character
to it. The only significant difference that we see is that
the peak widths tend to be more narrowed and the max-
imal high harmonics are reduced.

An important question, that we are not able to answer
in this work, is how to optimize a material for use as a
pulsed light source. The main result we find with regards
to optimization is that we want to have as small a Bril-
louin zone as possible, so that we can reach the nonlinear
excitation regime with the smallest possible field ampli-
tude. This suggests that crystals with complex unit cells
that include many atoms, may be better choices for high
harmonic generation. But the gap in the insulating phase
suppresses the high harmonic generation as well, so a bal-
ance needs to be struck in a real material. Nevertheless,
we hope that continuing experimental efforts will be able
to see the universal features found in these calculations
and will also be able to be controlled well enough that
one can begin to develop devices that will utilize the high
harmonic generation from solids in applications.
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