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The equilibrium physics of quantum impurities frequently involves a universal crossover from weak
to strong reservoir-impurity coupling, characterized by single-parameter scaling and an energy scale
TK (Kondo temperature) that breaks scale invariance. For the non-interacting resonant level model,
the non-equilibrium time evolution of the Loschmidt echo after a local quantum quench was recently
computed explicitly [R. Vasseur, K. Trinh, S. Haas, and H. Saleur, Phys. Rev. Lett. 110, 240601
(2013)]. It shows single-parameter scaling with variable TKt. Here, we scrutinize whether similar
universal dynamics can be observed in various interacting quantum impurity systems. Using density
matrix and functional renormalization group approaches, we analyze the time evolution resulting
from abruptly coupling two non-interacting Fermi or interacting Luttinger liquid leads via a quantum
dot or a direct link. We also consider the case of a single Luttinger liquid lead suddenly coupled
to a quantum dot. We investigate whether the field theory predictions for the universal scaling as
well as for the large time behavior successfully describe the time evolution of the Loschmidt echo
and the entanglement entropy of microscopic models. Our study shows that for the considered local
quench protocols the above quantum impurity models fall into a class of problems for which the
non-equilibrium dynamics can largely be understood based on the knowledge of the corresponding
equilibrium physics.

PACS numbers: 05.70.Ln, 72.15.Qm, 73.63.Kv, 05.10.Cc

I. INTRODUCTION

In condensed matter physics non-equilibrium problems
have attracted increasing interest in recent years. De-
spite many advances, describing those problems accu-
rately in the presence of strong correlations remains a
formidable challenge even today. The physics is often
involved and the number of available non-equilibrium
many-body methods allowing for a controlled access be-
yond plain perturbation theory is limited. Furthermore,
each of those has its own advantages and shortcomings.
An alternative way to gain insights into the interplay
of non-equilibrium and correlations is to identify non-
equilibrium problems which can largely be understood
in terms of their equilibrium physics; compared to non-
equilibrium, the latter is frequently rather well under-
stood. Generally, scrutinizing under which conditions
such a reduction in complexity can be applied, is of im-
portance to draw a more complete picture. Here we con-
duct such a study for the non-equilibrium physics of so
called quantum quenches in quantum impurity problems.

As they provide a basic probe of the non-equilibrium
dynamics of many-body quantum systems, quantum
quenches have been of great interest recently. This de-
velopment is motivated by the progress of experiments
with ultra-cold atoms in a tunable potential.1 At time
t = 0, the system is suddenly brought far from equilib-
rium by abruptly changing a control parameter, and is
subsequently left to evolve unitarily. Global quenches,
for which the control parameter is quenched through-
out the entire system, correspond to injecting an ex-
tensive amount of energy, thereby allowing one to ad-

dress the intriguing issues of thermalization and non-
equilibrium steady-states in closed many-body quantum
systems.2 Local quantum quenches, for which the sud-
den change is restricted in space,3–9 allow one to investi-
gate the energy propagation. One might expect that for
large times only the low-energy excitations matter and
the non-equilibrium dynamics shows universality, pro-
vided the system in equilibrium has this property. We
here provide evidence that for several quantum impurity
problems this is indeed the case. In this work, we study
a particular class of local quantum quenches: at time
t = 0, two independent metallic reservoirs are either di-
rectly tunnel-coupled or coupled through a single-level
quantum dot and left to evolve unitarily following the
Schrödinger equation. In addition, we investigate the
quench dynamics after abruptly tunnel coupling a sin-
gle lead to a quantum dot. A quantum quench of this
type has recently been realized experimentally exploit-
ing the optical absorption of a semiconductor quantum
dot.10–12 In equilibrium, the considered impurity setups
are characterized by a low-energy scale TK , the Kondo
temperature.

From a theory perspective, it was argued 13 based on
general considerations and explicit computations for a
non-interacting impurity problem, that the energy scale
TK characterizes a crossover in the post-quench dynam-
ics, with the long-time behavior being essentially con-
trolled by the low-energy properties of the Hamiltonian
after the quench. For the considered type of local quench,
one can expect that the same holds also in the presence of
two-particle interactions. We focus on parameter regimes
in which the sub-system coupling (weak link or dot) is a
relevant perturbation in the renormalization group (RG)
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FIG. 1. (Color online) The non-equilibrium setups studied in
this work: initially decoupled chains which are prepared in
their respective ground states are coupled at t = 0 via differ-
ent contacts. We focus on two different of such geometries:
(a) coupling the reservoirs indirectly by a single level quan-
tum dot and (c) connecting the two chains directly by a weak
link, respectively. Furthermore, we consider the setup (b) in
which a single lead is coupled to a single level quantum dot.
The subsequent out-of-equilibrium dynamics is analyzed.

sense in equilibrium, and therefore drastically alters the
low-energy properties of the system. The explicit non-
interacting result of Ref. 13 and the expectation for in-
teracting systems can thus be interpreted as follows: time
essentially acts as the inverse of an energy scale, and the
post-quench dynamics effectively follows the RG flow. At
large times, the system ‘heals’ itself so that the quantum
impurity becomes strongly hybridized with the lead(s).

Because of the energy scale TK that breaks confor-
mal invariance, many of the analytical results on local
quenches from conformal field theory4 cannot be used.
It is in general very difficult to provide closed analytical
expressions for the time evolution of observables show-
ing the full crossover, even for formally exactly solvable
(‘integrable’) or non-interacting systems. However, if
the above scenario holds, one can expect that the post-
quench dynamics is universal in the sense that every ob-
servable only depends on TKt (in the absence of any other
energy scale) and that the long-time regime TKt � 1
can be described using boundary conformal field theory
(BCFT). In this manuscript, we investigate numerically
whether this is indeed the case for various interacting
quantum impurity setups, using a combination of density
matrix renormalization group (DMRG)14–16 and func-
tional renormalization group (FRG)17–20 methods.

We focus on two key observables: the entanglement
entropy between sub-systems, whose long-time behavior
reduces to the CFT prediction of Refs. 4 (see Ref. 21 for
a similar observation), and the time dependent fidelity
or Loschmidt echo, whose long-time behavior carries sig-
natures of the effective boundary condition felt by the
lead(s). The latter is induced by the screened impurity.
The Loschmidt echo is related to the equilibrium An-
derson orthogonality catastrophe22 and is of particular
interest since it can be linked to the Fourier transform
of the absorption spectrum measured in a recent experi-
ment.11 In all the examples considered, we find that the
field theory predictions describe reasonably well the dy-
namics of the microscopic models under scrutiny.

The remainder of this paper is organized as follows.
In Sect. 2 we introduce the different models and ob-

servables studied, along with the analytical and numer-
ical methods used in our analysis. Section 3 contains a
detailed discussion of the so-called interacting resonant
level model (IRLM), the arguably simplest interacting
impurity model with spinless non-interacting Fermi liq-
uid leads. In Sect. 4 we generalize this impurity setup to
the richer case of interacting Luttinger liquid leads, with
various impurity configurations (one or two leads tunnel-
coupled to a quantum dot, two leads connected through
a point contact weak link). Finally, Sect. 5 provides a
summary of the main results as well as a discussion of
perspectives for future work.

II. MODELS AND METHODS

A. Models

We mainly consider setups in which two decoupled
fermionic reservoirs prepared in their respective ground
states are coupled to each other at time t = 0. Thus the
combined system is abruptly brought out of equilibrium
at this time. This protocol constitutes a specific local
quantum quench. We analyze different microscopic lat-
tice models corresponding to various settings, with the
reservoirs being either (single-channel) non-interacting
Fermi liquids or one-dimensional (1d) interacting Lut-
tinger liquids, and the junction being either a single link
or a quantum dot. These setups are depicted schemat-
ically in Figs. 1 (a) and (c). Furthermore, we investi-
gate the case of a single Luttinger liquid reservoir being
coupled abruptly to a single level quantum impurity as
shown in Fig. 1 (b).

IRLM — First, we investigate a microscopic realiza-
tion of the IRLM (see e.g. Refs. 23–27 as well as refer-
ences therein), which describes a single localized charge
level (quantum dot) of energy ε coupled to a left (in-
dex α = L) and a right (index α = R) non-interacting 1d
reservoir; see Fig. 1 (a). In our non-equilibrium setup the
tunneling couplings γ′α between the quantum dot level
and the reservoirs are abruptly turned on at time t = 0.
We consider a situation in which the two-particle inter-
actions Uα between dot and lead fermions are active for
all times. The microscopic Hamiltonian reads

H =Hdot +
∑
α=L,R

[Hcoup,α(t) +Hres,α] , (1)

Hdot =εn̂0, (2)

Hcoup,α(t) =Θ(t)γ′α

(
c†1,αc0 + c†0c1,α

)
+Uα

(
n̂0 −

1

2

)(
n̂1,α −

1

2

)
, (3)

Hres,α =− γα
L−1∑
j=1

(
c†j+1,αcj,α + c†j,αcj+1,α

)
. (4)

We use standard second quantization notation by in-
troducing the fermionic annihilation (creation) operator
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cj (c†j) of a spinless particle at site j. Furthermore,

n̂0 = c†0c0 and n̂1,α = c†1,αc1,α denote the occupancy
operators of the dot and the first site of reservoir α, re-
spectively. We have chosen a tight-binding description of
the reservoirs of length L with hopping γα > 0 and open
boundary conditions. The total number of sites in such
a setup is 2L+ 1.

Interacting reservoirs — We also consider models with
interacting reservoirs (rather than non-interacting Fermi
liquids as in the IRLM). This is achieved by including
nearest-neighbor interactions of strength Jα∆α in the 1d
leads. The Hamiltonian is given by

H =
∑
α=L,R

Hchain,α +Hcoup(t) (5)

with the chain part (nearest-neighbor hopping Jα/2 > 0)

Hchain,α =

L−1∑
j=1

Jα

[
1

2
c†j+1,αcj,α +

1

2
c†j,αcj+1,α

+ ∆α

(
n̂j,α −

1

2

)(
n̂j+1,α −

1

2

)]
. (6)

By subtracting 1/2 from the occupancy operator n̂j,α
the Hamiltonian is particle-hole symmetric. Employing
a Jordan-Wigner transformation (see e.g. Ref. 28), it
can alternatively be written in terms of spin degrees of
freedom (XXZ Heisenberg model).

Two different realizations of the contact between the
reservoirs are considered. The first one of these is referred
to as point contact and described by

Hcoup(t) = Θ(t)J ′
[

1

2
c†1,Lc1,R +

1

2
c†1,Rc1,L

+ ∆′
(
n̂1,L −

1

2

)(
n̂1,R −

1

2

)]
. (7)

In this a hopping J ′ as well as a nearest-neighbor inter-
action J ′∆′ across the link connecting the left and right
chains is turned on. It is schematically shown in Fig. 1
(c). The second one is called dot contact and the corre-
sponding part of the Hamiltonian reads

Hcoup(t) = εn̂0 + Θ(t)
∑
α=L,R

J ′α

[
1

2
c†1,αc0 +

1

2
c†0c1,α

+ ∆′α

(
n̂1,α −

1

2

)(
n̂0 −

1

2

)]
. (8)

In this contact, the two reservoirs are tunnel coupled by
a single dot site of energy ε located at j = 0; see Fig.
1 (a). We note that these point and dot contact impu-
rity problems are described by lattice systems with total
number of sites 2L and 2L+ 1, respectively.

Additionally, we study the case of a single interacting
reservoir [Hchain,L of Eq. (6)] tunnel coupled by a term of
the form of Eq. (8), but only considering the α = L part,
to a single level quantum dot at t = 0; see Fig. 1 (b). This

system is described by a lattice of in total L+1 sites and
referred to as the single-lead case in the following.

Initial preparation — The initial density matrix is pre-
pared in each case as a product

ρ = |Ψ0〉 〈Ψ0| =


ρL ⊗ ρR point contact

ρL ⊗ ρdot ⊗ ρR IRLM or dot contact

ρL ⊗ ρdot single-lead case

(9)
with ρα = |Ψ0,α〉 〈Ψ0,α| given by the ground states |Ψ0,α〉
of the reservoirs at half filling. In the examples involving
a quantum dot, ρdot is given by the vacuum (a spin-down
in the spin representation).

B. Renormalization group arguments and scaling

It is well established that the equilibrium low-energy
physics of both our non-interacting as well as our inter-
acting 1d reservoirs can be described by a gapless contin-
uum field theory — the Tomonaga-Luttinger model — as
long as −Jα < ∆α < Jα (at half-filling).28 For ∆α 6= 0
our spinless fermion model falls into the Luttinger liquid
universality class. All terms not captured by the field
theory are RG irrelevant and flow to zero. However, the
bare amplitude of the leading irrelevant bulk couplings
(e.g. the umklapp scattering for ∆α > 0) grows if one ap-
proaches the transitions to the gapped phases |∆α| → Jα.
This leads to a decreasing energy scale below which Lut-
tinger Liquid physics can be observed. This energy scale
vanishes at the phase transition.29 Thus, if the range of
accessible energies is bounded from below, e.g. by finite
size effects, it might be impossible to observe the physics
of the field theory.29,30 We here avoid this problem by
restricting the interaction strength to |∆α| <∼ 0.7.

It was shown that at low energies the equilibrium or
steady-state impurity physics established when the above
local couplings between the reservoirs are active for all
times is captured by field theory.25,26,31 We here focus on
quench setups where the coupling between the reservoirs,
be it via a structureless point contact or via a quantum
dot, is a relevant perturbation in the RG sense leading
to a flow to strong coupling. This means that the effec-
tive coupling between the reservoirs should be thought of
as scale dependent; it is growing as the energy scale is
lowered across the typical energy TK . The dependence
of TK on the parameters of the Hamiltonian depends on
the model considered and is given below. This flow can
even be found if the bare couplings are infinitesimally
small. The RG flow from weak to strong coupling is
sometimes called ‘healing flow’ for obvious reasons. In
the presence of a single additional energy scale besides
TK , e.g. the temperature T , it implies single parameter
scaling of observables with variable T/TK and the physics
can be regarded as universal.

This equilibrium physics becomes particularly trans-
parent if we further restrict the parameters of our models.
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FIG. 2. (Color online) Dynamical healing RG flow studied in
this work. The dynamics only depends on TKt, such that the
time evolution follows the RG flow from weak to strong cou-
pling. In particular, the large time limit TKt� 1 corresponds
to the low energy, strong coupling regime.

To avoid any complications due to the interplay of sev-
eral energy scales in our dot models we assume ε = 0; the
dot fulfills the resonance condition. For the IRLM it was
shown that for left-right asymmetric setups the relation
between the flowing level-reservoir hoppings and observ-
ables becomes involved.32 As a consequence the latter
no longer shows the simple scaling behavior found for re-
stored left-right symmetry. In Luttinger liquids the sharp
crossover between two half chains with different bulk in-
teractions effectively induces single-particle scattering at
the contact and destroys the resonance condition.31 Al-
though such asymmetry effects are of genuine interest
and of relevance in most experimental realizations, in our
first attempt to understand the non-equilibrium dynam-
ics we suppress them by considering left-right symmetric

setups with Uα = U and γ
(′)
α = γ(′) for the IRLM as well

as J
(′)
α = J (′) and ∆

(′)
α = ∆(′) for the models with Lut-

tinger liquid leads. We furthermore fix our unit of energy
by setting γ = 1 = J .

The question whether the same type of universality is
realized in the non-equilibrium post-quench dynamics is
largely open; it lies at the heart of our present work.
More specifically we investigate numerically whether the
entanglement entropy and the Loschmidt echo intro-
duced below are scaling functions with TKt being the
relevant variable indicating a ‘dynamical healing’. We
thus ask whether ‘time follows the RG flow’, with the
large time limit TKt � 1 corresponding to the low en-
ergy fixed point (see Fig. 2 for a sketch). This is what one
expects based on a field-theoretical approach to the type
of local quenches considered here.4,13 In this approach,
the 1d non-equilibrium problem is formally ‘folded’ into
a two-dimensional (2d) boundary statistical mechanics
problem in equilibrium using a Wick rotation. However,
this mapping is based on assumptions on the analytic
properties of the appearing partition functions. By pro-
viding indications of one-parameter scaling with TKt we
thus not only establish evidence that the dynamics of the
non-equilibrium problems considered here is (1) universal
and that (2) field theory can be applied but also that (3)
the assumptions underlying the field theory approach it-
self are justified. We furthermore compare the long time
dynamics of our observables to the corresponding field-

theoretical predictions. The alleged simple replacement
of equilibrium energy scales such as temperature by in-
verse time in standard RG arguments is obviously very
specific to the considered type of local quenches. Within
field theory on a technical level it is linked to the possi-
bility of ‘folding’ and the subsequent use of BCFT.

We already emphasize at this point that universal dy-
namics can only be expected for times B−1 � t� L/vF
with B being the reservoirs band width and vF their
Fermi velocity. This holds in close analogy to the equilib-
rium situation in which scaling is cut off at large energies
by non-universal band effects and at low ones by finite
size effects.

C. Observables

There are many different observables that could be
considered to monitor the dynamics of the system after
the quantum quench. A very instructive quantity is the
entanglement of the sub-systems as a function of time
that we measure by the entanglement entropy S(t). It
characterizes the exchange of information between the
two reservoirs. More precisely, the entanglement entropy
is calculated between the left reservoir (L) and the rest
of the system (L̄ which in our dot setups contains the dot
site) and is defined as

S(t) = −Tr {ρL(t)ln [ρL(t)]} , (10)

with the reduced density matrix of the left subsystem
ρL(t) = TrL̄ [ρ(t)] with respect to the full system ρ(t) =
|Ψ(t)〉 〈Ψ(t)| and |Ψ(t)〉 = e−iHt |Ψ0〉. Initially, we have
S(0) = 0 as the left reservoir is decoupled from the rest of
the system. The evolution of the entanglement entropy
across a marginal defect in non-interacting fermionic sys-
tems was computed in Refs. 33–35. The generalization
to interacting problems in the case of a weakly modified
link was carried out recently in Ref. 36 (see Ref. 37 for
the corresponding analysis in equilibrium). In the follow-
ing, we investigate whether the results of Ref. 36 hold for
a microscopic model. In addition, we study S(t) for dot
setups.

Another quantity that we study is the so-called
Loschmidt echo

G(t) = 〈Ψ0| eiH0te−iHt |Ψ0〉 , (11)

which is the Fourier transform of the work distribu-
tion38 P (W ) =

∑
n δ
(
W −

[
E(n) − E0

]) ∣∣〈Ψ(n)
∣∣Ψ0

〉∣∣2 ,
with the eigenvalues E(n) and eigenstates

∣∣Ψ(n)
〉

of the

Hamiltonian after the quench, and
∣∣Ψ0

〉
the ground state

of the Hamiltonian before the quench (decoupled reser-
voirs) with corresponding ground-state energy E0. The
square modulus of the Loschmidt echo is the probability
to find the system at time t in its initial state. It can
be thought of as a quantum return probability which,
if decaying, characterizes the irreversibility of the time
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evolution. The Loschmidt echo has attracted a lot of at-
tention recently, in the context of ‘dynamical’ Anderson
orthogonality catastrophes, see e.g. Refs. 8, 10, 11, 39–41,
but also in studies of ‘dynamical phase transitions’.42–47

We note that the work distribution can be argued to
be directly proportional to the absorption spectrum in
quantum dot setups where the absorption of a photon ef-
fectively triggers a quantum quench.10–12 A general field
theoretical formalism to compute G(t) for (‘integrable’)
impurity problems after a local quench was developed in
Ref. 13 but only applied to the non-interacting resonant
level model (RLM).

D. Methods

Boundary Conformal Field Theory — In general, it
is difficult to provide closed analytical expressions for
the time evolution of observables after a local quench.
Within field theory this can be linked to the emergence
of an energy scale TK that breaks conformal invariance,
and to the presence of interactions. However, in the large
time limit TKt � 1, one can obtain asymptotic results
using the above described mapping to a 2d inhomoge-
neous statistical mechanics problem as well as BCFT.
For the entanglement entropy one finds4,48

S(t) −→
TKt�1

S0 +
1

3
log(TKt), (12)

where we have inserted the central charge c = 1 of the
Luttinger liquid (or Dirac fermions) reservoirs (see e.g.
Ref. 28). Here S0 is a non-universal constant. This re-
lation should hold in all setups with two reservoirs — in
the single-lead case, the entanglement entropy is bounded
from above by ln 2 (see below).

Computing the large time asymptotics of the
Loschmidt echo is slightly more involved. For a point
contact junction between two Luttinger liquids, we can
use the CFT results of Refs. 8 and 49 and obtain

|G(t)|2 ∼
TKt�1

(TKt)
−1/4

, (13)

independent of ∆ as long as −1 < ∆ < 0 so that the
local tunnel coupling is relevant. Note that we have once
again inserted the central charge c = 1 of the gapless
reservoirs.

The IRLM and dot setups are more subtle because of
the dynamical nature of the impurity. In these cases, it
is convenient to use the general framework introduced
in Ref. 13 and consider the imaginary time Loschmidt
echo as a correlation function (or modified partition func-
tion) in a semi-infinite critical 2d statistical mechanics
problem, with the impurity corresponding to a boundary
condition; see Ref. 50 for a similar calculation in the con-
text of the Fermi edge singularity. In that language, a
quantum quench at t = 0 can be considered as a sudden
change of boundary condition at imaginary time τ = 0,
effectively creating infinitely many massless excitations

in the bulk. Following Ref. 13, one can then interpret
the Loschmidt echo G(t = −iτ) for TKτ � 1 as the
two-point function of a boundary condition changing op-
erator,51 whose scaling dimension is fixed by conformal
invariance. Assuming analyticity to rotate back to real
time, we expect13

|G(t)|2 ∼
TKt�1

(TKt)
−4∆BCC , (14)

with the scaling dimension ∆BCC which is model depen-
dent and given below. We note that the vanishing of
the Loschmidt echo at large time is the real-time ana-
log of the well-known Anderson orthogonality catastro-
phe.22 As a consequence the work distribution is charac-
terized by an edge singularity at low energy12,38,52 which
can be observed in optical absorption experiments (see
e.g. Refs. 10 and 11 in the context of the Kondo effect).

Density Matrix Renormalization Group — DMRG has
proven to be an invaluable tool to numerically study the
equilibrium and non-equilibrium many-body physics of
interacting one-dimensional systems.16 In DMRG the nu-
merical cost depends in an exponential fashion on the
entanglement in the system. For typical real-time evolu-
tions, entanglement grows linearly with time and thus
the numerical resources available are exhausted expo-
nentially fast until no further progress in time can be
made. The time scales reachable within DMRG thus crit-
ically depend on the entanglement of the system under
scrutiny. In this work, we apply DMRG in a very nat-
ural representation via matrix product states.15,16,53 We
use the implementation outlined in Ref. 16 to tackle the
problems introduced in the previous section. We checked
that preparing the ground states in the decoupled reser-
voirs either via a simple imaginary time evolution start-
ing from an initial random product state (see Sect. 7 of
Ref. 16) or a more sophisticated iterative procedure (see
Sect. 6 of Ref. 16) yield coinciding results. The iterative
ground state search is performed with a single-site algo-
rithm. To protect this algorithm from getting stuck in
non-global minima when optimizing the energy we use
the ideas introduced in Ref. 54. For the imaginary time
evolution, we apply a second-order Trotter decomposi-
tion with ∆τ = 0.0025, and we gradually increase the
bond dimension χ during the convergence process. Once
the ground states have been prepared, we employ a real
time evolution algorithm (see again Sect. 7 of Ref. 16)
with the full Hamiltonian including the tunneling terms.
We use a fourth-order Suzuki-Trotter decomposition with
∆t = 0.2 chosen small enough to give converged results
on the scale of every plot presented in the following.
Additionally, we can exploit the trivial rewriting of the
Loschmidt echo55,56

G(t) = 〈Ψ0| eiH0te−iHt |Ψ0〉
= eiE0t 〈Ψ0| e−iHt/2e−iHt/2 |Ψ0〉
= eiE0t 〈Ψ0(−t/2)|Ψ0(t/2)〉 . (15)

This allows us to reach times twice as large as in the
original form exploiting the same numerical resources.
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The bond dimension is dynamically increased during the
real time evolution so that the discarded weight ε always
remains below 10−7 − 10−8.

Functional Renormalization Group — For the IRLM
we also analyze the quench dynamics using the FRG.
FRG is a versatile method to tackle quantum many-body
problems.17 Recently, it was extended to time evolution
in non-equilibrium18 including quench dynamics.19,20 In
the present case it allows to study our lattice realization
of the IRLM at larger system sizes as well as to reach
larger times compared to DMRG.

In FRG one sets up an infinite hierarchy of flow equa-
tions for the many-particle vertex functions. We here
employ the lowest order truncation scheme for this hi-
erarchy. This means that the two-particle vertex is
set constant (remaining the bare two-particle interaction
throughout the entire flow), while in contrast the self-
energy acquires a RG flow. This truncation poses the
only relevant approximation to the many-body problem
at hand. It is known that this procedure is well suited
to describe the impurity physics of the IRLM. It leads
to the correct resumation of logarithmic terms in form of
power laws, with exponents agreeing to the exact ones to
leading order in U .18,26

We supplement the scheme of Ref. 20 by a Suzuki-
Trotter decomposition as used in DMRG to describe the
propagation in time. This significantly boosts the per-
formance. We always choose a symmetric fourth order
decomposition, with ∆t = 0.1 taken small enough such
that it corresponds to a negligible approximation.

Since the FRG scheme outlined in Ref. 20 aims at the
single particle Green functions we need to explain how
the Loschmidt echo can be deduced. In our truncation
order interactions are incorporated effectively in a non-
interacting, but time-dependent, renormalized Hamilto-
nian (in form of the self-energy). Since the time steps
∆t = 0.1 used are small enough, such that the Hamil-
tonian can be approximated as a constant Ht during
each of such time steps we can straightforwardly per-
form the time evolution of the initial wave function |Ψ(0)〉
(ground state of the decoupled reservoirs) with the renor-
malized Hamiltonian. More explicitly, we can write the
ground state of the non-interacting reservoirs as a prod-
uct state57

|Ψ(0)〉 =

Nf∏
m=1

 L∑
j=1

Pjm(0)c†j

 |0〉 , (16)

where Nf denotes the total number of fermions and |0〉
is the vacuum. The wave function can be propagated
in time with a stepwise (in time) constant Hamiltonian

Ht =
∑
i,j

εt,ijc
†
i cj by

|Ψ(t+ ∆t)〉 = e−iHt∆t |Ψ(t)〉

=

Nf∏
m=1

 L∑
j=1

Pjm(t+ ∆t)c†j

 |0〉 ,
P (t+ ∆t) = e−iHt∆tP (t),

where P and Ht are the matrices with entries Pjm and
εt,jm, respectively. The Loschmidt echo in turn can then
be calculated as

G(t) = 〈Ψ(0)| e−iH0te−iHt |Ψ(0)〉
= e−iE0t 〈Ψ(−t/2)|Ψ(t/2)〉

= e−iE0t 〈0|
Nf∏
m=1

L∑
j=1

Pjm(−t/2)∗cj

Nf∏
n=1

L∑
i=1

Pin(t/2)c†i |0〉

= e−iE0tdet
[
P †(−t/2)P (t/2)

]
.

(17)

While in the outlined truncated FRG treatment single-
particle Green functions are approximated correctly (at
least) to leading order in U this is less clear for a quan-
tity like the Loschmidt echo. We have therefore care-
fully checked our FRG results against numerically exact
DMRG data for shorter times and smaller systems (see
Fig. 4). The agreement at small U is very convincing
such that we can trust the FRG results for G(t) at larger
L and t as well. In a similar, but more complicated fash-
ion one could derive an expression for S(t) accessible to
FRG; we do not pursue this here for the sake of brevity.

III. THE INTERACTING RESONANT LEVEL
MODEL

A. Field theory limit

In the field theory description of the semi-infinite
chain-like reservoirs, we first linearize the single-particle
dispersion near the Fermi energy and then conve-
niently “unfold” these half-infinite wires to obtain infi-
nite ones with only right moving fermions. This leads
to Hres,α = −ivF

∫∞
−∞ dxψ†α(x)∂xψα(x), with the Fermi

velocity vF = 2 and the field operators ψ
(†)
α (x). The

coupling between the dot and the reservoirs can then be

expressed as Hcoup,α(t) = γ̃′Θ(t)
(
c†0ψα(0) + ψ†α(0)c0

)
+

Ũ
(
n̂0 − 1

2

)
: ψ†α(0)ψα(0) :, where γ̃′ and Ũ depend on

the microscopic parameters γ′ and U in a non-universal
(and in general unknown) way. Here : . . . : denotes
normal ordering. We then bosonize the fermionic fields

ψα ∼ ei
√

4πφα ,28 with bosonic fields φα(x), and intro-

duce an effective spin operator through c†0 = ηS+ and
n̂0 = Sz + 1

2 with η a Majorana fermion. After several
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canonical transformations, the IRLM Hamiltonian can
be mapped onto an effective anisotropic Kondo prob-
lem,58 described by a single chiral boson φ(x) that de-
pends on φα=R/L in a complicated non-linear fashion (see
e.g. Ref. 58 for details of the mapping). The resulting
Hamiltonian reads

H =

∫ ∞
−∞

dx[∂xφ(x)]2 + Θ(t)
γ̃′√
π

[
eiβφ(0)S+ + H.c.

]
,

(18)
where the boundary perturbation (second term) has di-

mension h = β2

8π = 1
4π2 (Ũ−π)2+ 1

4 (assumed to be smaller
than one). This means that the boundary perturbation
flows under a RG procedure as

dγ̃′

d`
= (1− h)γ̃′ + . . . (19)

with ` = ln Λ, and Λ is the infrared cutoff. Solving
this equation leads to the length dependent coupling
γ̃′(L) ' γ̃′L1−h, where γ̃′ is the bare coupling, and L a
typical length scale. The Kondo temperature TK ∼ 1

LK
is defined as the scale at which γ̃′(LK) ' 1. It thus scales
as

TK ∝ (γ̃′)1/(1−h) ∝ (γ′)1/(1−h). (20)

The RLM has U = Ũ = 0 such that h = 1
2 and

TK ∝ (γ′)2. For small U , one finds h = 1
2 − U

2π +O(U2)
(see e.g. Ref. 24). A particularly interesting value of the
Coulomb interaction is given by the so-called self-dual
point for which Ũ = π in our regularization scheme, such
that h = 1

4 and TK ∝ (γ′)4/3. This self-dual point corre-

sponds to U ≈ 2 on the lattice.25 Without loss of gener-
ality we fix the prefactor of TK to be 4. Why this choice
is useful will become clear in the next section.

At low energy, the boundary interaction flows to
the conformally invariant boundary condition φ(0+) =
φ(0−) + δ/

√
π, where δ2 = π2h/2 corresponds to the

phase shift felt by the effective fermion ψ ∼ ei
√

4πφ. We
stress that this fermion ψ has a very complicated expres-
sion in terms of the original fermionic fields ψα=L,R. As
discussed in Ref. 13 the large time behavior of the en-
tropy is given by Eq. (12), whereas the Loschmidt echo
behaves as Eq. (14) with

∆BCC =
1

2

(
δ

π

)2

=
h

4
. (21)

Using Eq. (14) we therefore expect |G(t)|2 ∼ (TKt)
−1/2

for the RLM and |G(t)|2 ∼ (TKt)
−1/4 for the IRLM at

the self dual point. This provides an interesting exam-
ple where the interactions strongly renormalizes the large
time exponent of the Loschmidt echo.

B. Microscopic model and scaling limit

When comparing predictions from field theory to re-
sults obtained numerically for the microscopic models
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K

T
K
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χ

FIG. 3. (Color online) Dependence of the Kondo temperature
on γ′ for the IRLM (including the RLM with U = 0). We
show the ratio of the Kondo temperature T fit

K obtained by
collapsing our numerical DMRG data by hand, the TχK from

Eq. (22), and the field theory prediction TFT
K = 4(γ′)

1
1−h .

obtained by DMRG and FRG, one needs to be careful
about the range of validity of the field theory description.
Two conditions have to be fulfilled simultaneously: (a)
the large L limit TKL/vF � 1 and (b) the scaling limit
TK/B � 1. At a given large L they impose an upper as
well as lower bound on γ′. As a first step let us assume
correspondence between the microscopic model and the
field theory in the proper limit and let us choose γ′ = 0.05
with L = 200 as a point of reference. The corresponding
reference curve for the Loschmidt echo |G(t)|2 obtained
for U = 2 using DMRG is scaled with the field theory
Kondo temperature TFT

K = 4(γ′)4/3. We then determine
the Kondo temperature T fit

K for the microscopic IRLM
by collapsing all curves (with different γ′) on top of this
scaled reference curve. The ratio between T fit

K extracted
by this procedure and the field theory prediction TFT

K is
shown in the main panel of Fig. 3. For γ′ >∼ 0.3, we leave
the scaling limit regime and deviations between the field
theory TFT

K and the T fit
K of the microscopic model become

prominent. For very small γ′, one does no longer fulfill
TKL/vF � 1 and finite size effects yield deviations in
the Kondo temperatures. This is confirmed by the fact
that reducing the size of the system (from L = 200 to
L = 100) enhances this effect.

We remark that for the IRLM it has been
shown18,26,27,59,60 that yet another reasonable definition
of TK at small values of U/γ is the charge susceptibility

TχK = − 2

πχ
χ =

d 〈n〉
dε

∣∣∣∣
ε=0

. (22)

This choice of TK for the microscopic IRLM again re-
sults in a very convincing collapse of the curves at small
U/γ. With this definition of TK we can fix the prefactor
of the field theory TK to 4, by demanding that the two
definitions agree at U = 0. Since TχK does not rely on
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FIG. 4. (Color online) Time evolution of the Loschmidt echo and the entanglement entropy after a quantum quench in the
IRLM. (a) Comparison between our FRG and DMRG data for the Loschmidt echo at U = 0.1. Inset: universal collapse of the
Loschmidt echo curves when rescaled by the Kondo temperature TK (for U = 0.1 and U = 2). The dotted lines correspond to
the large time BCFT predictions. (b) Universal scaling of the entanglement entropy for U = 0.1 and U = 2.0 (inset). At large
time, one recovers the expected CFT behavior (red dotted line).

calculating the Loschmidt echo, we can now for U = 0
compare TχK with TFT

K in the limit L → ∞. The con-
dition TKL/vF � 1 is thus guaranteed to hold and the
finite size deviations for small γ′ disappear, while effects
arising from the second inequality TK/B � 1 being no
longer fulfilled remain roughly the same as for U = 2 (see
Fig. 3).

Since overall the Kondo temperatures TK defined from
field theory, or via the fit procedure as well as the charge
susceptibility for the microscopic model agree reasonably
well, in the following we will only use the field theory
definition TK = TFT

K to collapse the curves obtained nu-
merically for the microscopic model. Nevertheless, it is
important to keep in mind that simultaneously fulfill-
ing both inequalities in numerical computations for finite
chains infers restrictions on γ′.

C. Quench dynamics of the lattice model

Let us now discuss the numerical data obtained for the
time evolution of the Loschmidt echo as well as the en-
tanglement entropy. The main plot of Fig. 4 (a) shows
a comparison of the Loschmidt echo obtained by DMRG
and FRG at U = 0.1 and for different γ′. The agreement
between the two methods is very convincing for this small
value of the two-particle interaction. FRG can be used to
tackle larger system sizes and times, which is the reason
why data for L = 500 is shown compared to L = 200
for DMRG. The inset of this panel shows the collapse of
the same FRG curves when the Kondo temperature TK
is used as the proper energy scale. In addition, a simi-
lar collapse of DMRG data for a larger value of the in-
teraction strength U = 2 corresponding to the self-dual

10
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Jt
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J’=0.7,∆=-0.25

(a)

FIG. 5. (Color online) DMRG data for G(t) in the single
lead case at fixed J ′. Gradually increasing the interaction
J ′∆′ between the dot and the single lead (L = 200) reveals
that the marginal term dropped in our field theory analy-
sis does not alter the large time exponent. The time scales
for which asymptotic behavior can be observed, however, in-
creases with increasing J ′∆′. The field theory prediction

|G(t)|2 ∼ (TKt)
− 1

2g is included as a dashed red line.

point is presented. The large time BCFT predictions
Eq. (14) of Sect. III A with ∆BCC(U = 0.1) ≈ 0.1210
and ∆BCC(U = 2) = 1/16 (shown as dashed lines) are
consistent with our numerical data. Similarly, Fig. 4 (b)
shows the one-parameter scaling of the entanglement en-
tropy. The main plot depicts U = 0.1 while the inset
covers U = 2. The curves collapse well when rescaled
by TK , and the long time behavior is consistent with the
universal CFT prediction for the entropy Eq. (12).
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FIG. 6. (Color online) Universal scaling of the Loschmidt echo and the entanglement entropy after a quantum quench of the
tunneling between a Luttinger liquid lead (L = 400) and a quantum dot. The predicted asymptotic long time behavior is
indicated as dashed lines. (a), (b) ∆′ = 0. (c), (d) ∆′ = ∆. (a), (c) Loschmidt echo. (b), (d) Entanglement entropy. The inset
in (d) shows that the steady-state value of ln(2) is approached exponentially fast, thus indicating that the impurity becomes
maximally entangled with the lead for large times.

Considerations about the limits of applicability of field
theory scaling in lattice models similar to the equilibrium
ones outlined in Sect. III B are also crucial for the dynam-
ics. In particular, we expect that for ‘large’ values of γ′

the scaling limit condition is not fulfilled perfectly. This
is the reason why for the largest considered γ′ at small
times deviations from scaling and even oscillations in the
Loschmidt echo are apparent in Fig. 4. The amplitude of
the latter vanishes for γ′ → 0 and their frequency is set by
the bandwidth. We here will not further investigate this
non-universal piece of physics.61 Nonetheless, the curves
collapse nicely at large times and allow us to access larger
rescaled times TKt. In particular, only for sizable γ′ suf-
ficiently large TKt for analyzing the asymptotic behavior
can be reached. In general, we find that ‘small’ values of
γ′ describe well the universal scaling curve for small TKt,
while larger values of γ′ leave the scaling limit regime for

small TKt but collapse very well for larger values of TKt.
It is known from equilibrium that sampling the entire
scaling function for a finite size lattice model requires
the use of different values of the impurity strength.31 Af-
ter rescaling by TK the different curves overlap and in
combination form the scaling function. We will use this
procedure also for our other impurity models.

IV. LUTTINGER LIQUIDS LEADS

A. Single-lead case

Although the non-equilibrium dynamics of the IRLM
studied above involved two non-interacting reservoirs
connected through a single-level dot quenching the tun-
neling between a single interacting Luttinger liquid lead
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and a quantum dot results in very similar physics. This
motivates why this case is discussed next. We consider a
reservoir given by Eq. (6) (α = L only) whose low-energy
physics in the gapless regime (−1 < ∆ < 1) falls into the
Luttinger liquid universality class with Luttinger param-
eter g−1 = 2− 2

π arccos ∆.28 In the bosonized language,28

the reservoir can be described in terms of a massless com-
pactified boson Φ = ΦL = φr + φl whose right- and
left-moving components are scattering off the quantum
dot. The chiral fields φr(x) and φl(x) live on the interval
[0,∞), with the impurity at x = 0. It is again convenient
to unfold the semi-infinite wires to define a chiral boson
φ (say, right-moving) on the real line: φ(x) = φr(x) for
x > 0, and φ(x) = φl(−x) for x < 0. One then expects
that the low energy sector of the Hamiltonian Eq. (5) is
given by

H =
g

4π

∫ ∞
−∞
dx [∂xφ(x)]2+Θ(t)J̃ ′

(
e−iφ(0)S+

0 + H.c.
)

+. . . ,

(23)

with J̃ ′ ∝ J ′ for small J ′ and S0 is the auxiliary spin of
the impurity as in the IRLM. The boundary term has di-
mension h = 1

2g < 1 and is thus relevant for all values of

−1 < ∆ < 1. Remarkably, this field theoretical Hamilto-
nian is formally equivalent to that of the two lead IRLM
Eq. (18), so all the formulas derived for the IRLM also
apply here. In particular, the system again flows to a
‘healed’ fixed point at low energy and the corresponding
Kondo energy scale reads62

TK ∝ (J̃ ′)2g/(2g−1) ∝ (J ′)2g/(2g−1). (24)

In analogy to the IRLM we choose the prefactor to be 4.
Further pursuing the analogy, the large time behavior of
the Loschmidt echo is given by Eq. (14) with ∆BCC =
1
8g . The entanglement entropy in this case is expected

to scale exponentially to ln(2), which signals the onset of
the singlet formation between reservoir and the dot level.

However, when ‘deriving’ Eq. (23), we dropped the
term J ′∆′

(
n̂1,L − 1

2

) (
n̂0 − 1

2

)
∼ ∂xφ(0)Sz0 for ∆′ 6= 0

of the microscopic lattice model which is marginal and
could therefore change the exponents in a non-universal
way. Within field theory one considers the limit J ′ → 0.
Therefore, since this marginal term scales with J ′ as well,
we do not expect it to modify our results in the field
theory limit. In practice however, we also consider siz-
able J ′ to cover the full crossover, so one needs to ver-
ify numerically the importance of this marginal coupling.
Gradually increasing the interaction term J ′∆′ starting
at 0, we find numerically that the long-time exponent
of the Loschmidt echo seems to be independent of this
marginal contribution as shown in Fig. 5. Note how-
ever, that the time scale for which asymptotic behavior
is reached evolves to larger times with increasing J ′∆′.

As an alternative protocol one could consider a setup
in which the interaction term J ′∆′

(
n̂1,L − 1

2

) (
n̂0 − 1

2

)
is

present already initially (only the reservoir-dot hopping
is switched on). We expect that in this case the long-
time exponent of the Loschmidt echo acquires an extra
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FIG. 7. (Color online) DMRG data for G(t) for the dot con-
tact at fixed J ′. Gradually turning on the interaction J ′∆′

between the dot and the leads (L = 200) reveals that the
marginal term dropped in our field theory analysis of the dot
case does not alter the large time exponent found (see Fig. 5
for the single-lead setup). The time scales for which asymp-
totic behavior can be observed increases with increasing J ′∆′.

The field theory prediction |G(t)|2 ∼ t−
1
4

(
1+ 1

g

)
is included as

a dashed red line.

contribution depending on J ′∆′; see Ref. 63 for a related
calculation.

Our DMRG results are presented in Fig. 6. The data
for the Loschmidt echo, Fig. 6 (c) for ∆′ = ∆, col-
lapse rather nicely if rescaled by TK for both positive
and negative ∆. Moreover, the long time prediction

|G(t)|2 ∼ (TKt)
− 1

2g — shown as black dashed lines —
appears to be consistent with our data, despite the pres-
ence of the marginal term J ′∆′

(
n̂1,L − 1

2

) (
n̂0 − 1

2

)
. We

find that the data for ∆′ = 0 collapse using the same TK
albeit with stronger oscillations; see Fig. 6 (a). In Fig. 6
(b) and (d) we depict the entropy. Scaling is again very
convincing. The inset of Fig. 6 (d) shows that for t→∞,
S(t) indeed approaches ln(2) in an exponential fashion.

B. Dot contact

The low energy limit of the dot contact corresponds
to two Luttinger liquid reservoirs connected through an
effective spin- 1

2 impurity S0. It can be described in the
bosonized language starting from the single-lead setup
discussed above by introducing two bosons (one per chan-
nel)

Hchain,α =
g

4π

∫ ∞
−∞

dx (∂xφα)2. (25)
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FIG. 8. (Color online) Universal scaling of the Loschmidt echo and the entanglement entropy after a quantum quench of the
tunneling between two Luttinger liquid lead (L = 200) via a quantum dot. The predicted asymptotic long time behavior is
indicated as dashed lines. (a), (b) ∆′ = 0. (c), (d) ∆′ = ∆. (a), (c) Loschmidt echo. (b), (d) Entanglement entropy with the
large time predictions given by a red dotted line.

The contact term Eq. (8) is then given by

Hlink(t) = Θ(t)J̃ ′

S+
0

∑
α=L/R

e−iφα(0) + H.c.

+ . . . ,

(26)

with J̃ ′ ∝ J ′ for small J ′. As in the single-lead case,
this term has dimension h = 1

2g (< 1 for g > 1/2

on which we focus) and is thus relevant. The Kondo
temperature is given by Eq. (24). Note that we have
again dropped the term J ′∆′

∑
α

(
n̂1,α − 1

2

) (
n̂0 − 1

2

)
∼

[∂xφL(0) + ∂xφR(0)]Sz0 which is also marginal and could
change the scaling exponent. In analogy to the single
lead case we analyze the influence of this marginal con-
tribution on the asymptotic exponent of G(t) numeri-
cally by increasing J ′∆′ starting at 0. As shown in
Fig. 7, the exponent again appears to be independent of
the marginal contribution, although the asymptotic time

regime is shifted to larger times with increasing J ′∆′.

The low-energy fixed point of the two-lead model
is slightly more complex than its single-lead analog.
It is convenient to introduce the new basis of bosons
φα=R/L = 1√

2
(φσ ± φρ), so that the boundary pertur-

bation now reads cos
φρ(0)√

2

(
S+e−iφσ(0)/

√
2 + H.c.

)
. At

low energy, the value of the bosonic field φρ(x) is pinned
down at x = 0, while φσ satisfies a Kondo-like boundary

condition φσ(0+) = φσ(0−) + δ/
√
π, where δ2 = π2

8g (see

related discussions in Refs. 62, 64, and 65). The long-
time exponent of the Loschmidt echo Eq. (14) is thus
given by ∆BCC = 1

16 + 1
16g , where the 1

16 contribution

corresponds to changing the boundary condition at x = 0
for φρ from Neumann to Dirichlet, while the other piece

1
16g can be associated with the phase shift δ for φσ. For

non-interacting leads, the problem reduces to the RLM,
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and one finds |G(t)|2 ∼ (TKt)
−1/2 as expected. When

g = 1/2 (isotropic limit ∆ = 1 of the lattice XXZ chain),

the Loschmidt echo decays as |G(t)|2 ∼ (TKt)
−3/4, where

the value 3/4 is consistent with the two-channel Kondo
orthogonality exponent reported in Ref. 50.

We summarize our numerical DMRG results for the dot
contact in Fig. 8. Both the Loschmidt echo [Figs. 8 (a)
and (c)] and the entanglement entropy [Figs. 8 (b) and
(d)] collapse well using the Kondo temperature Eq. (24),
although the Loschmidt echo obtained for ∆′ = 0 shows
stronger oscillations again. The entanglement entropy at
large times is consistent with Eq. (12). We find that the
large time behavior of the Loschmidt echo is in agreement
with the power law prediction Eq. (14), with an exponent
consistent with the BCFT prediction ∆BCC = 1

16 (1+1/g)
for ∆′ = 0 as well as ∆′ = ∆.

C. Point Contact

As a last example, let us consider a point contact
Eq. (7) between two Luttinger liquid reservoirs. This
case does not involve a dynamical impurity (quantum
dot), and the bosonized version of the tunneling term
reads

Hlink(t) = Θ(t)J̃ ′ cos [φL(0)− φR(0)] + . . . , (27)

where the dots stand for terms being RG irrelevant in
equilibrium, and J̃ ′ ∝ J ′ for small J ′. We emphasize
that Eq. (27) corresponds only to the tunneling part
J′

2

(
c†1,Lc1,R + c†1,Rc1,L

)
of Eq. (7). We have dropped

J ′∆′
(
n̂1,L − 1

2

) (
n̂1,R − 1

2

)
∼ ∂xφL(0)∂xφR(0) as it has

scaling dimension 2 and is therefore RG irrelevant (in
equilibrium). Forming odd and even combinations, one
finds that the even boson decouples while the non-trivial
part of the dynamics is encoded in a boundary sine-
Gordon Hamiltonian for the odd field. The dimension
of the perturbation is h = g−1 such that we shall focus
on the attractive regime (g > 1, ∆ < 0) where it is rel-

evant.66 To leading order in J̃ ′ the RG equation for the
amplitude of the tunneling term is dJ̃ ′/d` = (1− g−1)J̃ .

For J̃ ′ � 1 the Kondo scale in that case is thus given by

TK ∝ (J̃ ′)g/(g−1) ∝ (J ′)g/(g−1). (28)

In the following, we will set the prefactor to 4 by con-
vention (to match the definition of TK in the IRLM).
The large time behavior of the entanglement entropy
and the Loschmidt echo in the field theory are given
by Eqs. (12) and (13), respectively. This corresponds
to having ∆BCC = 1

16 in Eq. (14), which is known to be
the scaling dimension of the operator changing boundary
conditions from Neumann (J̃ ′ = 0) to Dirichlet (J̃ ′ →∞)
in the free boson theory.

To sample the entire scaling function for a lattice with
L = 200 sites we cannot restrict our considerations to
J ′ � 1. It is known that for J ′ → 1 the dual picture of a
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FIG. 9. (Color online) Dependence of the Kondo tempera-
ture on J ′ for the point contact and different ∆. We show the
Kondo temperature T fit

K obtained from collapsing our numer-
ical DMRG data by hand (red symbols) as well as the small

J ′ field theory prediction TFT
K ∼ (J ′)g/(g−1) (black dashed

lines) on a log-log scale. The lines are shifted such that T fit
K

and TFT
K coincide at the smallest J ′ available. The power-

law behavior of T fit
K found for small J ′ is consistent with the

prediction from field theory.

weak impurity, instead of a weak link, is the appropriate
one.66 The dependence of TK on the impurity strength is
modified66 and Eq. (28) does no longer apply. We thus
proceed as follows. We consider different J ′ and scale the
DMRG post-quench time-evolution data obtained for the
Loschmidt echo by hand until they collapse; see Fig. 10
(a). This gives us an estimate of TK which we then also
use to rescale S(t). Approaching small J ′ we expect to
find the scaling Eq. (28) of TK . The corresponding anal-
ysis is shown in Fig. 9. The field theory prediction works
well for small J ′ — compare the symbols to the dashed
lines representing the power law Eq. (28) — while rather
large deviations can be found for J ′ >∼ 0.5 (note the y-
axis log-scale). This shows that in contrast to the above
dot junction cases, in which it was possible to take the
small hopping field theory expression for TK (for a de-
tailed analysis indicating this for the (I)RLM, see Fig. 3),
determining the Kondo temperature by hand is vital for
the point contact.

In Fig. 10 (a) we show the collapsed DMRG data for
G(t) and different ∆ < 0. The collapse works partic-
ularly well for larger |∆| and due to finite size effects
deteriorates for |∆| → 0. Remind that we cannot fur-
ther increase |∆| as the leading irrelevant bulk terms will
increase and spoil scaling. Independent of ∆ the asymp-
totic behavior is consistent with |G(t)|2 ∼ (TKt)

−1/4

(dashed lines) providing indications for the field theory
prediction ∆BCC = 1

16 . We remark that the static orthog-
onality exponent ∆BCC for the same lattice model was
studied in Refs. 67–69. In the latter work the authors
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FIG. 10. (Color online) Universal scaling of the Loschmidt echo and the entanglement entropy after a quantum quench of
the tunneling between two Luttinger liquids connected through a point contact (weak junction). (a) Time evolution of the
Loschmidt echo scaled by hand. This determines the Kondo temperature TK used in the right plot. The asymptotic long time
predictions |G(t)|2 ∼ (TKt)

−1/4 is shown as a black dashed line. (b) Universal collapse of the entanglement entropy using the
TK obtained by a collapse of G(t). The large time CFT predictions is given by red dotted lines.

employed a very stringent numerical analysis based on a
logarithmic derivative. In this context the precise numer-
ical evaluation of ∆BCC remains an open question due to
the difficulty to reach very large system sizes (see also
Ref. 30). In our work taking the logarithmic derivative
to determine ∆BCC is impractical due to small oscilla-
tions prevailing even at large times. Therefore, in the
light of our analysis, we can only state that the large
time exponent appears to be consistent with the predic-
tion ∆BCC = 1

16 . We certainly cannot rule out small
corrections to this exponent, let alone show or disproof
their existence. Analogous to the problem of reaching
very large system sizes (as encountered in Ref. 69), we
would need to analyze much larger times, which is im-
practical.

Our rescaled DMRG results of S(t) [using the TK ex-
tracted from the by hand scaling of G(t)] for the point
contact are shown in Fig. 10 (b). Again, the collapse
is reasonable. At large times, the data follow the field
theory prediction Eq. (12).

V. CONCLUSION

In this paper, we studied the non-equilibrium dynamics
of the Loschmidt echo and of the entanglement entropy
resulting out of abruptly coupling two reservoirs which
are non-interacting Fermi liquids or interacting Luttinger
liquids. The coupling is either realized directly by a weak
link between the two systems (point contact), or indi-
rectly by an additional single site dot in between them
(dot contact). In addition, we considered the dynamics
when coupling a single Luttinger liquid lead to a sin-
gle site dot (single-lead case). Microscopic lattice mod-

els were used to describe these setups. The observables
were accessed using both DMRG and FRG. We checked
numerically the scaling expected from field theory and
investigated whether the large time behavior can be suc-
cessfully captured by (boundary) conformal field theory.
Simultaneously fulfilling the conditions TKL/vF � 1,
TK/B � 1, and B−1 � t� L/vF under which field the-
ory is expected to describe the physics of lattice models
at fixed L sets bounds on the strength of the sub-system
hoppings entering in TK as well as on the time t. Fur-
thermore, the times reachable are bounded from above by
the methods used. Taking this into account, we gathered
evidence that for a microscopic realization of impurity
systems with Fermi or Luttinger liquid reservoirs, the
dynamics is universal and described by field theory. It
would be interesting to generalize our work to finite tem-
peratures, where the work distribution satisfies an out-
of-equilibrium fluctuation-dissipation relation,70 which
might bear interesting consequences. The finite tempera-
ture generalization of the Loschmidt echo would then be
〈eiH0te−iHt〉0, where 〈. . . 〉0 refers to thermal average with
the density matrix ρ0 = e−H0/T /Z0, corresponding to the
system being held at temperature T before the quench.
Because of this new energy scale, we expect both the
Loschmidt echo and the entanglement entropy to have a
more complicated scaling behavior as functions of TKt
and Tt. For instance, at small temperature T/TK � 1,
one can argue from BCFT that the Loschmidt echo for

TKt� 1 should scale as [πT/ sinh(πTt)]
4∆BCC , with TK

playing the role of a ultraviolet cutoff. In the large time
regime t � T−1 � (TK)−1, this implies an exponen-
tial decay of the Loschmidt echo, contrasting with the
power-law behavior for T−1 � t � (TK)−1. We leave
the detailed analysis of finite temperature quenches for
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future work.
In addition, we expect that the dynamics resulting

out of local quenches for spinfull impurity systems (spin
Kondo effect) should lead to a richer crossover physics.
In particular, the Anderson orthogonality exponent dom-
inating the long time behavior of the Loschmidt echo
will have contributions coming from both spin channels.
Other interesting generalizations of our work include the
study of quantum quenches in impurity systems governed
by more complicated RG flows, with for instance inter-
mediate fixed points.
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10 H.E. Türeci and M. Hanl and M. Claassen and A. Weich-

selbaum and T. Hecht and B. Braunecker and A. Govorov
and L. Glazman and A. Imamoglu and J. von Delft, Phys.
Rev. Lett. 106, 107402 (2011).

11 C. Latta, F. Haupt, M. Hanl, A. Weichselbaum, M.
Claassen, W. Wuester, P. Fallahi, S. Faelt, L. Glazman,
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