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The spin resonance observed in the inelastic neutron scattering data on Fe-based superconductors
has played a prominent role in the quest for determining the symmetry of the order parameter in
these compounds. Most theoretical studies of the resonance employ an RPA-type approach in the
particle-hole channel and associate the resonance in the spin susceptibility χS(q, ω) at momentum
Q = (π, π) with the spin-exciton of an s+− superconductor, pulled below 2∆ by residual attraction
associated with the sign change of the gap between Fermi points connected by Q. Here we explore
the effect of fluctuations in the particle-particle channel on the spin resonance. Particle-particle and
particle-hole channels are coupled in a superconductor and to what extent the spin resonance can be
viewed as a particle-hole exciton needs to be addressed. In the case of purely repulsive interactions we
find that the particle-particle channel at total momentum Q (the πchannel) contributes little to the
resonance. However, if the interband density-density interaction is attractive and the π−resonance is
possible on its own, along with spin-exciton, we find a much stronger shift of the resonance frequency
from the position of the would-be spin-exciton resonance. We also show that the expected double-
peak structure in this situation does not appear because of the strong coupling between particle-hole
and particle-particle channels, and ImχS(Q, ω) displays only a single peak.

I. INTRODUCTION

The spin resonance, observed by inelastic neutron
scattering (INS) experiments first in the cuprates1 and
then in heavy-fermion2 and Fe-based superconductors
(FeSCs)3, has been the subject of intense theoretical and
experimental studies over the past decade using both
metallic4–6,10 and near-localized strong-coupling scenar-
ios8 (see Ref.9 for a review). The theoretical interpre-
tations of the resonance can be broadly split into two
classes. The first class of theories assumes that the spin
resonance is a magnon, overdamped in the normal state
due to the strong decay into low-energy particle-hole
pairs, but emerging prominently in the superconducting
state due to reduction of scattering at low energies10,11.
In this line of reasoning the resonance energy Ωres is the
magnon energy and as such it is uncorrelated with the
superconducting gap ∆. However, the decay of magnons
into particle-hole pairs is only suppressed at energies be-
low 2∆, hence the magnons become sharp in a supercon-
ductor only if their energy is below 2∆. The symmetry
of the superconducting state does not play a crucial role
here. It is only relevant that the superconducting gap is
finite at the Fermi surface (FS) points connected by the
gap momentum Q.

Theories from the second class assume that the res-
onance does not exist in the normal state and emerges
in the superconducting state as a feedback effect from
superconductivity, like e.g., the Anderson-Bogolyubov
mode in the case of a charge neutral single condensate
component, a Leggett mode in the case of several gap
components, a wave-like excitation of a spin-triplet or-
der parameter, or a pair vibration mode in the case of
a gap parameter possessing internal structure21. These
“feedback” theories can be further split into three sub-
classes. In the first the resonance is viewed as a spin-

exciton, i.e., the pole in the dynamical spin suscep-
tibility χ(q,Ω) dressed by multiple particle-hole bub-
bles4–6. Such χ(q,Ω) can be obtained by using a com-
putational scheme based on the random-phase approxi-
mation (RPA). It was argued that, if the superconduct-
ing gap changes sign between FS points connected by Q,
the residual attraction pulls the resonance frequency to
Ωres < 2∆, where the decay into particle-hole pairs is
reduced below Tc and vanishes at T = 0. As a result,
at T = 0, χ′′(q,Ω) has a δ−functional peak at Ωres. In
this respect, if the resonance is an exciton, its existence
necessary implies that the superconducting gap changes
sign either between patches of the FS connected by Q or
between different Fermi pockets again connected by Q.
The role of the resonance in allowing to determine the
structure of the gap in a number of different supercon-
ductors has been highlighted in7. Theories of the sec-
ond subclass explore the fact that in a superconductor
the particle-hole and particle-particle channels are mixed
and argue that the strongest resonance is in the particle-
particle channel and the measurements of the spin sus-
ceptibility just reflect the “leakage” of this resonance into
the particle-hole channel. The corresponding resonance
has been labeled as the π-exciton12, where the π bo-
son is a particle-particle excitation with total momentum
Q (a “pair density-wave” in modern nomenclature13–15).
Finally, theories of the third class explore the possibil-
ity that the resonance emerges due to coupling between
fluctuations in particle-hole and particle-particle channel.
Within RPA, such resonance is due to non-diagonal terms
in the generalized RPA which includes both particle-hole
and particle-particle bubbles. It was called a plasmon16

to stress the analogy with collective excitations in an elec-
tronic liquid.

The interplay between the “damped spin-wave” scenar-
ios, the spin-exciton π−resonance, and the plasmon sce-
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narios for 2D high-Tc cuprates has been studied in detail
in the past decade. The outcome is that near and above
optimal doping the resonance is best described as a spin-
exciton, with relatively weak corrections from coupling
to the particle-particle channel5,17,18, while in the un-
derdoped regime, where superconductivity emerges from
a pre-existing pseudogap phase, both spin-exciton and
spin-wave scenarios have been argued to account for the
neutron resonance9. The situation is more complicated
in 3D heavy-fermion systems11,19 because there the ex-
citonic resonance has a finite width even at T = 0 if the
locus of FS points separated by Q intersects a line of gap
nodes.

In this work we discuss the interplay between spin-
exciton, π−resonance, and plasmon scenarios in FeSCs.
Previous studies of the resonance in FeSCs6 focused only
on the response in the particle-hole (spin-exciton) chan-
nel and neglected the coupling between particle-hole and
particle-particle channels. Our goal is to analyze the ef-
fect of such coupling.

As we said, the resonance peak has been observed be-
low Tc in several families of FeSCs3. The spin response
above Tc in FeSCs is rather featureless away from small
doping, which implies that the magnetic excitations in
the normal state are highly overdamped and don’t be-
have as damped spin waves. The full analysis of the spin
resonance in FeSCs is rather involved as these systems
are multi-band materials with four or five FSs, on which
the superconducting gap has different amplitudes and
phases. Still, the basic conditions for spin-excitonic reso-
nance are the same as in the cuprates and heavy fermion
materials: namely, the resonance emerges at momentum
Q if the superconducting gap changes sign between FS
points connected by Q. This condition holds if the super-
conducting gap has s+− symmetry, as most researchers
believe, and changes sign between at least some hole and
electron pockets. An alternative scenario20, which we
will not discuss in this paper is that the superconducting
state has a conventional, sign-preserving s++ symmetry,
and the observed neutron peak is not a resonance but
rather a hump at frequencies slightly above 2∆.

In FeSCs that contain both hole and electron pockets,
the resonance has been observed at momenta around Q =
(π, π), which is roughly the distance between hole and
electron pockets in the actual (folded) Brillouin zone. To
account for the resonance and, at the same time, avoid
unnecessary complications, we consider a minimal three-
band model (one hole pocket and two electron pockets),
and neglect the angular dependence of the interactions
along the FSs. Including this dependence and additional
hole pockets will complicate the analysis but we don’t
expect it to lead to any qualitative changes to our results.

We find that for repulsive density-density and pair-
hopping interactions, the resonance peak is, to a good
accuracy, a spin-exciton. The π−resonance does not de-
velop on its own, and the coupling between the resonant
spin-exciton channel and the non-resonant π−channel
only slightly shifts the energy of the excitonic resonance.

We also considered the case (less justified microscopi-
cally) when the interaction in the π channel is attractive,
such that both spin-exciton and π resonance develop on
their own at frequencies below 2∆. One could expect in
this situation that the full dynamical spin susceptibility
has two peaks. We found, however, that this happens
only if we make the coupling between particle-hole and
particle-particle channels artificially small. When we re-
stored the original coupling, we found, in general, only
one peak below 2∆. The peak is a mixture of a spin-
exciton and π-resonance and at least in some range of
system parameters its energy is smaller than that of a
spin-exciton and a π-resonance. This implies that, when
both channels are attractive, the coupling between the
two plays a substantial role in determining the position
of the true resonance which can, at least partly, be viewed
as a plasmon. A somewhat similar result has been ob-
tained earlier for the cuprates5,16,18. For some system
parameters we did find two peaks in ImχS(Q, ω), but
for one of them ImχS has wrong sign. We verified that
this indicates that for such parameters the system is un-
stable either against condensation of π excitations (i.e.,
against superconductivity at momentum Q), or against
the development of SDW order in co-existence with su-
perconductivity.

The paper is organized as follows: In the next section
we consider the model. In Sec. III we obtain the dy-
namical spin susceptibility within the generalized RPA
scheme, which includes the coupling between particle-
hole and particle-particle channels. In Sec. IV we analyze
the profile of χS(Q, ω) first for purely repulsive density-
density and pair-hopping interactions, and then for the
case when we allow the density-density interaction to be-
come attractive. We summarize our conclusions in Sec.
V.

II. THE MODEL

The FeSCs are multiband metals with two or three
hole FS pockets centered around the Γ point (0, 0) and
two elliptical electron pockets centered at (π, π) in the
folded BZ with two iron atoms per unit cell. The elec-
tron pockets are elliptical and related by symmetry, while
the hole pockets are C4-symmetric, but generally differ
in size. Since we are only interested in studying the role
of the particle-particle channel in the spin response func-
tion, for which the non-equivalence between hole pockets
is not essential, we consider the case of two hole pock-
ets and assume that they are circular and identical, and
also neglect the ellipticity of electron pockets. Under
these assumptions our model reduces effectively to only
one hole pocket (c fermions) and one electron pocket (f
fermions). The fact that there are actually two hole and
two electron pockets only adds up combinatoric factors.
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The free part of the Hamiltonian is

H0 =
∑
k,σ

(
ξckc
†
kσckσ + ξfk+Qf

†
k+Qσfk+Qσ

)
, (1)

where

ξck = µc −
k2
x + k2

y

2mc
, (2)

ξfk+Q = −µf +
k2
x + k2

y

2mf
(3)

We do not study here how superconductivity devel-
ops from interactions, as that work has been done else-
where22. Instead, we simply assume that the system
reaches a superconducting state with s+− symmetry be-
fore it becomes unstable towards magnetism and take
the superconducting gaps as inputs. In this state, the
free part of the Hamiltonian is

HSC
0 =

∑
k,σ

(
Eckc

†
kσckσ + Efk+Qf

†
k+Qσfk+Qσ

)
, (4)

where the dispersions are Eck =
√

(ξck)2 + (∆c)2 and
Efk+Q =

√
(ξfk+Q)2 + (∆f )2, and ∆c = −∆f ≡ ∆.

Now we consider interactions that contribute to the
spin susceptibility. They consist of a density-density in-
terband interaction u1 and a correlated interband hop-
ping u3. Intraband repulsion only affects the chemi-
cal potentials but does not otherwise contribute to the
spin susceptibility. Interband exchange in principle con-
tributes in the π channel but in renormalization group
analysis it flows to small values26. In general, u1 and u3
depend on the angle in momentum space via coherence
factors associated with the transformation from the or-
bital to the band basis23. However, this complication is
not essential for our purposes and we take both inter-
actions to be momentum independent. The interaction
Hamiltonian is

Hint = u1
∑

[1234],σ 6=σ′

c†p1σf
†
p2σ′fp3σ′cp4σ

+ u3
∑

[1234],σ 6=σ′

(
c†p1σc

†
p2σ′fp3σ′fp4σ + h.c.

)
, (5)

where the sum over momenta obeys momentum conser-
vation as usual (p1 + p2 = p3 + p4).

Because the interactions in the band basis are linear
combinations of Hubbard and Hund interactions in the
orbital basis, weighted with orbital coherence factors, the
sign of u1 and u3 depends on the interplay between intra-
orbital and inter-orbital interactions20,24. The interac-
tion u3 contributes to the superconducting channel, and
for an s+− gap structure must be repulsive. The sign
of u1 is a priori unknown. In most microscopic studies
it comes out positive (repulsive), but in principle it can
also be negative (attractive). We do not assume a par-
ticular sign of u1 and consider first a case where u1 is

positive and then when it is negative. For the first case
we show that a resonance can only originate from the
particle-hole channel. For negative u1 the π channel can
produce collective modes as well, and we show that in
general the resonant mode is a mix between spin exciton
and a π-resonance.

III. SUSCEPTIBILITIES AND RPA

We focus on susceptibilities at antiferromagnetic mo-
mentum Q which separates the centers of hole and
electron pockets. Following similar work done on the
cuprates5, we define spin and π operators as

Sz(Q) = 1√
N

∑
k

[
c†kασ

z
αβfk+Qβ + f†k+Qασ

z
αβckβ

]
, (6)

π(Q) = 1√
N

∑
k

[
ckασ

x
αβfQ−kβ

]
. (7)

To make a closer connection to5, the operator π can be
equivalently defined as π = 1√

N

∑
k

[
gkakασ

x
αβaQ−kβ

]
,

with |gk| = 1/2 and the sign of gk is chosen so that it is
positive near the hole FS and negative near the electron
FS (gk = −gQ−k).

For notational convenience we split Sz into two oper-
ators such that Sz = Sc + Sf , where

Sc(Q) = 1√
N

∑
k

c†kασ
z
αβfk+Qβ , (8)

Sf (Q) = 1√
N

∑
k

f†k+Qασ
z
αβckβ . (9)

We now define the susceptibilities χab(Ωm) in terms of
Matsubara frequencies as

χab(Ωm) =
ˆ 1/T

0
dτ ′eiΩmτ

′
〈
TτAa(τ ′)A†b(0)

〉
, (10)

where Aa = (Sc, Sf , π, π†)a. The actual spin susceptibil-
ity is given by χS = χ11 + χ12 + χ21 + χ22.

The bare susceptibilities χ0
ab can be calculated in the

usual way in terms of Green’s functions and are given
by bubbles made out of c and f -fermions, with differ-
ent Pauli matrices in the vertices. At T = 0 and after
performing analytic continuation to real frequency space,
the (retarded) susceptibilities have the following form:

χ0
ab(ω) = 2

N

∑
k

[
− Aab(k)
ω − Eck − E

f
k+Q + iγ

+ Bab(k)
ω + Eck + Efk+Q + iγ

]
, (11)

where χ0
ab, Aab, and Bab are symmetric matrices. The

expressions for Aab and Bab are presented in Table I in
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a b Aab(k) Bab(k)
1 1 (vcku

f
k′ )2 (uckv

f
k′ )2

1 2 −uckvcku
f
k′v

f
k′ −uckvcku

f
k′v

f
k′

1 3 uckv
c
k(ufk′ )2 −uckvck(vfk′ )2

1 4 (vck)2ufk′v
f
k′ −(uck)2ufk′v

f
k′

2 2 (uckv
f
k′ )2 (vcku

f
k′ )2

2 3 −(uck)2ufk′v
f
k′ (vck)2ufk′v

f
k′

2 4 −uckvck(vfk′ )2 uckv
c
k(ufk′ )2

3 3 (ucku
f
k′ )2 (vckv

f
k′ )2

3 4 uckv
c
ku

f
k′v

f
k′ uckv

c
ku

f
k′v

f
k′

4 4 (vckv
f
k′ )2 (ucku

f
k′ )2

Table I: Coefficients of bare susceptibilities. Note: k′ = k+Q.

terms of coherence factors which are given by:

uck =

√
1
2

(
1 +

ξck
Eck

)
, (12)

vck =

√
1
2

(
1−

ξck
Eck

)
sgn ∆c, (13)

and similar expressions for ufk′ and vfk′ .
To obtain the full susceptibilities χab we used the gen-

eralized RPA approach. Within this approach

χab = (1− χ0V )−1
ac χ

0
cb, (14)

where the sum over repeated indices is implied and V is
given by

V = 1
2

u1 u3 0 0
u3 u1 0 0
0 0 −u1 0
0 0 0 −u1

 . (15)

The solution for the full spin susceptibility can be writ-
ten in a simpler form once we note that the matrix χ0

ab
has additional symmetry. Indeed, the functions Aab(k)
and Bab(k) can be separated into parts that are even or
odd with respect to ξck and ξfk . If the momentum sums
are evaluated only near the FSs, where the integration
region can be chosen to be symmetric with respect to
positive and negative values of ξck and ξfk , then the odd
parts cancel out and χ0

ab acquires the following form:

χ0 =


a b c −d
b a d −c
c d e f

−d −c f e

 (16)

If we rotate the basis of operators from (Sc, Sf , π, π†)
to (Sc + Sf , π− π†, Sc − Sf , π+ π†) we find that both V
and χ0 become block diagonal, so the first 2 × 2 system

decouples from the second one. In this case, the solution
for the subset (Sc + Sf , π − π†) takes the simple form

χS = χ0
S + δχ0

S

1− uS(χ0
S + δχ0

S) , (17)

χπ = χ0
π + δχ0

π

1− uπ(χ0
π + δχ0

π) , (18)

where

δχ0
S = uπ

1− uπχ0
π

(
χ0
Sπ

)2
, (19)

δχ0
π = uS

1− uSχ0
S

(
χ0
Sπ

)2
. (20)

and uS = (u1 + u3)/4 and uπ = −u1/4. The bare sus-
ceptibilities in this basis are given by

χ0
S = χ0

11 + χ0
12 + χ0

21 + χ0
22 = 2(χ0

11 + χ0
12), (21)

χ0
π = χ0

33 − χ0
34 − χ0

43 + χ0
44 = 2(χ0

33 − χ0
34), (22)

χ0
Sπ = χ0

13 − χ0
14 + χ0

23 − χ0
24 = 2(χ0

13 − χ0
14). (23)

The first two bare susceptibilities contain contributions
of products of two normal Green’s functions and of two
anomalous Green’s functions, while χ0

Sπ is composed of
one normal and one anomalous Green’s function (see Fig.
1 for some contributions of χ0

Sπ to the spin response func-
tion).

Figure 1: Some mixed-channel contributions to the spin sus-
ceptibility and Raman scattering. The solid lines represent
f fermions and the dashed lines c fermions, corresponding
to quasiparticles from the electron and hole pockets, respec-
tively.

We obtained expressions for the real parts of the bare
susceptibilities by replacing the momentum sums by in-
tegrals and evaluating them within an energy range from
−Λ to Λ about the FSs. They are valid in the range
0 < ω < 2∆ in the limit when the broadening γ → 0.

Reχ0
S(ω) =L+ ω2

4∆2 Reχ0
π(ω), (24)

Reχ0
π(ω) =m

π

4∆2

ω
√

4∆2 − ω2
arctan

(
ω√

4∆2 − ω2

)
,

(25)

Reχ0
Sπ(ω) = ω

2∆Reχ0
π(ω), (26)

where L = m
π log(2Λ/∆) and we have neglected terms of

order (∆/Λ)2.
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Figure 2: Real part of the bare spin susceptibilities (T = 0,
units of ∆−1) in the case of perfectly nested circular pockets
(m ≡ mc = mf = 1

100∆ ). In all numerical calculations µ =
10∆ and we include a finite broadening γ = ∆/200 when
evaluating momentum integrals.

In Fig. 2 we present the results of numerical calcula-
tions of the bare susceptibilities in the case of perfectly
nested FSs (µc = µf ≡ µ). The susceptibility χ0

S would
diverge at ω = 0 in the absence of superconductivity, but
becomes finite at a finite ∆. Conversely, χ0

π at ω = 0
would be zero in the absence of superconductivity, but
becomes non-zero because of ∆. Note that all three sus-
ceptibilities monotonically increase with frequency in the
domain 0 ≤ ω ≤ 2∆ and diverge at ω = 2∆. The imagi-
nary parts of the three bare susceptibilities (not shown in
the plot) are infinitesimally small and undergo a discon-
tinuous jump at ω = 2∆. If we make the electron pocket
elliptical, the divergence in the real part is replaced by a
local maximum.

We see that χ0
S(ω) and χ0

π(ω) have finite value at
ω = 0. We recall that, in the absence of superconduc-
tivity, χS(0) would diverge and χπ(0) would vanish at
perfect nesting. At ω = 2∆ both bare susceptibilities di-
verge. The cross-susceptibility χ0

Sπ(ω) vanishes at ω = 0
simply because it is composed from one normal and one
anomalous Green’s function but rapidly increases with ω
and becomes comparable to χS(ω) and χπ(ω) at ω ≤ 2∆.

The cross-susceptibility between particle-hole and
particle-particle channels has been recently analyzed for
an s+− superconductor in the context of Raman scat-
tering25. There, it was computed in the charge channel
and was found to be very small due to near-cancellation
between contributions from Fermi surfaces with plus and
minus values of the superconducting gap. In our case
we found that the contributions from hole and electron
FSs add up rather than cancel. The difference is that
in Raman scattering the side vertices in the susceptibil-
ity bubble have the spin structure given by δα,β , while
in our case the spin structure is, say, σzα,β . For an s+−

gap, Raman bubbles from hole and electron pocket have
the same vertex structure but differ in the sign of the
anomalous Green’s function, hence the two contributions
to cross-susceptibility have opposite signs, resulting in a
cancellation that is complete in the case of perfect nest-
ing and near-complete in the case of one circular and one
elliptical pocket. This cancellation does not occur in our
case because the σz structure of the side vertices addi-
tionally flips the sign of one of the two diagrams, and the
contributions to χ0

Sπ(ω) from hole and electron FSs add
constructively.

We next note that the terms δχ0
S and δχ0

π are precisely
what is neglected when the particle-particle channel is
not included in the calculation of the spin susceptibility.
Setting these terms to zero reduces the expressions for
the full χS and χπ to the usual RPA results

χS = χ0
S

1− uSχ0
S

, χπ = χ0
π

1− uπχ0
π

. (27)

The effect of coupling the two channels can be seen more
clearly by substituting (19) into (17), which yields

χS = χ0
S(1− uπχ0

π) + uπ(χ0
Sπ)2

(1− uSχ0
S)(1− uπχ0

π)− uSuπ(χ0
Sπ)2 (28)

= 1
uS

(
−1 + 1− uπχ0

π

(1− uSχ0
S)(1− uπχ0

π)− uSuπ(χ0
Sπ)2

)
The positions of resonance peaks are given by the zeroes
of the denominator in this equation and we can see that
the particle-hole and particle-particle channels are cou-
pled through the mixed-channel susceptibility χ0

Sπ(ω).

IV. THE RESULTS

A. Purely repulsive interaction, u1 > 0, u3 > 0.

For repulsive interactions uS > |uπ| > 0 and uπ < 0.
In the absence of χ0

Sπ the resonance in χS is present for
any uS because the bare susceptibility χ0

S is positive and
diverges at ω = 2∆, hence the equation 1−uSReχ0

S(ω) =
0 has a solution for 0 < uS < (Reχ0

S(0))−1. In con-
trast, the fact that Reχ0

π > 0 means that no resonance
originates from this channel. When χ0

Sπ is included, we
found in our numerical calculations that the effect of the
particle-particle channel is that the peak in the imagi-
nary part of the full susceptibility is shifted to a higher
frequency (since Re{uSuπ(χ0

Sπ)2} < 0). We show repre-
sentative behavior of real and imaginary parts of the full
spin susceptibility in Fig. 3

This result is also obtained when we consider an el-
liptical electron pocket, except that there is a minimum
value for uS below which no resonance is observed. This
is due to the fact that the bare susceptibilities have a
local maximum instead of a divergence at ω = 2∆.
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Figure 3: Imaginary part (main plot) and real part (insert) of
the full spin susceptibility (T = 0, units of ∆−1) in the case
of repulsive interactions. In this plot uS = 26∆ and uπ =
−13∆. The solid, black line indicates the full calculation.
For comparison, the dashed, blue line indicates a calculation
that neglects particle-particle contributions.

B. Partially attractive interaction, u1 < 0, u3 > 0.

We now consider an alternative case where the density-
density interaction u1 < 0, hence uπ = −u1/4 > 0.
We still assume u3 > |u1| such that uS > 0. For pos-
itive uπ, the π channel can acquire a resonance on its
own since the equation 1 − uπReχ0

π(ω) = 0 necessar-
ily has a solution at a frequency between 0 and 2∆ if
uπ < (Reχ0

π(0))−1. We assume that this inequality holds
together with uS < (Reχ0

S(0))−1. If any of these two con-
ditions are not satisfied, the system becomes unstable ei-
ther towards π superconductivity with total momentum
of a Cooper pair Q or towards magnetic order. In both
cases, the analysis of the spin susceptibility has to be
modified to include the new condensates. If the spin-
exciton and π channels were not coupled (i.e., if χ0

Sπ(ω)
was absent), we would find resonances in the spin and π
channels at frequencies ωS and ωπ, respectively, set by
1 − uSReχ0

S(ωS) = 0 and 1 − uπReχ0
π(ωπ) = 0. This

suggests the possibility that there may be two resonance
peaks in the full spin susceptibility χS(Q,ω) once we re-
store the coupling χ0

Sπ(ω).
However, we found that for all values of uS and uπ for

which the pure s+− state is stable, there is only a single
peak in the spin susceptibility at a frequency lower than
both ωS and ωπ. We show representative behavior in Fig.
4. The existence of a single peak is due to the fact that
χ0
Sπ is small at small frequencies, hence it does not pre-

vent the increase of the real part of the spin susceptibility
with increasing ω (see insert in Fig. 4) and only shifts the
position of the lower pole (ωS or ωπ) to a smaller value
ωres. At the same time, at higher frequencies, χ0

Sπ is

no longer small relative to the other bare susceptibilities
χ0
S and χ0

π. As a result, the denominator in χS(Q, ω) in
(28) passes through zero at ω = ωres and then remains
negative all the way up to ω = 2∆ and does not cross
zero for the second time.

To better understand this, we artificially add a factor
ε to χ0

Sπ and consider how the solutions evolve as we
progressively increase ε between 0 and 1. At small ε,
the two solutions obviously survive and just further split
from each other – the peak that was at a higher frequency
shifts to a higher frequency and the other peak shifts
to to a lower frequency. As ε increases, the peak at a
higher frequency rapidly moves towards 2∆. If we keep
Imχ0

ab strictly zero, this peak survives up to ε = 1 with
exponentially vanishing amplitude. If, however, we keep
a small but finite fermionic damping in the computations
of χ0

ab, we find that the functions χ0
ab(ω) increase but do

not diverge at 2∆. In this situation, the higher frequency
peak in χS(Q, ω) vanishes already at some ε < 1.

We also considered the evolution of the two-peak so-
lution with ε in a different way: we postulated that the
two peaks should be at ωres,1 and ωres,2, both below 2∆
and solved the set of equations for uS and uπ which would
correspond to such a solution. At small ε we indeed found
some real uS and uπ which satisfy “boundary conditions”
uSχ

0
S < 1 and uπχ

0
π < 1. However this holds only up to

some εcr. At higher ε the solutions for us and uπ become
complex, which implies that the two-peak solution is no
longer possible. At even higher ε real solutions for us
and uπ reappear, but they do not satisfy the boundary
conditions. We searched for a range of ωres,1 and ωres,2
and for all values that we tested we found εcr < 1, i.e.,
again there is only a single peak for the actual case of
ε = 1.

Another way to see that there is only one peak in the
full χS is to substitute the expressions for the real parts of
the susceptibilities, Eqs. (24)-(26), into the denominator
of Eq. (28) and express the real part of the term D =
(1−uSχ0

S)(1−uπχ0
π)−uSuπ(χ0

Sπ)2 via χ0
π = χ0

π(ω). We
obtain

ReD = (1− uSL)−
[
uS

ω2

4∆2 + uπ(1− uSL)
]

Re[χ0
π(ω)].

(29)
Because (1− uSL) and (1− uπχ0

π(0)) are required to be
positive for the stability of the paramagnetic state, at
zero frequency, D is surely positive. At finite ω, the first
term in (29) is positive, while the second one is negative
and its magnitude monotonically increases with increas-
ing ω. As a result, the denominator crosses zero only
once, at some ω < 2∆.

The single resonance peak is a mixture of a spin-
exciton and π-resonance and for the representative case
shown in Fig. 4 its energy is smaller that that of spin-
exciton and a π-resonance. This implies that, when both
channels are attractive, the coupling between the two
plays substantial role in determining the position of the
true resonance. From this perspective, the resonance at
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u1 < 0 can, at least partly, be viewed as a plasmon. A
somewhat similar result has been earlier obtained in the
analysis of the resonance in the cuprates in the parameter
range where π−resonance is allowed5,16,18.

Figure 4: Imaginary part (main plot) and real part (insert) of
the full spin susceptibility (T = 0, units of ∆−1) in the case
of uS = 30.5∆ and uπ = 130∆. In the absence of coupling
we would observe resonance peaks in the spin and π chan-
nels at frequencies ωS ≈ 0.57∆ and ωπ ≈ 1.0∆, respectively,
indicated on the plot.

V. CONCLUSIONS

We have studied the spin resonance at antiferromag-
netic momentum (π, π) in an s+− superconducting state

of FeSCs by including contribution from the particle-
particle channel, which in the superconducting state gets
mixed with the particle-hole channel. We have shown
that for purely repulsive interactions the inclusion of
this channel does not qualitatively change the spin res-
onance, which remains predominantly spin-exciton and
only slightly shifts to higher frequencies. For attractive
density-density interaction, when both spin-exciton res-
onance in the particle-hole channel and π-resonance in
the particle-particle channel are allowed, we found that
strong coupling between the two channels destroys the
two-peak structure and only one peak survives, whose
frequency is smaller than would be that of a spin-exciton
and π−resonance in the absence of the coupling. We ar-
gued that strong coupling between the particle-hole and
particle-particle channels is peculiar to the spin suscep-
tibility, while for the charge susceptibility, which, e.g.,
is relevant for Raman scattering, the coupling is much
smaller.
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