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CuxBi2Se3 was recently proposed as a promising candidate for time-reversal-invariant topological
superconductors[1]. In this work, we argue that the unusual anisotropy of the Knight shift observed
by Zheng et al[2], taken together with specific heat measurements, provides strong support for an
unconventional odd-parity pairing in the two-dimensional Eu representation of the D3d crystal point
group[1], which spontaneously breaks the three-fold rotational symmetry of the crystal, leading to
a subsidiary nematic order. We predict that the spin-orbit interaction associated with hexagonal
warping plays a crucial role in pinning the two-component order parameter and makes the super-
conducting state fully-gapped, leading to a topological superconductor. Experimental signatures of
the Eu pairing related to the nematic order are discussed.

PACS numbers: 74.20.Rp, 74.20.Mn, 74.45.+c

Time-reversal-invariant (T-invariant) topological su-
perconductors in two and three dimensions are a new
class of unconventional superconductors which exhibit a
full superconducting gap in the bulk and gapless heli-
cal quasi-particles on the boundary[3–5]. Because these
quasi-particles do not possess conserved charge or spin
quantum numbers, they cannot be distinguished from
their anti-particles and hence are regarded as itinerant
Majorana fermions.

There is currently intensive effort in finding T-
invariant topological superconductors in real materials[6–
10]. Recent theoretical works[1, 11] have established that
the key requirement for topological superconductivity in
inversion-symmetric systems is odd-parity pairing sym-
metry. Only a few odd-parity superconductors are known
to date. Two prime examples are Sr2RuO4 and UPt3.
However, both materials seem to have nodes and/or
spontaneously break time-reversal symmetry, hence do
not qualify as T-invariant topological superconductors.

Recently, the doped topological insulator CuxBi2Se3,
which is superconducting with a maximum Tc of 3.8K[12],
was proposed as a candidate topological superconduc-
tor with odd-parity pairing[1]. Since then this material
has been intensively studied. Specific heat measurements
down to 0.3K found a full superconducting gap[13]. The
upper critical field appears to exceed the Pauli limit,
which is interpreted as consistent with triplet pairing[14].
Much interest is sparked by the observation of a zero-bias
conductance peak in a point-contact spectroscopy exper-
iment on Cu0.3Bi2Se3[15], which is attributed to the pu-
tative Majorana fermion surface states from topological
superconductivity. However, a later scanning tunneling
spectroscopy measurement on Cu0.2Bi2Se3 found a full
gap in the tunneling spectrum at very lower temperature,
without any sign of in-gap states[17]. The discrepancy
between these two surface sensitive experiments has led
to considerable debate and controversy about the nature
of superconductivity in CuxBi2Se3[18–22]. In view of the
current status, direct probes of the pairing symmetry in
the bulk are much needed.

In a very recent nuclear magnetic resonance (NMR)
study of Cu0.3Bi2Se3, Zheng’s group discovered an un-
usual anisotropy in the Knight shift as a small applied
field is rotated within the ab-plane[2]. The Knight shift
is isotropic above Tc, and decreases in the superconduct-
ing state. Remarkably, the change in the Knight shift
is largest when the field is parallel to a particular crys-
tal axis. This uniaxial anisotropy is incompatible with
the three-fold rotational symmetry of the crystal, and
thus provides a direct evidence of spontaneous crystal
symmetry breaking associated with unconventional su-
perconductivity in CuxBi2Se3.

In this work, we identify the pairing symmetry of
CuxBi2Se3 from the existing NMR and specific heat mea-
surements, theoretically establish a novel fully-gapped
topological superconductor phase, and predict experi-
mental signatures for further study. Our main finding
is that among all possible pairing symmetries, the odd-
parity pairing in the two-dimensional (2D) Eu represen-
tation, first introduced in Ref.[1], is the only one compat-
ible with the rotational symmetry breaking observed in
NMR measurement[2] and the full superconducting gap
found in specific heat measurement[13]. Since this Eu
pairing generates a subsidiary nematic order, we call the
resulting state a “nematic superconductor”.

The fully-gapped nature of the Eu superconducting
state found here is remarkable, considering that all pre-
vious works found nodes in the gap[1, 15, 16]. Moreover,
a full gap is required for topological superconductivity.
While previous works are based on a rotationally invari-
ant Dirac fermion model for the bulk band structure of
CuxBi2Se3, we find that crystalline anisotropy plays an
indispensable role in the odd-parity Eu state. We show
by general argument and model study that the spin-orbit
interaction associated with hexagonal warping[23] pins
the direction of the two-component Eu order parame-
ter to a two-fold axis of the crystal, consistent with the
Knight shift anisotropy, and makes the superconducting
state fully-gapped. Such a nematic superconductor con-
stitutes a new phase of odd-parity pairing.
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Pairing Symmetry: It was recognized at the outset
that strong spin-orbit coupling must be taken into consid-
eration in discussing the pairing symmetry of CuxBi2Se3.
Indeed, the importance of spin-orbit coupling becomes
manifest in the Knight shift measurement of electron’s
spin susceptibility. If spin-orbit coupling were absent, the
Knight shift would be fully isotropic for spin singlet as
well as triplet pairing, because the triplet d-vector would
be free to rotate with the applied magnetic field. In con-
trast, in the presence of spin-orbit coupling, the notion
of spin-singlet or triplet pairing is, strictly speaking, not
well-defined. Instead, pairing symmetries are classified
according to the representations of the crystalline sym-
metry group D3d[1], which acts simultaneously on spatial
coordinates and electron’s spin. The consequence is that
the spin structure of the superconducting order param-
eter is locked to crystal axis, resulting in an anisotropic
spin susceptibility.

Among the the six irreducible representations of D3d

(A1g, A1u, A2u, A2g, Eu and Eg), only the Eu and Eg
representations are multi-dimensional and hence poten-
tially compatible with the spontaneous rotational sym-
metry breaking observed in the Knight-shift measure-
ment. In order to determine which one of the two is
the pairing symmetry of CuxBi2Se3, we first consider
Ginzburg-Landau theory for the Eu and Eg supercon-
ducting states. The D3d point group symmetry dictates
that up to the fourth order, the Landau free energy in
both cases must take the form

F = r(|Ψ1|2 + |Ψ2|2) + u1(|Ψ1|2 + |Ψ2|2)2

+ u2|Ψ2
1 + Ψ2

2|2 (1)

where r ∝ (T − Tc). Here Ψ = (Ψ1,Ψ2) is the two-
component order parameter, which transforms like a vec-
tor under the three-fold rotation. The same form of the
free energy also applies to other crystal systems[24, 25].
Importantly, the nature of the superconducting state be-
low Tc depends on the sign of u2. For u2 > 0, a T-
breaking chiral state with a complex order parameter
Ψ ∝ ( 1√

2
, i√

2
) arises, which is isotropic within the ab-

plane. For u2 < 0, a T-invariant state with a real order
parameter Ψ ∝ (cos θ, sin θ) arises. This superconduct-
ing state spontaneously breaks the rotational symmetry,
and possesses a subsidiary nematic order parameter Q:

Q = (|Ψ1|2 − |Ψ2|2, Ψ∗1Ψ2 + Ψ∗2Ψ1). (2)

The two components of Q transform as x2 − y2 and xy
respectively. Such a nematic superconductor with uni-
axial anisotropy is consistent with with the Knight shift
measurement, whereas the isotropic chiral state is not.

We now show that the nematic state with Eg pair-
ing and the one with Eu pairing can be experimentally
distinguished by their qualitatively different gap struc-
tures, because of the difference in the parity of the order
parameter: Eg is even-parity and Eu is odd-parity. To

analyze the gap structure, it is convenient to express the
pair potential ∆(k) in the band basis. Since the super-
conducting gap is much smaller than the Fermi energy in
CuxBi2Se3, it suffices to consider only the bands at the
Fermi energy. Due to the presence of both time reversal
and inversion symmetry, the energy bands are twofold
degenerate at every k, which we label by a “pseudospin”
index α. Because of spin-orbit coupling, α = 1, 2 does not
correspond to electron’s spin. The pair potential thus re-
duces to a 2 × 2 matrix over the Fermi surface: the gap
function ∆αα′(k).

Depending on the parity of the order parameter, the
gap function of a T-invariant superconductor takes two
different forms:

∆e(k) = ∆(k) · I, where ∆(k) = ∆(−k), (3)

∆o(k) = ~d(k) · ~σ, where ~d(k) = −~d(−k). (4)

The even-parity gap function ∆e(k) is a real scalar, while
the odd-parity gap function ∆o(k) is parameterized by a

real vector field ~d(k), the d-vector. The superconducting

gaps δ(k) in the two cases are given by |∆(k)| and |~d(k)|
respectively.

The scalar nature of even-parity gap function (3) dic-
tates that the T-invariant Eg state of CuxBi2Se3 must
have line nodes. To see this, let us recall that for any
non-s-wave pairing, the gap function integrated over the
Fermi surface must be zero:∫

k∈FS
dk ∆(k) = 0. (5)

As shown by angle-resolved photoemission spectroscopy
experiments[19, 26], CuxBi2Se3 has a connected Fermi
surface enclosing k = 0. It then follows from Eq.(5) that
∆(k) must change sign somewhere on such a Fermi sur-
face, resulting in unavoidable line nodes. As an explicit
example, the Eg gap function ∆(k) ∝ kzkx, kzky con-
sidered in Ref.[16] has lines of nodes on the kz = 0 and
kx, ky = 0 planes. The existence of line nodes conflicts
with the specific heat measurement[13]. This seems suf-
ficient to rule out the Eg pairing in CuxBi2Se3. In con-
trast, we will show below that the Eu states generically
have a full superconducting gap.

Superconducting gap: For the sake of concreteness,
we first derive the superconducting gap of the Eu state
within a two-orbital model for CuxBi2Se3. Later, we
will show that the presence or absence of nodes is a ro-
bust property that depends only on symmetry, not mi-
croscopic details.

The band structure of CuxBi2Se3 at low energy is de-
scribed by a k · p Hamiltonian at Γ, which to first order
in k takes the following form[1]

H0 =
∑
k

c†k [v(kxsy − kysx)σz + vzkzσy +mσx − µ] ck,
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where c† = (c†1↑, c
†
1↓, c

†
2↑, c

†
2↓) consists of two orbitals here-

after denoted as 1 and 2, in addition to electron’s spin.
Here σ and s are two sets of Pauli matrices associated
with orbital and spin respectively. It is worth pointing
out that spin-orbit coupling in time-reversal and inver-
sion symmetric systems necessarily involves more than
one orbitals, as shown in the two-orbital Hamiltonian
here. The physical origin of H0 is elucidated in Ref.[27].
The chemical potential µ lies in the conduction band due
to Cu-doping.

In this two-orbital model, the Eu pairing arises when
electrons in the two orbitals within a unit cell pair up to
form a spin triplet, with zero total spin along an in-plane
direction n = (nx, ny). The corresponding pair potential,
Vn = nxVx+nyVy, is a superposition of two independent
basis functions given in Ref.[1] (therein called “∆4 pair-
ing”):

Vx = i∆0(c†1↑c
†
2↑ − c

†
1↓c
†
2↓)

Vy = ∆0(c†1↑c
†
2↑ + c†1↓c

†
2↓). (6)

Vn is T-invariant and rotational symmetry breaking. n
should be regarded as a nematic director (a headless vec-
tor), because the superconducting order parameter Vn
and V−n only differ by sign and correspond to the same
physical state.

We can directly obtain the superconducting gap δn(k)
by diagonalizing the BCS mean-field Hamiltonian Hsc =
H0 + Vn. Alternatively, we can derive the gap function
∆(k) by rewriting Vn, defined by (6) in spin and or-
bital basis, in terms of band eigenstates of H0 at the
Fermi energy, as done in Ref.[16]. To leading order
in ∆0/µ, the two approaches yield identical results for
the superconducting gap on the Fermi surface: δn(k) =

∆
√
k̃2z + (k̃ · n)2, where ∆ = ∆0

√
1−m2/µ2. Here we

have introduced a rescaled momentum k̃ to parameterize
the Fermi surface:

k̃ = (vkx, vky, vzkz)/
√
µ2 −m2. (7)

k̃ maps the ellipsoidal Fermi surface of the Hamiltonian
H0 to a unit sphere. The gap δn(k) vanishes at two points
on the equator of the Fermi surface: ±k0 = ±kF ẑ × n.
Hence, based on this model, previous works concluded
that the Eu states in CuxBi2Se3 have point nodes.

However, we note that H0 is fully rotationally invariant
around the ẑ axis. This is an artifact of the first-order
k · p theory, which does not include any effect of crys-
talline anisotropy. In reality, the crystal of CuxBi2Se3
only has a discrete three-fold symmetry, and this crys-
talline anisotropy is responsible for pinning the direction
of the Eu order parameter n. This motivates us to take
crystalline anisotropy into account and re-examine the
gap structure of Eu pairing.

We find that the gap structure depends on the orien-
tation of the order parameter n relative to the crystal
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FIG. 1: (a) Crystal structure of CuxBi2Se3 viewed from the
c axis. Note that the x axis is normal to a mirror plane.
(b) Hexagonal Fermi contour at kz = 0 for the Hamiltonian
(8). (c) and (d) show the angle dependence of the anisotropic
superconducting gap over the kz = 0 Fermi contour for the Eu

order parameter Vx and Vy respectively, defined in (6). The
presence of nodes in (c) and the full gap in (d) are robust and
model-independent.

axes: the point nodes remain present when n is paral-
lel to a two-fold axes, whereas they become lifted for n
in all other directions, resulting in a full superconduct-
ing gap. To illustrate this node-lifting explicitly, we add
a “hexagonal warping” term of third order in k to the
Hamiltonian, which is allowed by the D3d point group
symmetry of CuxBi2Se3:

H = H0 + λ
∑
k

(k3+ + k3−)c†kσzszck, k± ≡ kx ± iky. (8)

Here x is along a two-fold axis, or equivalently, normal to
a mirror plane, as shown in Fig.1. This hexagonal warp-
ing term arises from the spin-orbit interaction associated
with crystalline anisotropy and can be regarded as the
bulk counterpart of the warping term for topological insu-
lator surface states[23, 28]. For λ 6= 0, the Fermi surface
becomes hexagonally deformed, and more importantly,
the orbital-resolved spin polarization of Bloch states in
k space becomes modified.

By solving the mean-field Hamiltonian Hsc = H + Vn
with the same pair potential as before, we find the su-
perconducting gap in the presence of hexagonal warping:

δn(k) = ∆

√
1− [k̃ · (ẑ× n)]2, (9)

where k̃ is still defined by Eq.(7), but k now lives on a
new Fermi surface determined by√

m2 + v2(k2x + k2y) + λ2(k3+ + k3−)2 + v2zk
2
z = µ.
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It is clear from (9) that the gap δn(k) goes to zero
only where |n · (k̃ × ẑ)| = 1. Importantly, we note that
for λ 6= 0, |k̃× ẑ| is less than 1 everywhere on the warped
Fermi surface, except at six corners of the hexagon on the
kz = 0 plane (see Fig.1): ±k = kF ŷ and the star of ±k
obtained by three-fold rotation, where |k̃× ẑ| = 1. As a
result, the zero-gap condition |k̃ · (ẑ×n)| = 1 is satisfied
only when the nematic director n is parallel to one of the
three two-fold axes, such as n = ±x̂. In this case, the
nodes found previously remain present. In contrast, for
n = (cos θ, sin θ) in all other directions, i.e., θ 6= 0,±π/3
or ±2π/3, the nodes are lifted by hexagonal warping,
resulting in a full gap.

We plot in Fig.1 the superconducting gaps over the
equator of a hexagon-like Fermi surface, for two Eu pair-
ings with n = x̂ and ŷ respectively, which are rep-
resentative of the two contrasting cases. It should be
said that the quantitative gap structure are model spe-
cific. For example, the gap anisotropy depends on the
amount of warping and the microscopic pairing interac-
tion. Nonetheless, the presence of nodes for n = x̂ and
a full gap for n = ŷ, which we have explicitly shown
using the model Hamiltonian (8) and the pair potential
(6), are robust and model-independent properties of the
Eu superconducting state in CuxBi2Se3, as we will show
below.

Stable nodes have a deep origin in the symmetry and
topology of the gap function. In a T -invariant odd-parity
superconductor, a node in the gap occurs where the d-
vector is zero. Importantly, we observe that when strong
spin-orbit coupling is present, as in CuxBi2Se3, the d-
vector ~d(k) (whose direction depends on the choice of
pseduospin basis at k) is generically a three-component
vector field in k space, instead of uniaxial or planar.
This is simply because crystalline symmetry group alone
is generally insufficient to make any component of the
d-vector vanish everywhere in k space. Since ~d(k) = 0
requires satisfying three equations, it is vanishingly im-
probably to find a solution on the two-dimensional Fermi
surface[29]. This implies that stable nodes in T-invariant
odd-parity superconductors are unlikely to occur in the
presence of spin-orbit coupling, unless there is special
crystal symmetry protecting their existence.

An example is when there is a reflection symmetry with
respect to a mirror plane, e.g., x → −x, and the odd-
parity order parameter is invariant under this reflection.
In this case, ~d(kx = 0, ky, kz) and ~d(kx = π/a, ky, kz)
must be parallel to the normal of the mirror plane, due
to its pseudo-vector nature. Such a two-dimensional uni-
axial d-vector field on the kx = 0, π/a plane is allowed
to have lines of zeros, whose intersection with the Fermi
surface will generate stable point nodes in the supercon-
ducting gap[29].

The general argument presented above explains the
gap structures of different Eu states of CuxBi2Se3 found
in our model studies. The rotationally invariant model

H0 has the artifact of being symmetric with respect to
any vertical plane, thus resulting in point nodes regard-
less of the nematic director n. However, the crystal of
CuxBi2Se3 has only three mirror planes that are 120 de-
grees apart from each other, which is correctly captured
in the refined model (8) with hexagonal warping. For n
normal to a mirror plane such as n = ±x̂, the correspond-
ing order parameter Vx is invariant under the reflection
x → −x; hence the nodes located on the kx = 0 plane
are protected by this mirror symmetry. For n in other
directions, however, the order parameter is not invariant
under any reflection; hence nodes are absent[30].

To capture the important effect of crystalline
anisotropy in Ginzburg-Landau theory, we must include
higher-order terms in the free energy (1), which start at
the sixth order

F6 = κ
[
(Ψ∗+Ψ−)3 + (Ψ+Ψ∗−)3

]
, Ψ± ≡ Ψ1 ± iΨ2 (10)

Depending on κ > 0 or κ < 0, n is pinned either parallel
or perpendicular to one of the three mirror planes, e.g.,
along the ŷ or x̂ axis. It is natural to expect that the fully
gapped state with n = ŷ has a lower free energy below
Tc than the nodal state with n = x̂. The nematic state
with n = ŷ has two degenerate gap minima at ±kF x̂,
and spontaneously lowers the point group symmetry from
D3d (rhombohedral) to C2h (orthorhombic). This crystal
symmetry breaking naturally leads to an anisotropic spin
susceptbility. Importantly, the C2h point group in the
symmetry breaking phase has only one principal axis—
the two-fold axis x̂ that lies within the ab-plane. It is
exactly along this axis that the change in Knight shift
was found to be largest in the NMR experiment[2]. This
agreement lends additional support to the Eu pairing
symmetry we have identified. A quantitative calculation
of spin susceptibility in the anisotropic Eu state depends
on microscopic details, which we leave to future study.

The anisotropic Eu state found here is a novel example
of odd-parity pairing with a full gap. Among the vari-
ous phases of superfluid He-3, the T-invariant B phase
is isotropic, while the anistropic A phase is T-breaking.
Perhaps the closest analog to CuxBi2Se3 is the A phase
of UPt3[31], whose order parameter is real and breaks
the sixfold crystal rotational symmetry[32]; however, this
phase is known to have nodes.
Topological superconductivity: With an odd-

parity pairing symmetry and a full gap, the Eu supercon-
ducting state in CuxBi2Se3 satisfies all the requirements
for T -invariant topological superconductivity stated in
Ref.[1]. The exact topology depends further on the na-
ture of the Fermi surface. At low doping, the normal
state has an ellipsoidal Fermi pocket centered at Γ, which
under Eu pairing will become a three-dimensional (3D)
topological superconductor, with Majorana fermion sur-
face states on all crystal faces. At high doping, the
Fermi surface is most likely open and cylinder like, as
indicated by recent photoemission[19] and de Haas-van
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Alphen measurements[33, 34]. If this is the case, the Eu
pairing will give rise to a quasi-two-dimensional topolog-
ical superconductor, which is equivalent to stacked layers
of 2D topological superconductors along the c axis, cor-
respond to vz = 0 in our model (8). Side surfaces of
this state host an even number of 2D massless Majorana
fermions. The top and bottom surfaces are fully-gapped,
but a step edge on these surfaces hosts 1D helical Majo-
rana fermions. It has been noted[19] that the scenario of
quasi-2D topological superconductivity may explain both
the point contact and scanning tunneling spectroscopy
measurements. In either 3D or quasi-2D case, more di-
rect evidence of Majorana fermions would be desirable.

Experimental signatures: The ab-plane gap
anisotropy of the Eu pairing can be directly probed by
directional dependent thermal conductivity[35] or tun-
neling spectra. Here we focus on testing the Eu pairing
symmetry in CuxBi2Se3 via the subsidiary nematic order.
Symmetry dictates a linear coupling between a uniaxial
strain εij in the ab-plane and the superconducting order
parameter:

Fs = g

[
εxx − εyy

2
(|Ψ1|2 − |Ψ2|2) + εxy(Ψ∗1Ψ2 + Ψ∗2Ψ1)

]
.

As a result of this coupling, an uniaxial strain in the
ab-plane acts as a symmetry breaking field for the ne-
matic order, which should be able to align the nematic
director of the superconducting order parameter near Tc,
thereby changing the pattern of the anisotropic Knight-
shift. In addition, the superconducting transition tem-
perature should increase linearly under a small uniaxial
strain, independent of its direction. The investigation
of such strain-related effects on superconductivity seems
within experimental reach[36] and may shed light on the
pairing symmetry of CuxBi2Se3. Furthermore, the ne-
matic order parameter allows for half-integer disclina-
tion, around which the superconducting order parame-
ter changes sign. Hence these disclinations may trap a
half-integer flux quantum (h/4e). Finally, it would be in-
teresting to consider whether the nematic order or other
orders related to the Eu pairing can emerge prior to the
onset of superconductivity, similar to such phenomena in
other systems[37–40].
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prior to publication. This work is supported by DOE
Office of Basic Energy Sciences, Division of Materials Sci-
ences and Engineering under award DE-SC0010526.
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