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The physics of strongly correlated quantum particles within a flat band was originally explored as
a route to itinerant ferromagnetism and, indeed, a celebrated theorem by Lieb rigorously establishes
that the ground state of the repulsive Hubbard model on a bipartite lattice with unequal number
of sites in each sublattice must have nonzero spin S at half-filling. Recently, there has been interest
in Lieb geometries due to the possibility of novel topological insulator, nematic, and Bose-Einstein
condensed (BEC) phases. In this paper, we extend the understanding of the attractive Hubbard
model on the Lieb lattice by using Determinant Quantum Monte Carlo to study real space charge
and pair correlation functions not addressed by the Lieb theorems. Specifically, our results show
unusual charge and charge transfer signatures within the flat band, and a reduction in pairing order
at ρ = 2/3 and ρ = 4/3, the points at which the flat band is first occupied and then completely
filled. We compare our results to the case of flat bands in the Kagome lattice and demonstrate that
the behavior observed in the two cases is rather different.

PACS numbers: 74.72.-h, 74.78.-w

I. INTRODUCTION

The form of the electronic dispersion relation ǫ(k)
in the absence of interactions plays a fundamental
role in how correlations drive the formation of ordered
phases. Qualitative pictures like the Stoner criterion
for ferromagnetism simplify the input from ǫ(k) and
focus on the density of states at the Fermi level
N(EF ) =

∑

k δ(EF − ǫ(k) ). More refined treatments
like the Random Phase Approximation (RPA) capture
phenomena such as the degree of Fermi surface nesting
and provide insight into how the non-interacting
susceptibility determines the renormalized response of
the system. Both density of states and nesting issues
come into play in cuprate superconductity: Near-
neighbor hopping on a two dimensional square lattice
such as that occupied by the copper atoms of the
CuO2 sheets has a van Hove singularity in the density
of states at half-filling which was suggested to lead
to an enhanced superconducting critical temperature1.
Likewise nesting of the Fermi-surface with wave
vector q = (π, π) provides a natural weak-coupling
explanation for the antiferromagnetic phase of the
undoped parent compounds, complementing the strong-
coupling Heisenberg picture. Nesting can also further
increase the pairing transition temperature2.

While the single band Hubbard model on a square
lattice has received the most attention in modeling the
cuprates, considerable interest has also focussed on the
more accurate three band picture which includes not
only the square lattice of copper d orbitals but also the
intervening oxygen p orbitals3–8. If hopping is restricted
to near-neighbors, this arrangement of sites is bipartite,
with, however, unequal numbers Np = 2Nd. In such

situations, Lieb showed9 that, at half-filling and with
repulsive interaction, the hopping Hamiltonian T̂ has
a ground state with non-zero spin, S = (Np − Nd)/2.
The key element of the physics of such ‘Lieb lattices’ is
that the spectrum of T̂ consists of 2Nd eigenvalues in
+/- pairs, separated by a flat electronic band ǫ(k) = 0
with Np − Nd levels. Fig. 1a shows an example of a
Lieb geometry (Np = 2Nd). While this structure is
similar to the CuO2 planes of the high temperature
superconductors, in a realistic cuprate model there is
an energy difference between the copper d and oxygen
p orbitals. The zero energy modes of T̂ can be easily
understood: A one particle state formed by creating
fermions on the four oxygen sites surrounding the center

of any copper plaquette, |ψ〉 = (c†1 − c†2 + c†3 − c†4)|vac〉,

satisfies T̂ |ψ〉 = 0 because hops from the oxygens onto
the coppers cancel. This ‘topological’ localization was
emphasized earlier by Sutherland10.

The Lieb lattice, as realized in CuO2 planes of the
cuprate superconductors, was investigated by Varma for
possible staggered current phases which might explain
pseudogap behavior11. Novel behavior tied to the
presence of a flat band includes a quantum spin Hall
effect driven by spin-orbit coupling and topological
phase transitions, e.g. caused by next-near-neighbor
hopping12. Other ‘decorated’ geometries exhibit flat
bands, e.g. the Kagome lattice, and are similarly under
investigation13,14, a key difference being the frustrated
nature of the Kagome lattice. We compare results
obtained for the Lieb lattice to the Kagome lattice and
show the results we find are not generic to arbitrary flat
band systems.

In this paper we address two important questions left
open by Lieb’s theorems: [1] What are the natures
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FIG. 1: (Color online) An example of a Lieb lattice, a
bipartite geometry with unequal numbers of sites in the
two sublattices. (a) The three bands model of the CuO2

planes of the cuprate. In the case of attractive interactions
CDW patterns emerge at two-thirds (b) and four-thirds (c)
fillings by doubly occupying the copper or oxygen sublattices
respectively. Localized states form from linear combinations
of creation operators on sites 1,2,3,4 (panel a) with alternating
phases.

of the charge and superconducting response functions?
[2] What are the implications of the absence of a
minimum in ǫ(k) for superconductivity (SC) or BEC
in a flat band? It has been suggested that the
presence of interactions renormalizes the flat band
and induces an effective minimum so that BEC can
still occur15 or that the infinite density of states in
the flat band favours the emergence of SC or other
kinds of order16–18. However no exact numerical work
has addressed these issues. Next-generation Optical
Lattice Emulation (OLE) experiments have generated
Lieb lattice geometries19,20 and might be able to study
this question for bosonic atoms21. The attractive
fermion Hubbard model (AHM) considered here develops
superconducting phases at low temperatures- a BCS
phase at weak coupling and BEC pairing at strong
coupling22, with a crossover between these two extreme
cases. On lattices which do not have special features
in their densities of states16,17, and in sufficiently high
dimension, the BCS limit is characterized by pairs
with large sizes ξ and a transition temperature Tc ∼
t exp[−at/|U |] ∼ t exp[−b/UN(Efermi) ]. In the BEC
limit, ξ is of the order of a few lattice spacings and
Tc ∼ t2/|U |, the effective hopping of the tightly bound
pairs. We will concentrate on intermediate and large
coupling cases (|U | ≥ 4). This is closer to the BEC limit,
and hence to possible experiments on bosonic atoms.
Furthermore, it is easier to reach the condensation
temperature in this case.

II. CALCULATIONAL APPROACH

We consider the AHM on a CuO2 geometry (Fig. 1a).

H = −t
∑

iασ

(

d†iσ p
α
iσ + d†i+ασ p

α
iσ + h.c.

)

(1)

−|U |
∑

iα

[

(nd
i↑ − 1/2 )(nd

i↓ − 1/2 ) (2)

+(npα
i↑ − 1/2 )(npα

i↓ − 1/2 )

]
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FIG. 2: (Color online) Occupations of the copper (nd)
and oxygen (npα) orbitals as a function of density ρ for
U = 0,−4,−8. Non-zero attractive interactions induce an
unusual charge transfer effect in which the copper occupation
decreases even while the overall lattice density increases, with
cusps at the endpoint of the filling of the flat band, ρ = 4/3.
Here and in subsequent figures we show only densities ρ ≥ 1
since our model Eq. 1 is particle-hole symmetric.

We have adopted the notation of the three band model

of the cuprates where the operators d†iσ (diσ) create
(destroy) fermions on site i of spin σ in a square lattice

of copper d orbitals and pα†iσ (pαiσ ) do the same for oxygen
p orbitals on the intervening links in the α = x̂, ŷ
directions. Number operators are denoted by npα

iσ and
nd
iσ. t is the scale of kinetic energy which we set to unity

and |U | is the magnitude of the on-site attraction. N
denotes the total number of sites of the lattice23.

In order to determine the properties of the AHM on
a Lieb lattice, Eq. 1, we use Determinant Quantum
Monte Carlo (DQMC)25,26. The approach exactly solves
the Hamiltonian on lattices of finite size27. We present
results for up to 6×6 unit cells (108 sites). The absence
of the sign problem in the attractive case, U < 0,
allows simulations over a wide range of fillings. We
focus our attention on the densities on the d and p
orbitals, nd and npx = npy, and on intra-unit-cell (ie
near-neighbor and next-near neighbor) density-density
correlations, 〈ndnpx〉 and 〈npxnpy〉. The total density
per site ρ = 1

3
(nd + npx + npy). We also report data for

the local moment 〈m2〉 =
∑

iν〈 (niν↑ − niν↓)
2 〉 and s-

wave pair structure factor Ps = 1/N2
∑

i,j,µ,ν〈BiµB
†
jν〉.

Here B†
jν creates a pair of up/down spin fermions on site

j and orbital ν = d, px, py. In the definitions of 〈m2〉 and
Ps the sums are over all N lattice sites (i.e. over both d
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and p orbitals).
We complement these DQMC calculation with mean

field theory (MFT). In this approach, on each site, the
attractive interaction is written in term of the operators

∆x =
1

2
(c†↑c

†
↓ + c↓c↑) ∆y =

1

2i
(c†↑c

†
↓ − c↓c↑)

∆z =
1

2
(n↑ + n↓ − 1), (3)

−|U |(n↑ − 1/2)(n↓ − 1/2) = −2|U |~∆ · ~∆/3 + |U |/4.

The vector ~∆ = (∆x,∆y,∆z) is obtained from the usual
spin operator by a particle-hole transformation for the
down spin. The mean field decoupling corresponds to

approximating, on each site, the interaction term ~∆ · ~∆

by 2〈~∆〉 · ~∆, leading to three mean field parameters 〈~∆〉.
For repulsive interaction, this decoupling is the analog of
the usual SU(2) decoupling in the spin channels28. The

values 〈~∆i〉 are determined by minimizing the free energy.
Both techniques work in the grand canonical ensemble,

which could cause a problem when trying to access a
given density in the partially filled flat band. This is
not the case as the flat band acquires a width due to
interactions in the exact DQMC treatment and as the
SU(2) symmetry allows us to circumvent this problem in
the MF approximation (see below).

III. NUMERICAL RESULTS

A. Local density response

We begin by showing the changes in the occupations
〈nd 〉 and 〈npx 〉 = 〈npy 〉 on the individual orbitals as the
total density ρ increases (Fig. 2). In the noninteracting
limit, ∂〈nα 〉/∂ρ must be nonnegative, and we observe
this. However, for U 6= 0 we see that the d occupation
decreases with increasing ρ. We interpret this in terms of
a transition from the ρ = 2/3 CDW (Fig. 1b) to the ρ =
4/3 CDW (Fig. 1c). U favors doubly occupied sites, but
to second order in perturbation theory such paired sites
are lower in energy by 2t2/|U | for each empty adjacent
site. At low densities (double) occupation of the four-fold
coordinated d orbitals is favored, but as ρ exceeds 2/3 it
becomes advantageous to occupy the more numerous p
orbitals and empty the d band.
We emphasize an important feature of CDW patterns

on this lattice: Because the d and p sites are inequivalent,
there is a ‘trivial’ difference in charge densities which
does not reflect any spontaneous symmetry breaking.
However, CDW order is also present due to correlations,
and the fact that it is energetically favorable, δ2E ∼
t2/U , to have doubly occupied and empty sites adjacent.
Additional interest in the orbital occupation evolution

concerns its possible implications for charge transfer
processes in cuprate pairing. Because they favor d wave
pairing symmetry, it is generally accepted that spin
fluctuations provide the majority of the ‘pairing glue’

in high Tc materials29. However, arguments have been
made3–8 in favor of a possible role of charge fluctuations
between the copper and oxygen orbitals driven by a
repulsive interaction Vpd. Such fluctuations would be
reflected in a large response of np − nd to the orbital
energy difference ǫp − ǫd. Figure 2 emphasizes that,
even in the absence of Vpd, there is nontrivial structure
in the orbital occupations. Thus, much as the large
U = 0 antiferromagnetic susceptibility highlights spin
fluctuations on the square lattice, the observation of
unusual charge transfer in the Lieb lattice at Vpd = 0
might indicate a role for charge fluctuations there.
Because it probes the double occupancy D (local pair

formation) the local moment can also provide interesting
insight. 〈m2〉 = ρ− 2D is shown in Fig. 3. It is evident
that 〈m2〉 does not change as the density is increased in
the range 2/3 < ρ < 4/3, i.e. as the flat band is being
filled. This result can be understood within MFT: for
chemical potential µ = 0, the SU(2) invariance implies
that the mean field ground state energy is invariant
under a global rotation of the mean field pseudo-spins

〈~∆i〉. More precisely, in the ground state, 〈~∆i〉 shows a
ferromagnetic order in the (X,Y ) plane (pairing order)
and an antiferromagnetic order along the Z axis (CDW
order). This SU(2) symmetry implies,

Ps

a
+

(

ρ− 1

b

)2

= 1, (4)

where 9a = (2∆p +∆d)
2 and 3b = 4∆p − 2∆d, and ∆i =

|〈~∆i〉| is the norm of the pseudo-spin. The maximum
value for Ps is a and occurs at half-filling; Ps vanishes
when the density reaches ρ = 1 ± b. At U = −4, the
numerical MFT values are ∆d = 0.1876 and ∆p = 0.3438,
with a ≈ 0.09 and b = 1/3. Although the maximum value
of Ps depends on U , we have found that the value of b is
always 1/3. Hence, for µ = 0, the mean field Ps always
vanishes at fillings ρ = 1± 1/3, i.e. the endpoints of the
flat band, in agreement with the QMC results39 depicted

in Fig. 5. Finally, one has (n↑ − n↓)
2 = 1 − 4~∆ · ~∆/3.

Since, at the mean-field level, |〈~∆〉|2 is independent of
the density within the range 2/3 < ρ < 4/3, this explains
the plateau in Fig. 3. It is remarkable that this behavior
is observed in the QMC results Fig. 3 as, in the exact
Hamiltonian, the SU(2) symmetry is only present at ρ =
1 or µ = 0 and not in the whole range of densities 2/3 <
ρ < 4/3.

B. Competition Between Pairing and Charge

Order

Near-neighbor density-density correlations (Fig. 4)
involving a copper site occupation 〈ndnpx〉 decrease with
increasing ρ in the flat band, reflecting the transfer of
charge to the oxygen sites. The density correlations
between the two oxygen sites of a unit cell, 〈npxnpy〉,
grow with filling. The anomalous charge response is
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FIG. 3: (Color online) The local magnetic moment 〈m2〉
versus density. 〈m2〉 is constant within the flat band, and
then drops for densities ρ > 4/3. Here U = −4t and β = 36.
The constant value of 〈m2〉 can be explained within MFT to
be a consequence of the SU(2) invariance at µ = 0, see the
text for more details.

strengthened as the on-site interaction strength |U |
becomes larger.

The pair structure factor in the intermediate coupling
regime, U = −4, is given in Fig. 5 (top). Ps is greatest
when the bands are half-filled, i.e. for ρ = 1 and
ρ = 5/3. These densities are furthest from the fillings
ρ = 2/3 and ρ = 4/3 which most favor competing CDW
phases (Fig. 1b,c), and, therefore, vanishing Ps. (Ps

also vanishes at full filling, ρ = 2). Data for Ps do not
show much size dependence for U = −4t. Inset (a) to
Fig. 5 gives a finite size scaling analysis40 and supports
the existence of pairing LRO in the thermodynamic limit
1/L → 0, as expected in two dimensions in the zero
temperature limit. For the finite size systems we are
using this limit is reached when the coherence length
becomes larger than the system’s size. This result is in
agreement with the mean field results: For 1 ≤ ρ ≤ 4/3,
the mean field pair structure factor is given by Ps =
Pmax
s (1 − (3(ρ− 1))2), where Pmax

s = 0.09, in very good
agreement with the QMC. For 4/3 ≤ ρ ≤ 2, the mean
field results also depict a dome-shape behavior, with a
maximum around the centre, a behavior quite similar to
a single band situation. The agreement between MFT
and DQMC is less good at larger |U |.
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FIG. 4: (Color online) Near-neighbor and next near-neighbor
density-density correlations as functions of ρ for U =
0,−4,−8,−10. As with the site occupations, these short
range density correlations exhibit an anomalous decrease even
as the total density ρ grows.

C. BEC Within a Flat Band

The bottom panel of Fig. 5 shows DQMC data at
larger U = −8t, approaching the small pair size regime
of the AHM. Ps decreases much more as the lattice
size is increased than for U = −4t, and a finite size
scaling analysis (inset (b)) suggests the absence of LRO
at β = 36. We thus have local pair formation with
no clear long range coherence. While LRO pair order
is likely to develop at a yet lower energy scale, it is
suggestive that it is absent at temperatures for which
superconductivity would be readily visible in dispersing
band geometries like the 2D square lattice: the flat band
appears to be impeding the bosons (locally formed pairs)
from forming a BEC. For U = −8t, pairing LRO is well
established at β = 12 on a square lattice. In the flat
band model considered here, β = 36 is insufficiently cold.
This factor of three, or more, reduction in the ordering
temperature is much larger than one would expect simply
by the lower coordination number (4 for the square lattice
and 8/3, on average, for the CuO2 lattice).

D. Comparison with the Kagome lattice

In order to assess if these phenomena are generic to
all flat band geometries, we compare our results with
the case of the Kagome lattice. We choose the sign of
the hopping term so that the dispersionless band is the
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FIG. 5: (Color online) Pair structure factor Ps versus ρ for
U = −4t (top) and U = −8t (bottom). Data for four lattice
sizes are shown. Ps has a minimum at ρ = 4/3 where the
superconducting phase must compete with charge order, and
is a maximum when ρ = 1 and ρ = 5/3. In the weaker
coupling case U = −4t, at half-filling (inset a) Ps extrapolates
to a non-zero value in the thermodynamic limit. However,
at U = −8t, the extrapolation is to zero (inset b). For
1 ≤ ρ ≤ 4/3, the mean field pair structure factor is given
by Ps = Pmax

s (1 − (3(ρ − 1))2), where Pmax

s = 0.09, in very
good agreement with the QMC results. For 4/3 ≤ ρ ≤ 2, the
mean field calculations depict a similar dome-shape behavior,
with a maximum around the center, a behavior quite similar
to a single band situation.

lowest of the three Kagome bands. This is the case of
interest to proposed optical lattice experiments on BEC
in Kagome lattices21, since condensation occurs to the
lowest energy levels.

Fig. 6 and 7 shows the evolution of the local magnetic
moment 〈m2〉 and the pair structure factor Ps for U = −4
and different lattice sizes. In the non-interacting limit,
the flat band is occupied for density ρ < 2/3. We see that
the novel features that were observed in the Lieb lattice
(figures 3 and 5) are no longer present. Specifically, the
local momemt 〈m2〉 is not constant, nor does the pair
structure factor Ps become zero at the edge of the flat
band. This reflects the absence of competition between
CDW and SC order in the Kagome case. Moreover, we
do not observe a sharp change in the behavior of either of
these observables when the system transitions from the
first to the second band. There are, however, signatures
as the density takes the Fermi level from the second to
the third band, both of which have non-zero width. This
occurs at ρ ≃ 4/3. The evolution of Ps and 〈m2〉 at low
density is not peculiar; indeed it is the one observed in
most cases, with Ps and 〈m2〉 roughly proportional to ρ.
We observe a similar behavior in the low or high density
limit for the Lieb lattice (see Figs. 3 and 5).
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FIG. 6: (Color online) Local magnetic moment versus ρ for
the Kagome lattice at U = −4. Dashed lines show the non-
interacting limit between the three bands, the lowest energy
band being flat. The magnetic moment is approximately
proportional to the density ρ in the flat band. Unlike the Lieb
case, there is no signature in this quantity as the boundary
from the flat band to the second, dispersing, band is crossed.
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FIG. 7: (Color online) Pair structure factor Ps versus ρ for
the Kagome lattice at U = −4. As for the magnetic moment
(Fig. 6), we do not observe a peculiar behavior in the flat
band region.

This comparison between the Lieb and Kagome
lattices emphasizes that peculiar behavior, like constant
magnetization, observed in the Lieb case cannot be
ascribed solely to a flat band. In the presence of
interactions, there is no generic evolution of magnetic and
pairing correlations within a flat band. Instead, other
features of the geometry, such as the presence or absence
of frustration, of particle-hole symmetry, or the existence
of distinct types of sites in the unit cell, also come into
play.
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IV. CONCLUSIONS

Charge and pair correlations in the AHM in the
Lieb lattice, which has a flat band, have been
computed. As the flat band is filled, the density on
the minority (“copper”) sites declines even though the
total density grows, demonstrating a specific model
in which charge transfer signatures are strong. Such
behaviour has attracted interest in the context of cuprate
superconductivity and materials like BaPbBiO3, where
it has been proposed that the exchange of charge
fluctuations can mediate pairing in a way analogous
to the exchange of spin fluctuations41. We have also
presented detailed data on the competition between
the pairing and CDW response as the density is
tuned. At stronger values of the attraction, pairing
correlations decrease significantly as the lattice size

increases, suggesting that LRO is inhibited by the flat
band dispersion relative to strongly dispersing bands.
Finally we compared our results to the Kagome lattice,
another example of a flat band geometry, and showed
that the phenomena observed are not generically present
in all flat band systems. Together, these results
characterize ‘traditional’ charge and pairing correlations,
forming a useful context to attempts to explore more
exotic topological phases in flat band systems.
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