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To examine optically excited bound states , excitons and trions, in monolayer MoS2, MoSe2 and 
WSe2 we have formulated and applied a generalized time-dependent density-matrix functional 
theory approach. Three different types of exchange-correlation (XC) kernels were used and their 
validity evaluated through comparison with available experimental data. For excitons, we find 
that the local kernels, from the local density approximation (LDA) and its gradient-corrected 
form (GGA), lead to much smaller binding energy than that extracted from experimental data, 
while those based on long-ranged (LR) interactions fare much better. The same is the case for the 
trion binding energy , once screening effects are taken into account. Our results suggest that for 
both excitons and trions the LR form of the XC kernel is necessary to describe bound states. 
These results confirm information from experimental data on single layer dichalcogenides that 
their exciton and trion binding energies are of order of hundreds (excitons) and tens (trions) of 
meVs, a result which may suggest technological application of these materials  at room 
temperature. The proposed methodology can be straightforwardly extended to bound states with 
larger number of electrons and holes. 
  
PACS numbers:78.67.-n,73.21.b,71.10.-w, 71.15.Mb 

 
I. Introduction 

 
Studies of physical properties of monolayer MoS2 is a topic of intense research these days, given 
the multitude of its interesting properties uncovered both experimentally and theoretically.1-19 
These efforts are part of the exploration of new types of two-dimensional materials which 
potentially extend the fascinating properties of graphene. Although discovered rather recently,1 
this transition-metal chalcogenide system has already recommended itself as a very promising 
candidate for new nanotechnological applications. In particular, contrary to the case in the bulk, 
monolayer MoS2 is a direct band gap semiconductor (with an optical gap of 1.8eV at the ܭ-
points in the Brillioun zone) with a very high quantum efficiency for luminescence.1,2

 The system 
also demonstrates high electron mobility, room-temperature current on/off ratio and ultralow 
standby power dissipation, with potential to be used in field-effect transistors.3 It was shown that 
one can achieve complete dynamic (longer than 1ns) valley polarization in monolayer MoS2 by 



optical pumping with a circularly polarized light.4,5
  Control of the polarization in two direct band 

gap energy valleys (at ܭ and ܭᇱ points) could be exploited for applications in valley-based 
electronic and optoelectronic devices.  It is thus not surprising that the optical properties of the 
system are of special interest, and there is a need for accurate and robust theoretical 
understanding of excitonic and higher order excited bound states. Experimental data suggests 
that  excitonic effects in the system are large (binding energy ~0.2-1eV).1,2,6,13 Recently, another 
exciting property of the MoS2 monolayer was discovered, namely trion bound state with binding 
energy approximately 18 meV.7,9,14 The magnitude of these binding energies suggest both 
excitonic and trionic effects may have applications at room temperatures. While theoretical 
studies of excitons in monolayer MoS2 have already been the subject of several studies (e.g., 
Refs. 8,9,12,15-19, in which the phenomenological Wannier equation and the GW/Bethe-
Salpeter equation (GW/BSE) were used), those of trions are still very few. Using a trial wave 
function, Berkelbach et al.12 were able to obtain the binding energies for both these quasi-
particles in reasonable agreement with experimental data (though ~30%-over-estimated for 
trions). It would be difficult, however, to extend their approach to the examination of excitation 
dynamics.  Instead, time-dependent density functional theory (TDDFT) would be a better 
candidate (see below).  
 
In general, accurate description of bound states and their dynamics in semiconductors is rather 
messy. Excitons and trions are among the most important of these bound states. Formally, an 
exciton is defined as a coupled electron-hole pair, while a trion is a bound state of an exciton and  
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Figure 1. Schematic representation of the quasiparticles, exciton (left) and trion (right), in the 
two-band model. In the trion case, it is assumed that the exciton (electron-hole pair with energies 
near the band edges, i.e. with zero total momentum) is coupled to another electron at the Fermi 
level, the case considered in the paper. 
 
an electron, so the trion can be regarded as a charged exciton (Figure 1). While in bulk systems 
the trion binding energy is typically negligible compared to that of the exciton, in constrained 
geometries this energy may be pronounced, leading to novel effects. The most important 



example is that of quantum wells, in which trion excitations affect the optical,10,11 transport20 and 
diffusion properties of the system.21  
 
Since the standard time-dependent Hartree-Fock approximation leads to strongly over-bound 
excitonic states, efforts have turned to the development of more subtle many-body methods, such 
as those based on the GW/BSE approach which take into account screening and other many-
particle effects correctly.22  Unfortunately, such methodology becomes computationally very 
demanding for calculation of multiple bound states (trions, biexcitons, etc.) and for strongly 
nonequilibrium processes (for example, ultrafast response of a system), as they require Greens 
functions with many time arguments. From this point of view, TDDFT23 is a better candidate. 
Being a theory of one function – a space- and time-dependent electron charge density, it allows 
one to get an accurate numerical solution of the system response, provided that the XC potential 
describing excitonic interactions is available.24 Some progress in incorporating such effects into 
TDDFT has already been made. For example, the application of a many-body Greens 
function22,25,26 and the exact-exchange approximation.27,28 However, despite good agreement 
with experiments, these refinements in TDDFT lead to computational complexities that are 
almost as demanding as the many-body formalisms. Recently, we have proposed a technically 
simpler and physically transparent TDDFT approach to study excitonic and biexcitonic effects.29-

31 The approach is based on density-matrix representation of the electron wave-function, and the 
ensuing generalized TDDFT Bloch equations allow one to calculate excitonic and biexcitonic 
binding energies using reasonable computational resources. In particular, the exciton equation 
can be regarded as the TDDFT version of the many-body exciton Wannier equation. We have 
demonstrated30,31 that one can obtain rather good agreement with experimental data by choosing 
proper XC kernel (for example, contact or LR phenomenological kernels). 
 
In this work, we generalize the density-matrix, TDDFT approach to trions and show that the 
formalism gives rather good agreement with experimental values for the excitonic and trion 
binding energies for monolayer MoS2, as well as, for two other members of the monolayer 
transition-metal dichalcogenide family, MoSe2 and WSe2, using the same XC potentials.  
 
 
II. TDDFT for trions 
 
To derive the TDDFT equation for trion binding energy, which we define as the energy 
necessary to decouple one electron from the coupled electron-hole pair (exciton), we begin with 
a summary of the density-matrix TDDFT approach for the exciton and biexciton bound states 
(more details can be found in Refs. 29-31). 
  
a) Excitons. In the case of excitons, one can proceed from the Kohn-Sham equation 
 ݅ ߲Ψ࢑௩ሺܚ, tሻ߲ݐ ൌ ,࢘ሺܪ ,࢘௩ሺ࢑ሻΨݐ  ሻ,                                                                                                                   ሺ1ሻݐ

 
where k is the wave vector, v is the valence-band index, and the system Hamiltonian  



,࢘ሺܪ ሻݐ ൌ െ સଶ2݉ ൅ ுܸሾ݊ሿሺ࢘, ሻݐ ൅ ௑ܸ஼ሾ݊ሿሺ࢘, ሻݐ ൅  ሻ                                                                    ሺ2ሻݐሺࡱ࢘݁

 
includes the kinetic (first), Hartree (second) and XC (third) potential terms, as well as, the 
external homogeneous electric field (the last term).  Equation (1) is solved self-consistently with 
the equation for the electron density, with band index l: 
 ݊ሺ࢘, ሻݐ ൌ ෍ หΨ࢑௟ ሺܚ, tሻหଶ௟,|࢑|ழ௞ಷ .                                                                                                                       ሺ3ሻ 

 
To solve Eqs. (1) and (2) it is convenient to use the density-matrix formalism29 in which the 
wave function is expanded in terms of the basis (e.g., Bloch) static wave functions ߰࢑௟ ሺ࢘ሻ: 
 Ψ࢑௩ሺܚ, tሻ ൌ ෍ ௟࢑ሻ߰ݐ௩௟ሺ࢑ܿ ሺ࢘ሻ௟ ,                                                                                                                      ሺ4ሻ 

The time-dependent coefficients ܿ࢑௩௟ሺݐሻ completely describe the system dynamics. Below we 
drop index v for sake of simplicity, since we will consider the case of one valence band. 
Coefficients can be found from the following equation: 
 ݅ ߲c࢑௠߲ݐ ൌ ෍ H࢑࢑௠௟c࢑௟௟ ,                                                                                                                                      ሺ5ሻ 

 
where  
ሻݐ௟௠ሺࢗ࢑ܪ  ൌ න ,࢘ሾ݊ሿሺܪሻ࢘ሺכ௟࢑߰  ሺ6ሻ                                                                                               .࢘ሻ݀࢘௠ሺࢗሻ߰ݐ

 
However, to study the system response it is more convenient to consider the bilinear combination 
of c-coefficients, the density matrix:  
ሻݐ௟௠ሺࢗ࢑ߩ  ൌ ௟࢑ܿ ሺݐሻܿࢗ௠כሺݐሻ.                                                                                                                                ሺ7ሻ 
 
Its diagonal elements describe the level occupancies, while the non-diagonal – electron 
transitions, including excitonic effects. The matrix elements satisfy the Liouville equation: 
 ݅ ݐ௟௠ሺtሻ߲ࢗ࢑ߩ߲ ൌ ሾܪሺݐሻ,  ௟௠ .                                                                                                                      ሺ8ሻࢗ࢑ሻሿݐሺߩ
 
In the case of two (valence v and conduction c) bands, one can derive the exciton TDDFT 
equation for the non-diagonal element ࢗ࢑ߩ௖௩ሺݐሻ by using Eqs. (2), (3),(7) and (8). Expansion of 
the charge density fluctuations in (8) in terms of the density matrix elements (6) (by using Eq. 
(3)) leads to the TDDFT Wannier equation:30 
 



 ൣ൫࢑ߝାࢗ௖ െ ᇱ࢑࢑ߜ௩൯࢑ߝ ൅ ᇱ௖௩௩௖࢑ᇱ࢑࢑࢑ܨ ൧ߩ௡,࢑ᇲାఈࢗ௖௩ ሺ߱ሻ ൌ ,ࢗ,௡ܧ ௖௩ࢗାఈ࢑,௡ߩ ,                                                                  ሺ9ሻ 
 
where q is the exciton momentum, α is the reduced hole mass, and n is the bound state number. 
The effective electron-hole interaction is described by the last matrix elements defined as: 
ᇱ௔௕௖ௗࢗᇱ࢑ࢗ࢑ ܨ  ሺ߱ሻ ൌ න ଵሻ࢘௕ሺࢗଵሻ߰࢘ሺכ௔࢑ଶ߰࢘ଵ݀࢘݀ ௑݂஼ሺ࢘ଵ, ,ଶ࢘ ߱ሻ߰࢑ᇱ௖כሺ࢘ଶሻ߰ࢗᇱௗ ሺ࢘ଶሻ.                                     ሺ10ሻ 
 
With q=0 one can obtain the excitonic binding energies from Eq. (9). 
 
b) Biexcitons. Similarly, one can consider the two-electron TDDFT problem in order to derive 
the equation for biexcitonic states.31 In TDDFT language, this is a problem of two excited 
electrons in the field of two holes. The corresponding equation is 
 ݅ ߲Ψ࢑భ࢑మ௩௩ ሺ࢘ଵ, ,ଶ࢘ tሻ߲ݐ ൌ ൤ܪሺ࢘ଵ, ሻݐ ൅ ,ଶ࢘ሺܪ ሻݐ ൅ ଵ࢘|1 െ ଶ|൨࢘ Ψ࢑భ࢑మ௩௩ ሺ࢘ଵ, ,ଶ࢘ tሻ,                                     ሺ11ሻ 

where the single-electron Hamiltonian is defined in Eq.(2), while the last term in brackets on the 
right hand side describes electron-electron repulsion. The two-particle wave function can be 
expanded in terms of two single-electron functions: 
 Ψ࢑భ࢑మ௩௩ ሺ࢘ଵ, ,ଶ࢘ tሻ ൌ ෍ మ௟௠࢑భ࢑ܤ ሺݐሻ߰࢑భ௟ ሺ࢘ଵሻ௟,௠ మ௠࢑߰ ሺ࢘ଶሻ,                                                                               ሺ12ሻ 

 
where the two-electron matrix elements satisfy: 
 ݅ ߲B࢑భ࢑మ௖ௗ߲ݐ ൌ ෍ൣH࢑భ࢖௖௔ B࢑࢖మ௔ௗ ൅ H࢑మ࢖ௗ௔  B࢑భ࢖௖௔ ൧௔,࢖ ൅ ෍ w࢑భ࢑మ࢖భ࢖మ௖ௗ௔௕ B࢖భ࢖మ௔௕௔,௕,࢖భ,࢖మ ,                                              ሺ13ሻ 
with H࢖࢑௖௔  defined in Eq. (7) and  

 w࢑భ࢑మ࢖భ࢖మ௖ௗ௔௕ ൌ ௘௘ߝ1 න ଶ࢘ଵ݀࢘݀ ଶሻ࢘ሺכమௗ࢑ଵሻ߰࢘ሺכభ௖࢑߰ ଵ࢘|1 െ |ଶ࢘ భ௔࢖߰ ሺ࢘ଵሻ߰࢖మ௕ ሺ࢘ଶሻ                                      ሺ14ሻ 

 
is the matrix element that corresponds to electron-electron repulsion (ߝ௘௘ is an effective electron-
electron screening parameter). Similar to the excitonic case, in order to get biexciton eigen-
energies one can consider a linearized form of the corresponding Equation (13). Indeed, if the 
lowest eigen-energy of this equation is smaller than the sum of two exciton energies obtained 
from Eq. (9) this means that two excitons form a bound state. 
 
c) Trions. In a similar way one can study the case of a trion - two excited electrons described by 
the field ࢑ܤభ࢑మ௔௕ ሺݐሻ in presence of the hole ܿࢗ௖כሺݐሻ. The corresponding matrix element  
 t࢑భ࢑మࢗ௔௕௖ ሺݐሻ ൌ B࢑భ࢑మ௔௕ ሺݐሻܿࢗ௖כሺݐሻ                                                                                                                      ሺ15ሻ 



  
defines the time-dependence of the three-particle wave function: 
 Ψ࢑భ࢑మࢗ௩ ሺ࢘ଵ, ,ଶ࢘ ,ଷ࢘ tሻ ൌ ෍ ௟௠௡ࢗమ࢑భ࢑ݐ ሺݐሻ߰࢑భ௟ ሺ࢘ଵሻ௟,௠ మ௠࢑߰ ሺ࢘ଶሻ߰ࢗ௡כሺ࢘ଷሻ                                                       ሺ16ሻ 

 
(the trion excitation corresponds to the upper index lmn=ccv). Using Eqs.(5) and (13), one can 
obtain the following equation for the three-particle density matrix: 
 ݅ ߲t࢑భ࢑మࢗ௔௕௖߲ݐ ൌ ෍ቂH࢑భ࢖௔௙ t࢑࢖మࢗ௙௕௖ ൅ H࢑మ࢖௕௙  t࢑భࢗ࢖௔௙௖ െHࢗ࢖௙௖t࢑భ࢑మ࢖௔௕௙ ቃ௙,࢖ ൅ ෍ w࢑భ࢑మ࢖భ࢖మ௔௕௙௠ t࢖భ࢖మࢗ௙௠௖௙,௠,࢖భ,࢖మ ,                   ሺ17ሻ 

 
where the H- and w-matrix elements are defined in Eqs. (6) and (14), correspondingly. 
Linearization of this equation gives the equation for the trion eigen-energies: 
 ݅ ߲t࢑భ࢑మࢗ௖௖௩߲ݐ ൌ ൫࢑ߝభ௖ ൅ మ௖࢑ߝ െ ௖௖௩൅ࢗమ࢑భ࢑௩൯tࢗߝ ෍ ൣF࢑భ࢖ࢗమ࢖భ௖௩௩௖ t࢖భ࢑మ࢖మ௖௖௩ ൅ F࢑మ࢖ࢗమ࢖భ௖௩௩௖ t࢑భ࢖భ࢖మ௖௖௩ ൅ w࢑భ࢑మ࢖భ࢖మ௖௖௖௖ t࢖భ࢖మࢗ௖௖௩ ൧࢖భ,࢖మ ,                         ሺ18ሻ 

 
were ࢑ߝ௖ and ࢑ߝ௩ are the free-electron and free-hole spectra, and F and w potentials describe the 
TDDFT electron-hole and electron-electron scattering (in particular, the first two F-terms, 
respectively, describe the scattering of the first electron with momentum ࢑ଵ on the hole with 
momentum q, and similarly the second F-term describes the scattering of the first and second 
electron with momenta ࢑ଵ and   ࢑ଶ on the hole with momentum q).   
 
Eqs. (9), (10), (14) and (18) suggest a way of generalization of the corresponding eigen-energy 
equations for excitations with larger number of bound electrons and holes than the trion.  One 
would apply a many-particle Schroedinger equation such as (18), in which electrons and holes 
attract each other with the potentials, or rather scattering matrix elements F (Eq.(10)), while the 
electron-electron and hole-hole repulsion potentials are defined by matrix elements w as in 
Eq.(14).  Thus, each pair of electrons interact through the TDDFT scattering potential: 
 w࢑;ࢗ࢑ᇱࢗᇱ௖௖௖௖ ൌ ௘௘ߝ1 න ଶ࢘ଵ݀࢘݀ ଶሻ࢘ሺכ௖ࢗଵሻ߰࢘ሺכ௖࢑߰ ଵ࢘|1 െ |ଶ࢘ ᇱ௖࢑߰ ሺ࢘ଵሻ߰ࢗᇱ௖ ሺ࢘ଶሻ,                                          ሺ19ሻ 

 
which describes the scattering of two electrons with momenta k, q to the states with momenta ࢑ᇱ  
and ࢗᇱ. Similarly, one can describe the corresponding hole-hole scattering by changing all band 
indices from “c” to “v” in the last equation. The electron-hole attraction is described by the 
scattering potential 
 F࢑;ࢗ࢑ᇱࢗᇱ௖௩௩௖ ൌ න ଶ࢘ଵ݀࢘݀ ଶሻ࢘௩ሺࢗଵሻ߰࢘ሺכ௖࢑߰ ௑݂஼ሺ࢘ଵ, ᇱ௖࢑ଶሻ߰࢘ ሺ࢘ଵሻ߰ࢗᇱ௩כሺ࢘ଶሻ,                                                ሺ20ሻ 

 



which similarly describes the scattering of the electron-hole pair from the state with momenta k 
and q to the state with momenta ࢑ᇱ  and ࢗᇱ. For example, in the case of biexciton (two electrons 
with momenta ࢑ଵ and ࢑ଶ and two holes with momenta ࢗଵ and ࢗଶ) the corresponding equation 
for the “wave function”  B࢑భ࢑మࢗభࢗమ௖௖௩௩  has the following form: 
 ݅ ߲B࢑భ࢑మࢗభࢗమ௖௖௩௩߲ݐ ൌ ൫࢑ߝభ௖ ൅ మ௖࢑ߝ െ భ௩ࢗߝ െ మ௩ࢗߝ ൯B࢑భ࢑మࢗభࢗమ௖௖௩௩൅ ෍ൣF࢑భࢗభ࢑ࢗ௖௩௩௖ B࢑࢑మࢗࢗమ௖௖௩௩ ൅ F࢑భࢗభ࢑ࢗ௖௩௩௖ B࢑࢑మࢗభࢗ௖௖௩௩ ൅ F࢑మࢗభ࢑ࢗ௖௩௩௖ B࢑భࢗࢗ࢑మ௖௖௩௩ ൅ F࢑మࢗమ࢑ࢗ௖௩௩௖ B࢑భࢗ࢑భࢗ௖௖௩௩ ൧ࢗ,࢑൅ ෍ ൣw࢑భ࢑మ࢖భ࢖మ௖௖௖௖ B࢖భ࢖మࢗభࢗమ௖௖௩௩ ൅ wࢗభࢗమ࢖భ࢖మ௩௩௩௩ B࢑భ࢑మ࢖భ࢖మ௖௖௩௩ ൧࢖భ,࢖మ .                                             ሺ21ሻ 

 
This equation has to be compared with the standard Schrödinger equation for two electrons and 
two holes: 
 ݅ ߲Ψ࢑భ࢑మࢗభࢗమ߲ݐ ൌ ൫࢑ߝభ௖ ൅ మ௖࢑ߝ െ భ௩ࢗߝ െ మ௩ࢗߝ ൯Ψ࢑భ࢑మࢗభࢗమ   െ ෍ ଶ࢑1 ൣΨ࢑࢑మିࢗ࢑మ ൅ Ψ࢑࢑మࢗభି࢑ ൅ Ψ࢑భࢗ࢑ି࢑మ ൅ Ψ࢑భࢗ࢑భି࢑൧࢑                                      

൅ ෍ ଶ࢑1 ൣΨࢗ࢑ି࢑భࢗమ ൅ Ψ࢑భ࢑మ࢑ି࢑൧࢖భ,࢖మ .                                                                             ሺ22ሻ                                                                           
While the solution of this equation might be not less complicated than the solution of the 
corresponding many-body equation, the main advantage of the TDDFT approach is inclusion of 
many-body effects through the two-particle attraction defined, in principle, by an exact XC 
kernel. This property is especially important in the strongly non-equilibrium regime with 
multiple excitations, in which non-linear effects must be taken into account.  
 
 
III. Excitons and trions in monolayer MoS2, MoSe2 and 
WSe2 
 
III.a The method 

To calculate exciton and trion binding energies, we generate the Kohn-Sham eigenfunctions and 

eigenenergies using the DFT code Quantum-ESPRESSO,32 and employ the BEE (Binding 

Energies of Excitons) code developed in our group to obtain the necessary parameters and to 

solve the exciton and trion eigenenergy equations (9) and (18). At the DFT stage, exchange and 

correlation effects are included by applying the local density approximation (LDA) in the 

Perdew and Zunger parametrization.33 In these calculations, we used norm conserving pseudo-



potentials34 and a cut off energy of 60 Ry and a 15x15x1 k-point grid to represent the reciprocal 

space.35 To model single layers of transition metal dichalcogenides, as shown in Figure 2, we 

used a supercell with (1x1) periodicity and ~15 Å of vacuum between periodic images. The 

calculated lattice parameter a is 3.167, 3.289, 3.244Å for monolayer of MoS2, MoSe2, WSe2 

respectively. In the non-self-consistent calculations of the relaxed single-layer structures we used 

48x48x1 k-point grid (217 independent k-points in the first Brillouin zone).  

 

 

 
 
Figure 2. Structure of monolayer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se). 
 
The results of the band structure calculations for MoS2 are presented in Fig.3. 
 

 
 
Figure 3. Band structure of monolayer MoS2 calculated with LDA. 
 
Despite the standard underestimation of the bandgap by LDA, our results (1.82, 1.59, 1.72 eV for 
MoS2, MoSe2, WSe2,  respectively) are in a reasonable agreement with experimental estimations 
of the optical bandgap.1,36 While this agreement between the LDA and experimental results 
might be regarded as fortuitous, more accurate approaches that take into account screening 



effects, such as the HSE hybrid functional calculations, provide results that indeed agree rather 
well with experimental data (HSE gives the direct gap ~2.2eV37for MoS2). On the other hand, the 
absolute value of the gap is not critical for purposes here, since the binding energy is calculated 
with respect to the conduction band edge.  
 
To calculate the exciton and trion binding energies we solve equations (9) and (18) using the 
following eight kernels (details of which can be found in Ref. 17 and references therein):  
 

• Three local kernels: the first consists of phenomenological contact interaction ௑݂஼௟௢௖௔௟ሺ࢘, ᇱሻ࢘ ൌ െ4ߜܣߨሺ࢘ െ  ᇱሻ, where A is a parameter describing the strength of the࢘
TDDFT local electron-hole attraction; the other two are based on LDA: 1) with exchange 
(X) only; 2) with both exchange and correlation (XC). These kernels allow us to examine 
how correlation, as incorporated in LDA, affects binding energies. Note that the contact 
kernel with A=1 is the two-dimensional (2D) LDA(X) kernel (even though MoS2 is not 
exactly a 2D system, application of this kernel to it may help provide insights into how 
spatial constrains affect bound state energies).     
 

• Three gradient-corrected kernels: gradient-expansion approximation (GEA), and two 
with the Generalized Gradient Approximation (GGA) (PW9138 and PBE39). These 
kernels take into account the effects of possible strong spatial variation of the electronic 
charge, and hence the spatial-dependence of the local electron-hole interaction, which 
may be rather important in the monolayer systems with spatially-constrained charge. 
 

•  Two LR kernels: phenomenological ௑݂஼ሺ࢘, Ԣሻ࢘ ൌ െ ଵఌ ଵ|࢘ି࢘ᇱ|, where ߝ is an effective 
screening of the electron-hole attraction, and the Slater kernel (optimized effective 
potential (OEP) case40) with physically correct electron-hole interaction, which includes a 
Coulomb singularity. 

 
III.b. Excitons 
 
There is no total agreement on the values of the exciton binding energies in monolayer MoS2, 
MoSe2 and WSe2 in the community. Thus, while combined DFT-based phenomenological 
modeling approach15 and GW-Bethe-Salpeter Equation (GW-BSE)16-19 calculations predict 
extremely large binding energies for  the excitons in MoS2 (0.54eV and 0.5-1.03eV, 
correspondingly), experimental scanning tunneling microscopy/spectroscopy (STM/S) and 
photoluminescence (PL) analysis13 suggests that the corresponding energy is approximately 
0.22eV (or 0.42eV when some additional assumptions on the interpretation of the experimental 
data are taken into account). Similar, in the MoSe2 case computational analysis15,16 shows some 
difference between the calculated exciton energies and the ones obtained within 
theSTM/STS+PL spectroscopy studies41 (0.47eV and 0.91eV vs. 0.55eV). Berkelbach et al.15 
and Ramasubramaniam16 also performed calculations of the exciton energy for WSe2 to obtain 
exciton binding energy of 0.45eV and 0.9eV, respectively, which are again overestimate the 
spectroscopically measured value of 0.37eV.42 The results for the binding energy of excitons for 
the systems of interest, calculated with the above kernels, are presented in Tables I-III and Figs. 
4 and 5.  In the case of MoS2, we find that the contact kernel can reproduce experimentally 
estimated energy 0.3eV13 at A=0.238. We also find that the exciton binding energy is very 



sensitive to the value of A (Table I and Figure 4). To test the ability of contact kernel to describe 
excitons in other transition metal dichalcogenides, we extended our calculations to single layer 
MoSe2 and WSe2. As shown in Fig. 4, the values of A for the three different dichalcogenides are 
very similar (~0.2-0.4). Taking into account the oversimplification in the contact approximation 
this result is quite remarkable.  
 
On one hand, LDA with either X or XC gives very small binding energies (~1-10meV, Table 
III). Comparing this result to that obtained for the contact kernel, and taking into account the fact 
that the required A is of order 1 (2D LDA), one can suggest that indeed the spatial constraint in 
one direction may be important for excitons in these system. On the other hand, very small 
decrease of the LDA binding energy with inclusion of the correlations suggests that it is not very 
important in these materials (though the situation may change dramatically when one dopes the 
system with transition metal atoms). We also found that charge-gradient correction does not 
improve the situation significantly. The GEA and PW91 binding energies are even lower than 
LDA ones. Though PBE gives much larger energies than LDA, it is still much lower than the 
experimental values. It is also worthwhile to note that the LDA and GGA exciton energies for 
the MoSe2 are an order of magnitude larger than that for other two materials, which display very 
similar values.  The d-states of the Se atoms with more localized charge densities may be playing 
a role here.  
 
 
 
 
 
 
 
 
Table I. Exciton binding energy (in meV) for monolayer MoS2 calculated with the contact kernel 
for different values of coupling parameter A.  
 

 
 
 
 

   A       1     0.5    0.395    0.238    0.213    0.1  exp   ܧ௑  3,863  1,494    1,000     300     200     1 220-420



 
Figure 4.  Exciton binding energy (in meV) calculated with the contact kernel for different values 
of coupling parameter A for monolayer MoS2, MoSe2 and WSe2. The dashed lines mark the 
experimental values for Ex (see Refs. [13,41,42]) and the corresponding As. 

Table II. Exciton binding energy (in meV) calculated with seven remaining kernels for the three 
materials.  In the case of LDA both X and XC results are presented, while in the GEA, PW91 
and PBE cases only the X result is shown. For LR, we use the screening parameter  ߝ ൌ 1.  
 

 LDA(X) LDA(XC) GEA PW91 PBE LR Slater exp.  
MoS2 2.05 2.00 0.87 1.96 10.46 90.54 1,093 220-42013 
MoSe2 14.81 14.45 1.21 12.58 39.34 187 1,183 55041 
WSe2 1.20 1.19 0.53 1.63 2.25 9.81 734 37042 

 
 
 
The results for the exciton binding energy  change dramatically when one takes into account the 
Coulomb nature of the interaction (a kernel with ଵ௤మ singularity (see, e.g., Refs. [27-29])). While 

the unscreened ( ߝ ൌ 1) phenomenological LR kernel gives underestimated values of the binding 
energy (Table III, Figure 5), the Slater kernel results are in a reasonable agreement with the 
experiment 13,41,42 and other calculations15-19 (Table II). In the LR case, the results are very 
sensitive to the value of the screening parameter  ߝ, and one can obtain the experimental energy 
by lowering the screening parameter by ~20 percent to the vacuum (unscreened) value. 
Interestingly, similar to the local case, the value of the fitting (screening) parameter has the same 



order of magnitude in all three cases (Fig. 5). On the other hand, it seems problematic to get 
accurate experimental binding energy if one uses experimentally motivated values of the 
screening parameter. In particular, in the case of MoS2, the parallel and perpendicular 
components of the dielectric constant are ε∥=2.8 and ୄߝ ൌ 4.2 (Ref. [8]), and their average is ߝҧ ൌ ට൫2ߝ∥ଶ ൅ ଶୄ൯/3ߝ ൎ 3.3, which corresponds also to the dielectric constant of bulk MoS2 (Ref. 

௑ is extremely sensitive to the value of screening at 0.5ܧ .([43] ൏ ߝ ൏ 3 െ 4 (Table III, Fig. 5). It 
suggests that this potential will result in an accurate description of the exciton effects when used 
as a part of a hybrid potential, for example with one of GGAs 
 
Table III. Exciton binding energy for MoS2 (in meV) for the LR kernel and different values of  ߝ. 
 

 
It must be emphasized that in our calculations we do not include spin-orbital band splitting 
whose inclusion would have resulted in two exciton peaks (the band splitting is much smaller 
than the exciton and trion excitation energies). The inclusion of spin-orbit effects is, however, 
straightforward. Namely, in this case one needs to consider two split valence bands, which will 
transform the exciton and trion equations (9) and (18) into 2×2 matrix equations (in the band 
indices). The band splitting will lead to two exciton peaks separated by approximately the band-
splitting energy. 
 
 

0.844 0.752 0.449 ߝ   1    2.8 4.2 3.3   exp.   ܧ௑     1,000.00     300     200 90.54  0.62  0.39  0.51 220-42013



 
Figure 5. Exciton binding energy (in meV) for the LR kernel and different values of  ε for the 
three materials. The corresponding experimental values13,41,42  are marked by dashed lines. 
 
III.c. Trions 
 
Equation (18) for the trion energy is rather complicated to be solved exactly, therefore we use an 
approximation, similar to the many-body case. Namely, it is convenient to reduce the problem to 
that of an electron with momentum ࢑ଵ in the presence of an exciton comprised of the remaining 
electron and hole (momenta ࢑ଶ and q). In this case, using Eq.(9) for the exciton function, one 
can transform Eq.(18) to  
 ݅ ߲t࢑భ࢑మࢗ௖௖௩߲ݐ ൌ ൫࢑ߝభ௖ ൅ ௖௖௩ࢗమ࢑భ࢑൯tࢗ,మ࢑ ௑ܧ ൅ ෍ ൣF࢑భ࢖ࢗమ࢖భ௖௩௩௖ t࢖భ࢑మ࢖మ௖௖௩ ൅ w࢑భ࢑మ࢖భ࢖మ௖௖௖௖ t࢖భ࢖మࢗ௖௖௩ ൧࢖భ,࢖మ .                         ሺ23ሻ 

 
Next, we assume that the excitonic electron and hole momenta are fixed, ࢑ଶ ൌ  i.e. we ,ࢗ
consider the exciton with fixed center-of-mass. The trion equation now reduces to  
 ݅ ߲t࢑భࢗࢗ௖௖௩߲ݐ ൌ ൫࢑ߝభ௖ ൅ ௖௖௩ࢗࢗభ࢑൯tࢗ,ࢗ ௑ܧ ൅ ෍ ൣF࢑భ࢖ࢗࢗభ௖௩௩௖ t࢖భࢗࢗ௖௖௩ ൅ w࢑భ࢖ࢗభࢗ௖௖௖௖ t࢖భࢗࢗ௖௖௩ ൧ ൌ మ࢖,భ࢖0 ,                                ሺ24ሻ 

 
which is equivalent to the following eigen-energy equation: 
 



൫࢑ߝ௖ ൅ ࢗ,ࢗ ௑ܧ െ ߱൯࢖࢑ߜ ൅ F࢖ࢗࢗ࢑௖௩௩௖ ൅ wࢗ࢖ࢗ࢑௖௖௖௖ ൌ 0.                                                                                      ሺ25ሻ 
 
We assume that exciton is created in one of two equivalent K-points, which correspond to the 
direct bandgap transition, and put q equal to the K-point momentum. While it is easy to 
generalize the solution to arbitrary exciton momenta, the trion energy obtained with this 
approximation is sufficient to estimate the energy scale of the trionic effects in the system, 
including the position of the trion peak in the optical absorption spectrum. 
 
Before presenting our results for the trion binding energy, we summarize the experimental data 
known to us for the three systems. Absorption and PL (MoS2),14 differential reflectance and PL 
(MoSe2)44 and PL (WSe2)45 measurements give ~18meV (MoS2) and  ~30meV (MoSe2 and 
WSe2) as the trion binding energies. The results of the solution of Eq. (25) using the contact 
kernel with A=0.238 (the case of characteristic exciton energy 0.3eV) at different values of the 
electron-electron screening for MoS2 are summarized in Figure 6. Clearly, the results are very 
sensitive to the value of ߝ, though one can successfully reproduce the experimental result 
18meV14 at a reasonable value 11~ߝ. We did not find a finite binding energy when using the 
LDA, GEA and GGA kernels, a naturally expected result because of the extremely low excitonic 
energies obtained from these kernels (see Table II, where all the results for the local kernels are 
summarized). The results in Tables I and II suggest that while the TDDFT exciton energies can 
be obtained by assuming even a local electron-hole attraction, to get a bound state of an electron 
and an exciton one needs to take into account the long-range character of the interaction (long-
range interaction also reproduce correct exciton energies). Indeed, the electron-exciton 
interaction is more of “a dipole” type, contrary to the Coulomb interaction of the electron and 
hole. As for excitons, the fact that the contact kernel (2D LDA) results in a finite trion binding 
energy, contrary to that for the bulk with LDA,  suggests that the spatial constraint (charge non-
homogeneity) of the system is important in this case too. We find very similar results for the 
trion energy for the other two single layer dichalcogenides by using the local attraction and 
screened Coulomb repulsion (Figure 6). In particular, the value of the screening parameter 
necessary to reproduce correct trion energy has the same order of magnitude for all three 
materials. 
 
 
 
 
Table IV. The trion binding energy for MoS2 (in meV) in the case of contact kernel with 
A=0.395 and different values of the electron-electron screening parameter ߝ௘௘. The 
corresponding exciton energy is 1,093meV. 

 

௘௘ 2.8 3.3     4ߝ 4.146     4.2    4.5     5  exp.    1.74   0.15        0     ்ܧ     20    31.7   105   223 1814



In the case of LR kernels, we find that the trion energy is sensitive to the value of the electron-
electron screening. In particular, for MoS2 one can easily reproduce the experimental binding 
energy with the Slater kernel at fair value  2.7~ߝ (Table V). Similar results were found for the 
other two materials, with the close values for the fitting screening parameter (Fig. 7). 
 

 
 

Figure 6. The trion binding energy (in meV) obtained with the contact kernel (with A 
corresponding to exciton energy of 300, 550, 370 meV for MoS2, MoSe2, WSe2, respectively) at 
different values of the electron-electron screening parameter ߝ௘௘. Again the corresponding 
experimental values are marked by dashed lines. 
 
 
 
 
 
 
 
Table V. The trion binding energy in MoS2 (in meV) obtained with the Slater kernel and 
different values of the electron-electron screening parameter. The corresponding exciton energy 
is 1,093meV. 

2.7874 1 ߝ   2.8 3.3 4.2   exp        27 20          0     ்ܧ    293    642    1814



 

 
Figure 7. The trion binding energy (in meV) obtained with the Slater kernel and different values 
of the electron-electron screening parameter for the three materials. The dashed lines correspond 
to experimental values.12 

 

IV. Conclusions 
In this work, we have formulated a density-matrix TDDFT approach to examine the energies of 
trions in bulk systems, as well as, in nano-materials. This approach is physically transparent, 
with the inter-particle interaction defined by the TDDFT XC kernel. Similar to the formalism for 
excitons, this methodology has several advantages over standard many-body approaches – 
simplicity and accurately accounting of many-body correlation (especially screening) effects. 
 
We applied the approach to study exciton and trion binding energies in monolayer MoS2, MoSe2 
and WSe2. There are experimental indications that the corresponding binding energies in these 
materials are rather large (~0.2-0.5eV13,41,42 and 0.02-0.03eV14,44,45

 ), which makes it possible to 
use the exciton and trion effects at room temperatures. We show a theoretical confirmation of 
these high binding energies when we employ a long-range Slater XC kernel, which takes into 
account correctly the nature of the electron-hole interaction. We find some phenomenological 
kernels  (one LR and one contact) with physically reasonable values of parameters to also 
provide reasonable binding energies. On the other hand, we find that for both excitons and trions 



one cannot obtain finite (non-negligible) values with standard LDA and GGA kernels, as a 
results of the missing long-ranged nature of the electron-hole interaction. The reasonable 
agreement with experimental values for three different monolayer transition metal 
dichalcogenides suggests the universality of the proposed potentials.  
 
The formalism described above can be used to study binding energies and ultrafast processes that 
involve excitonic, trionic and biexcitonic effects. The scheme proposed in the paper can be easily 
generalized to bound states with larger number of quasi-particles. 
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