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We find theoretically energy spectrum of a graphene monolayer in a strong constant electric field
using a tight-binding model. Within a single band, we find quantized equidistant energy levels
(Wannier-Stark ladder), separated by the Bloch frequency. Singular interband coupling results in
mixing of the states of different bands and anticrossing of corresponding levels, which is described
analytically near Dirac points and is related to the Pancharatnam-Berry phase. The rate of inter-
band tunneling, which is proportional to the anticrossing gaps in the spectrum, is only inversely
proportional to the tunneling distance, in a sharp contrast to conventional solids where this depen-
dence is exponential. This singularity will have major consequences for graphene behavior in strong
ultrafast optical fields, in particular, leading to non-adiabaticity of electron excitation dynamics.

I. INTRODUCTION

Dynamics of an electron in periodic potential and ex-
ternal electric field is characterized by Bloch oscillations
[1], which is a feature of the intraband electron dynam-
ics, and Zener tunneling [2], which is related to interband
coupling. The Bloch oscillations occur due to accelera-
tion of an electron by electric field, which is described
by the “acceleration theorem” in the reciprocal space
[3], and subsequent Bragg reflections from the periodic
lattice potential at the boundaries of the first Brillouin
zone. The interference of the electron wave packet, fol-
lowing such periodic dynamics in the reciprocal space,
results in Wannier-Stark (WS) localization of an electron
in the coordinate space [3, 4]. These WS states within
a given band are separated by the Bloch oscillation fre-
quency [1] forming an equidistant WS ladder. The Bloch
oscillations and the corresponding WS states have been
observed experimentally in semiconductor superlattices
[5–9]. Recently the Bloch oscillations were reportedto to
play a major role in high harmonic generation by intense
infrared [10] and terahertz [11] pulses in crystalline solids.

The external electric field not only modifies the intra-
band electron dynamics, which results in the formation
of the WS states, but also introduces interband coupling
of the states of different bands. Such coupling can be
described in terms of the Zener tunneling resulting in
finite widths of the WS levels (resonances) of individ-
ual bands [12–15], or in terms of eigenstates of coupled
Hamiltonian, which results in mixing of the correspond-
ing WS states of different bands. The strongest mixing
occurs in the resonance, when the energies of the WS lev-
els of different bands are equal. As a function of electric
field, at these points the levels exhibit anticrossing behav-
ior. In time-dependent electric field, e.g., in the electric
field of an optical pulse, passing of these anticrossings
defines time-dependent electron dynamics. This can be
described as an adiabatic formation of WS states of dif-
ferent bands with subsequent passage of the anticrossing
points. Depending on relation between the anticrossing

gap and the rate of change of electric field, the dynamics
of this passage can be adiabatic or diabatic [16]. Such a
description of electron dynamics in time-dependent elec-
tric field was successfully used for interpretation of exper-
imental results on interaction of ultrashort intense optical
pulses with dielectrics [17, 18].

Description of interaction of time-dependent electric
field, e.g., optical pulse, with a solid in terms of the dy-
namics of passage of anticrossing points requires knowl-
edge of both the positions of the anticrossing points and
the magnitudes of the corresponding anticrossing gaps.
These parameters depend on the band structure of the
solid and on the strength of the interband coupling. Be-
low we study the properties of the WS states of monolayer
graphene with potential application to the description of
the interaction of strong optical field with electrons in
graphene.

Graphene monolayer [19–21] has a honeycomb two-
dimensional crystal structure with unique energy disper-
sion relation. Namely, the low-energy excitations are
gapless and are described by the Dirac relativistic mass-
less equation with two Dirac cones. Another important
feature of this relativistic energy dispersion is singular-
ity of the interband dipole matrix element between the
valence and conduction bands at the Dirac points. In
this case, the corresponding interband coupling, intro-
duced by an electric field, is strong near the discrete Dirac
points.

Below in this article we show that, due to this property,
the stationary Schrödinger equation in a constant electric
field can be solved exactly within the nearest neighbor
tight-binding model of graphene for the electric field in
the rational crystallographic directions. Previously, the
WS energy spectra of electrons on a honeycomb lattice
were studied in Ref. [22] in the tight-binding approxi-
mation for both rational and irrational directions of the
electric field. It was shown that for an electric field in a
rational direction, there was the WS localization of the
electron wave functions in the field directions while in the
normal direction they were delocalized.
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II. MAIN EQUATIONS

The WS states of an electron in graphene are defined
as electron states in periodic lattice potential of graphene
and in constant external electric field. These can be
found as solutions of the Schrödinger equation,

HΨ = EΨ , (1)

where H is a single-particle Hamiltonian, which has the
form

H = H0 + eFr. (2)

Here H0 is a single electron Hamiltonian of graphene,
which determines the electron dynamics in periodic lat-
tice potential of graphene, r = (x, y) is a 2d vector, e
is unit charge, and F = [F cos θ, F sin θ] is the external
constant electric field with the magnitude F and the di-
rection, determined by angle θ relative to the x axis - see
Fig. 1(b).
We describe the electron states in graphene within the

nearest neighbor tight-binding model [23–26] with the
tight-binding coupling between the sites of two sublat-
tices ”A” and ”B” of graphene crystal structure - see
Fig. 1(a). Such a model describes both the conduction
and valence bands of graphene and captures the prop-
erties of the Dirac points. In the reciprocal space, the
tight-binding Hamiltonian H0 can be represented by a
2× 2 matrix of the form [23, 24]

H0 =

(

0 γf(k)
γf∗(k) 0

)

, (3)

where γ = −3.03 eV is the hopping integral and

f(k) = exp

(

i
akx√
3

)

+ 2 exp

(

−i
akx

2
√
3

)

cos

(

aky
2

)

. (4)

Here a = 2.46Å is a lattice constant. The energy spec-
trum of Hamiltonian H0 consists of conduction band (π∗

or anti-bonding band) and valence bands (π or bonding
band) with the energy dispersion Ec(k) = −γ|f(k)| (con-
duction band) and Ev(k) = γ|f(k)| (valence band). This
energy dispersion is shown in Fig. 1(c). It consists of two
inequivalent sets of three Dirac points (and cones) K and
K

′. The corresponding wave functions of the conduction
and valence bands are, respectively,

Ψ
(c)
k

(r) =
eikr√
2

(

1
eiϕk

)

, (5)

and

Ψ
(v)
k

(r) =
eikr√
2

(

−1
eiϕk

)

, (6)

where we denote f(k) = |f(k)|eiϕk . The wave functions

Ψ
(c)
k

and Ψ
(v)
k

have two components corresponding to two
sublattices A and B.
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FIG. 1: (a) Honeycomb lattice structure of 2D graphene,
which consists of two sublattices with atoms labeled by ”A”
(open circles) and ”B” (filled circles), respectively. The near-
est neighbor coupling with hopping integral γ is also shown.
(b) The first Brillouin zone of graphene. Points K and K′

are two inequivalent Dirac points, which correspond to two
valleys of low energy spectrum of graphene. The direction of
electric field is shown by blue line and is characterized by an-
gle θ relative to the x axis. (c) Energy dispersion of graphene
within the nearest neighbor tight-binding model. The K and
K′ Dirac points are labeled. The conduction and the valence
bands correspond to positive and negative energies, respec-
tively.

Taking the eigenfunctions Ψ
(v)
k

and Ψ
(c)
k

of Hamilto-
nian H0 as the basis, we express the general solution of
Schrödinger equation (1) in the form

Ψ(r) =
∑

k

[

φv(k)Ψ
(v)
k

(r) + φc(k)Ψ
(c)
k

(r)
]

. (7)

Expansion coefficients φv(k) and φc(k) satisfy the follow-
ing eigenvalue equations (see the Appendix).

Eφv(k) = Ev(k)φv(k)+ieF
∂φv(k)

∂k
+FD(k)φc(k) , (8)

Eφc(k) = Ec(k)φc(k)+ ieF
∂φc(k)

∂k
+FD(k)φv(k) , (9)

where D(k) = [Dx(k), Dy(k)] is the dipole matrix ele-
ment between the conduction and valence band states
with the wave vector k, i.e.,

D(k) =
〈

Ψ
(c)
k

∣

∣

∣
er
∣

∣

∣
Ψ

(v)
k

〉

=
e

2

∂ϕk

∂k
. (10)



3

(a) ky

kx

K

K

4π/3a
(b)F

A1

A2

FIG. 2: Lines of coupled states in reciprocal space. The elec-
tron states of the reciprocal space, which are coupled by a
constant electric field parallel to the x axis, are shown by solid
lines of two different colors (red and blue), where different col-
ors correspond to two different values of ky . (a) The coupled
states are shown in the first Brillouin zone. The equivalent
points (at the edges of the Brillouin zone) are shown by the
same type of points, i.e. solid red points or open red points.
The equivalent points are connected by a vector of reciprocal
lattice. (b) The coupled states are shown in the whole recip-
rocal space. The first Brillouin zones, localized at different
points of the reciprocal lattice, are also shown. The equiv-
alent points, which are connected by a vector of reciprocal
lattice, are shown by the same type of points, e.g., two red
points are equivalent.

Substituting conduction and valence band wave functions
(5) and (6) into Eq. (10), we obtain the following expres-
sions for the interband dipole matrix elements:

Dx(k) =
ea

2
√
3

1 + cos
(

aky

2

) [

cos
(

3akx

2
√
3

)

− 2 cos
(

aky

2

)]

1 + 4 cos
(

aky

2

) [

cos
(

3akx

2
√
3

)

+ cos
(

aky

2

)] ,

(11)
and

Dy(k) =
ea

2

sin
(

aky

2

)

sin
(

3akx

2
√
3

)

1 + 4 cos
(

aky

2

) [

cos
(

3akx

2
√
3

)

+ cos
(

aky

2

)] .

(12)
A solution, φv(k) and φc(k), of Eqs. (8)-(9) should sat-
isfy periodic boundary condition in the reciprocal space
with the periodicity of the reciprocal lattice. From this
condition, we obtain the WS energy spectrum – Sec. III
below.
Equations (8)-(9) constitute a system of the first or-

der differential equations, where a constant electric field
introduces both interband and intraband coupling of the
electron states. The interband coupling is realized only
between the states with the same wave vector, while the
intraband coupling occurs only between the states laying
in the reciprocal space along a trajectory determined by
the direction of electric field. These trajectories can be
identified by considering electron dynamics in a recipro-
cal space in a constant electric field. If an electron is
initially at some point k of the reciprocal space and a
constant electric field is applied, then this electron will

drift along the direction of the electric field following the
acceleration theorem, ~dk/dt = eF, experiencing Bragg
scattering at the boundaries of the Brillouin zone. Then
the corresponding electron trajectory in the reciprocal
space determines the line of coupled states.

The intraband-coupled states can be described by con-
sidering the states either in the first Brillouin zone only
or in the entire reciprocal space. In either case, the equiv-
alence of the points connected by a vector of reciprocal
lattice should be taken into account. Such equivalence
determines the periodic boundary conditions in the re-
ciprocal space, from which the energy spectrum can be
obtained.

First, we assume that the electric field is parallel to
the x axis. In this case, the lines of coupled states
are also parallel to the x axis and are parametrized by
the y component of the wave vector, ky. In Fig. 2 the
states coupled by this electric field are shown in the first
Brillouin zone [Fig. 2(a)] and in the extended recipro-
cal space [Fig. 2(b)]. In the first Brillouin zone, we
need to take into account equivalence of the points con-
nected by a vector of the reciprocal lattice, e.g., points
A1 and A2 are equivalent. In Fig. 2, two sets of cou-
pled states (lines) corresponding to different values of ky
are shown. If ky < 2π/a then the typical line of cou-
pled states is shown by the blue solid line in Fig. 2. The
solid blue points at the ends of the line are coupled by
a vector of reciprocal lattice, which determines the pe-
riodic boundary conditions for the wave functions φv(k)

and φc(k), i.e., φv(−2π/a
√
3, ky) = φv(2π/a

√
3, ky) and

φc(−2π/a
√
3, ky) = φc(2π/a

√
3, ky). From these condi-

tions, the energy spectrum is obtained.

If ky > 2π/3a, then the line of coupled states in the
first Brillouin zone consists of two line segments, which
are shown by red solid lines in Fig. 2(a). These line
segments have two sets of equivalent points: solid red
points and open red points. The points in each set are
connected by the corresponding vector of the reciprocal
lattice.

In the extended reciprocal space, a part of which is
shown in Fig. 2(b), the lines, which describe the coupled
states, are straight lines for both ky < 2π/3a and ky >
2π/3a. For the case ky > 2π/3a, the line of coupled states
is located in two Brillouin zones – see Fig. 2(b). For both
the red and blue lines, the end points are connected by
the same vector of reciprocal lattice, G = (4π/a

√
3, 0),

which makes the end points equivalent and introduces
periodic boundary conditions for the system of equations
(8)-(9).

III. RESULTS AND DISCUSSION

A. Wannier-Stark levels of a single band

Without interband coupling, i.e., for D = 0, Eqs. (8)-
(9) become decoupled. For a single band, e.g., valence



4

band, Eq. (8) becomes

Eφv(k) = Ev(k)φv(k) + ieF
dφv(k)

dkx
, (13)

where the electric field is parallel to the x axis. Solution
of the first order differential equation (13) has the form

φ(0)
v (k) =

1√
2k0

exp

[

− i

eF

(

E(kx + k0)−

∫ kx

−k0

Ev(k
′, ky)dk

′

)]

, (14)

where we introduced a notation, k0 = 2π/
(

a
√
3
)

. From
the periodicity of the wave function, φv(−k0, ky) =
φv(k0, ky), we obtain the WS energy spectrum as

EWS
v,n = Ev,0(ky) + ~ωBn, (15)

where n is an integer, and the band offset, Ev,0(ky), is

Ev,0(ky) =
1

2k0

∫ k0

−k0

Ev(k
′, ky)dk

′. (16)

The Bloch frequency ωB in Eq. (15) is defined as

ωB = π
eF

~k0
. (17)

The energy spectrum of Eq. (15) forms the WS ladder
with equidistant energy levels.
For the conduction band, the energy spectrum has a

similar form,

EWS
c,n = Ec,0(ky) + ~ωBn, (18)

with the corresponding band offset

Ec,0(ky) =
1

2k0

∫ k0

−k0

Ec(k
′, ky)dk

′. (19)

For the tight-binding model, introduced above, there is
a relation Ec,0(ky) = −Ev,0(ky). The wave functions of
the WS levels of the conduction band are

φ(0)
c (k) =

1√
2k0

exp

[

− i

eF

(

E(kx + k0)−

∫ kx

−k0

Ec(k
′, ky)dk

′

)]

, (20)

In the coordinate space, the WS levels are localized and
the integer index n determines the center of localization.

B. Wannier-Stark states of two-band model:

Analytical results

1. Energy spectrum

The interband coupling, determined by dipole matrix
elements D(k), has a strong dependence on wave vector
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FIG. 3: Dipole matrix element Dx as a function of kx for
different values of ky. The wave vector kx is measured in
units of 2k0, where k0 = 2π/a

√

3. The Dirac point is at
kx = k0 and ky = k0/

√

3 = (1/3)(2π/a). The numbers near
the lines are the values of ky in units of (2π/a). Panels (a)
and (b) differ by the vertical scale.

k. Near the Dirac points (K and K ′ points in Fig. 1), the
dipole matrix elements have sharp peaks. Dependence of
the dipole matrix element, Dx, on the wave vector, kx,
for different values of ky is shown in Fig. 3. The K Dirac

point is at k = K ≡ (Kx,Ky) = (2π/a)(1/
√
3, 1/3),

i.e. it corresponds to ky = Ky = (1/3)(2π/a) = k0/
√
3

and kx = Kx = (2π/a
√
3) = k0. Away from the Dirac

point, i.e., when |ky| ≪ Ky [see Fig. 3(a)], the dipole
matrix element, |Dx|, has a broad maximum near kx =
k0. With increasing ky, the maximum becomes more
pronounced. Near the Dirac point [see, e.g., the case of
ky = 0.33(2π/a) in Fig. 3(b)], the dipole matrix element,
|Dx|, has a sharp peak at kx = Kx = k0. Near this peak,
the dipole matrix element, Dx(kx, ky), behaves as

Dx(kx, ky) ≈
3ea

4π

[

− 1

δy
+

3

δ3y
δ2x

]

, (21)

where δy = (ky−Ky)/Ky and δx = (kx−Kx)/Kx. Thus,
for a given ky, the maximum value of the dipole matrix
element is (3ea/4π) [Ky/(ky −Ky)], diverging at ky →
Ky.
Although the shape of Dx(kx, ky) as a function of kx

depends on the value of the y component of the wave vec-
tor, ky, the net interband coupling, which can be charac-
terized by the integral

1

e
D(net)

x (ky) =
1

e

∫ k0

−k0

Dx(kx, ky)dkx =

ϕk

2

∣

∣

∣

kx=k0

kx=−k0

= −π

3
, (22)

which does not depend on ky. The interband transitional

dipole, D
(net)
x (ky), is determined by the Pancharatnam-

Berry phase, (ϕk/2)
∣

∣

∣

kx=k0

kx=−k0

[27, 28], as characteristic of

dielectric responses of crystalline solids [29–31]. This also
suggests that Eq. (22), as defined by the symmetry of the
system, is more general than the tight-binding model, in
which the specific calculations are made.
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A strong dependence of the dipole matrix element on
kx near the Dirac point, which is illustrated in Fig. 3
and is supported by Eq. (21), can be approximated by
the δ-function, i.e.

Dx(kx, ky) = eΛ0δ(kx − k0). (23)

Here strength Λ0 of the δ-function is determined by the
condition that the net dipole coupling in Eqs. (22) and
(23) is the same, which yields Λ0 = −π/3.
For the δ-function profile of the dipole matrix elements,

the system of equations (8)-(9) can be solved analytically.
Such solution can be obtained as follows. We are looking
for a solution of the system of equation (8)-(9) within a
line segment 0 ≤ kx < 2k0 with the periodical boundary
conditions at the ends. (Here, it is convenient to consider
interval 0 ≤ kx < 2k0 and not interval −k0 ≤ kx < k0
introduced before.) The dipole matrix element is non-
zero only at kx = k0. Then, for 0 ≤ kx < k0 and k0 <
kx < 2k0, there is no interband coupling between the
valence and conduction bands. Within these intervals,
the general solution of the system (8)-(9) acquires the
form for 0 ≤ kx < k0,

φv(k) = A1 exp

[

− i

eF

(

Ekx −

∫ kx

0

Ev(k
′, ky)dk

′
)

]

, (24)

φc(k) = A2 exp

[

− i

eF

(

Ekx −

∫ kx

0

Ec(k
′, ky)dk

′
)

]

, (25)

and the same form with different coefficients for k0 <
kx < 2k0,

φv(k) = B1 exp

[

− i

eF

(

Ekx −

∫ kx

0

Ev(k
′, ky)dk

′
)

]

, (26)

φc(k) = B2 exp

[

− i

eF

(

Ekx −

∫ kx

0

Ec(k
′, ky)dk

′
)

]

, (27)

where A1, A2, B1, and B2 are constants.
At point kx = k0, the δ-function dependence of dipole

matrix element (23) introduces the following relation be-
tween the values of the wave function at kx = k0 − 0 and
kx = k0 + 0:

φv|k0+0 = −iφc|k0−0 sinΛ0 + φv|k0−0 cosΛ0 (28)

φc|k0+0 = φc|k0−0 cosΛ0 − iφv|k0−0 sinΛ0 (29)

Thus, the δ-function coupling results in rotation of a
pseudospin, which is associated with two components of
the wave function, by a finite angle Λ0.
Substituting expressions (24)-(27) into relations (28)-

(29) and taking into account the periodic boundary con-
ditions, we obtain an equation for the energy spectrum
of the WS states,

cos

(

2k0
eF

E

)

= cos(Λ0) cos

(

2k0
eF

Ec,0(ky)

)

, (30)

where we took into account relation Ec,0 = −Ev,0, which
is valid within the tight-binding model introduced above.
The solution of Eq. (30) is parametrized by an integer
number n; it describes the WS-state energies and has
the form

E(±)
n = ± eF

2k0
×

{

cos−1

[

cosΛ0 cos

(

2k0
eF

Ec,0(ky)

)]

+ 2πn

}

. (31)

Here the ± signs correspond to the the conduction (c)
and valence (b) bands, respectively.
It is convenient to rewrite Eq. (31) in dimension-

less energy variables normalized to the Bloch frequency,

ε
(±)
n = E

(±)
n /~ωB = E

(±)
n (k0/(πeF )) and εc,0 =

Ec,0(ky)/~ωB = Ec,0(k0/(πeF )) as

ε(±)
n = ±(2π)−1 cos−1 [cosΛ0 cos (2πεc,0)] + n. (32)

The corresponding dimensionless energy spectrum is
shown in Fig. 4(a). The anticrossing points of the en-
ergy levels can be clearly identified. These points are
the anticrossings of the WS ladders of the conduction
and valence bands – see Fig. 4(b) – corresponding to the
interband Zener tunneling [2]. This interband coupling
(Zener tunneling) makes the initial WS states of isolated
bands to be non-stationary (metastable) but causes the
formation of new, stationary states of the coupled bands
that we consider in this article.
The anticrossing points can be labeled by an integer

number l = 1, 2, . . . . which has meaning of the number
of unit cells through which the Zener tunneling occurs. In
dimensionless variables, the positions of the anticrossing
points are

ε
(l)
c,0 = l/2 , (33)

or, in terms of the electric field, the anticrossing points
are at

F (l) =
2k0
eπl

Ec,0. (34)

The positions of the anticrossing points can be also
estimated from the expressions (15), (18) for the energies
of the WS states of uncoupled conduction and valence
bands. For uncoupled bands, the anticrossing points are
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FIG. 4: (a) Dimensionless energies ε
(±)
n of the WS states, cal-

culated from Eq. (32), as a function of dimensionless param-
eter εc,0 for different values of integer number n. Parameter
Λ0 is Λ0 = 0.6. Different types of anticrossing points are la-
beled by integer parameter l. With increasing electric field,
the last anticrossing point corresponds to l = 1 and occurs at

εc,0 = π. (b) The energies E
(±)
n of the WS states, calculated

from Eq. (31), as a function of Bloch frequency, ~ωB , which
is proportional to electric field. The anticrossing points, cor-
responding to l = 1 and l = 2, are marked by red lines. The
parameter Λ0 is Λ0 = 0.6, and Ec,0 = 1 eV.

determined by an equation EWS
c,nc

= EWS
v,nv

, from which
one can derive the positions of the anticrossing points at

F
(l)

uncoupled
=

2k0
πel

Ec,0, (35)

where l = nc − nv. Comparing exact expression (34)
with approximation (35), we can conclude that the in-
terband coupling for ky in the vicinity of the Dirac point
eliminates field-induced renormalization of an anticross-

ing position,

F (l) = F
(l)

uncoupled
. (36)

At the same time, for ky far from the Dirac point, the
interband coupling shifts the anticrossing points to the
higher values of electric field similar to ordinary 3d solids
[16] (see also below in Sec. III C).
In the dimensionless units, the anticrossing gaps are

the same for all anticrossing points [cf. Fig. 4(a)]. The
value of the dimensionless gap, ∆g/~ωB, can be found as
the difference between the corresponding energy levels,

∆g/~ωB = ε
(−)
1 − ε

(+)
0 , calculated at a point εc,0 = 1/2.

This way, we find

∆g/~ωB = Λ0/π . (37)

In the original units, the anticrossing gap corresponding
to the anticrossing point with index l [see Eq. (33)] takes
the form

∆(l)
g =

2Λ0

lπ
Ec,0. (38)

Such weak dependence of the anticrossing gap on in-
dex l is a unique feature of graphene’s unconventional
relativistic-like low-energy dispersion relation. This be-
havior is quite different from that of conventional solids,
e.g., dielectrics, for which the anticrossing gaps are expo-
nentially decreasing with l.
The physical meaning of l is that the value of al is the

distance between the localized WS states of the conduc-
tion and valence bands. Then, the anticrossing gap with
index l is determined by a coupling of the WS states of
the conduction and valence bands separated by spatial
distance al and is equal to the rate of Zener tunneling [2]
between these bands through l unit cells in space. For
graphene, such coupling has a long range in the direct
space due to the strongly localized δ-function profile of
the dipole matrix elements in the reciprocal space. Such
a long-range tunneling results in a weak dependence of
the anticrossing gap on distance l.
The δ-function profile of the dipole matrix elements in

graphene is an approximation, used above to obtain ana-
lytical solution of the problem. The exact dipole matrix
element D(k) has a finite small width wD in the recip-
rocal space (see Fig. 3), where wD depends on ky . Such
a finite width introduces a cutoff both in the long-range
coupling of the WS states of different bands and in the
weak dependence of the anticrossing gap on l. Namely,

the anticrossing gap ∆
(l)
g has the weak, l−1, dependence

on l for l . lc = (wDa)−1; for l ≫ lc, the anticrossing
gap becomes exponentially small with l.
Since the dimensionless parameter εc,0 is inversely pro-

portional to electric field, then in the energy spectrum,
considered as a function of electric field, the anticrossing
point with index l = 1 is the last anticrossing point [see
Fig. 4(a)]. In Fig. 4(b) the energy spectrum, calculated
from Eq. (31), is shown as a function of electric field.



7

The anticrossing points with indexes l = 1 and l = 2 are
marked. The corresponding anticrossing gaps are given
by Eq. (38). The last anticrossing points with index l = 1

has the largest anticrossing gap, ∆
(1)
g = 2Λ0Ec,0/π.

For graphene, within the tight-binding model intro-
duced above, parameter Λ0, calculated at ky = ky,0 =
2π/3a, is |Λ0| = π/3 ≈ 1.05. For this value of ky = ky,0,
the energy dispersion is

Ec(kx, ky,0) = −2γ cos

(√
3akx
4

)

. (39)

Then the band offset of the conduction band, defined by
Eq. (19), is

Ec,0(ky,0) = −4γ

π
≈ 3.86 eV. (40)

For these values of Λ0 and Ec,0, we obtain from Eqs. (34)
and (38) the positions of the anticrossing points and the
corresponding anticrossing gaps

F (l) =
8k0|γ|
eπ2l

≈ 3.59

l

V

Å
, (41)

∆(l)
g =

8|γ|
3πl

≈ 2.54

l
eV . (42)

The anticrossing at l = 1 is the last one occuring at the
maximum electric field of 3.59 V/Å. The anticrossing gap
at this point is 2.54 eV.

2. Wave functions

The wave functions of the WS states of the two-band
graphene model have two components, φv(k) and φc(k),
which give the amplitudes for an electron to be in the
valence and conduction band, respectively. These func-
tions, φv(k) and φc(k), are determined by Eqs. (24)- (27)
where the unknown coefficients A1, A2, B1, and B2 can
be found from the boundary conditions (28)-(29). At a
given energy of the WS state E, they have the following
form

A2 = A1 exp

{

−i

eF

∫ 2k0

0

[Ec(k
′, ky)− E] dk′

}

, (43)

B1 = i
A2 −A1 cos(Λ0)

sin(Λ0)
, (44)

B2 = B1 cos(Λ0)− iA1 sin(Λ0) . (45)

Here coefficient A1 can be found from the normalization
condition. The wave functions, φv(k), φc(k), determine
the electron amplitudes in the reciprocal space. The cor-
responding wave functions in the direct coordinate space
are determined by a Fourier transform,

φ̃v(x, ky) =

∫

dxφv(kx, ky)e
ikxx, (46)

φ̃c(x, ky) =

∫

dxφc(kx, ky)e
ikxx, (47)

where we consider the spatial dependence of the wave
function along axis x only, i.e., along the direction of the
electric field. In this case, the y component of the wave
vector, ky, should be considered as a parameter.

Without interband coupling, i.e., for Λ0 = 0, and for
ky = ky,0, the WS wave functions for a given band, e.g.,
conduction band, can be expressed in terms of the Bessel
functions,

φ̃c(x, ky) ∝ J∣
∣

∣

4
√

3a
(x− E

eF )
∣

∣

∣

(

γ

~πωB

)

, (48)

where Jn(z) is the Bessel function of order n, and the
Bloch frequency is given by Eq. (17). Such analytical
expression is obtained for energy dispersion (39). Wave
function (48) is localized in the x-space at a coordinate
point x = E/eF , which is proportional to the energy of
the WS state.

The interband coupling, Λ0, results in mixing of the
wave functions of different (conduction and valence)
bands. The mixing is strongest at the anticrossing points,
and the resulting WS wave functions are also localized
similar to single-band approximation (48). Such wave
functions are given by Eqs. (43)-(47).

To illustrate the interband mixing introduced by an
electric field, we show in Fig. 5 the conduction and va-
lence band probability densities for the WS wave func-
tions, i.e., ρv(x) = |φ̃v(x, ky)|2 and ρc(x) = |φ̃c(x, ky)|2.
The results are shown for one of the WS energy levels
for a given electric field. The electric fields F = 1.8 V/Å
and F = 3.6 V/Å are near l = 2 and l = 1 anticrossing
points, respectively. In these cases, the interband mixing
is strong, and the electron densities in the conduction
and valence bands are comparable [see Fig. 5(a), (c)].
The spatial separation between the maxima of ρv(x) and
ρc(x) is ≈ la. Thus for F = 1.8 V/Å, i.e., l = 2, the
distance between the maxima of ρv and ρc is ≈ 2a ≈ 4.8
Å, while for F = 3.6 V/Å, i.e., l = 1, the distance is
≈ a ≈ 2.4 Å.

For electric field F = 2.4 V/Å, which is between l = 1
and l = 2 anticrossing points, the interband mixing is
weak. In this case only one component (in our case only
the valence band component, ρv) is strong [see Fig. 5(b)].

In both cases, i.e., at the anticrossing points and away
from them, the wave functions are localized in the x
space. The localization length depends on the electric
field. The points, at which the WS wave functions are lo-
calized, depend on the energy of the WS states. In Fig. 6
the total electron density, defined as ρ(x) = ρv(x)+ρc(x),
is shown for different WS states at electric field F = 3.6
V/Å, which correspond to l = 1 anticrossing point. With
changing the energy of the WS state, the electron density
distribution is shifted as a whole along the x axis.
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FIG. 5: Electron densities ρv(x) and ρc(x) in the conduction
and valence bands of a given WS state. The electric field is
(a) F = 1.8 V/Å, (b) F = 2.4 V/Å, (c) F = 3.6 V/Å. The
fields 1.8 V/Å and 3.6 V/Å corresponds to l = 2 and l = 1
anticrossing points. The y component of the wave vector is
ky = ky,0.

C. Wannier-Stark states of two-band model:

numerical results

In the previous Section, analytical results for the WS
spectra of the tight-binding model were obtained in the
case of the δ-function dipole matrix elements. Such
strong dependence of the dipole matrix element on the
wave vector occurs near the Dirac points. Away from the
Dirac points, the dipole matrix element |Dx| as a func-
tion of the wave vector has a broad peak. In such a case,
the WS energy spectra can be obtained numerically.

It is convenient to solve the system of the eigenvalue
equations, (8)-(9), by expanding functions φv(k) and
φc(k) in terms of the WS wave function of individual
bands, Eqs. (14) and (20), calculated without interband

1050-5-10

F =3.6 V/Å

x (nm)

ρ

FIG. 6: Total electron density ρ(x) = ρv(x) + ρc(x) of three
WS states. The electric field is F = 3.6 V/Å, corresponding
to the l = 1 anticrossing point. The y component of the wave
vector is ky = ky,0. The curves are displaced vertically for
clarity.

coupling. Thus

φv(k) =
∑

n

Anφ
(0)
v,n(k) (49)

φc(k) =
∑

n

Bnφ
(0)
c,n(k), (50)

where index n labels the WS states [see Eqs. (15) and
(18)], An and Bn are the corresponding expansion coef-
ficients. Substituting expressions (49) and (50) into Eqs.
(8)-(9), we obtain the system of eigenvalue equations on
expansion coefficients An and Bn,

EAn = EWS
v,n An + F

∑

m

DnmBn (51)

EBn = EWS
c,n Bn + F

∑

m

D∗
nmAn, (52)

where Dnm are dipole matrix elements, calculated be-
tween the WS wave functions of individual bands,

Dnm =
〈

φ(0)
c,n

∣

∣

∣
Dx(k)

∣

∣

∣
φ(0)
c,n

〉

=

1

2k0

∫ k0

−k0

dkxDx(kx, ky) exp

[

i

eF

(

2

∫ kx

−k0

Ec(k
′, ky)dk

′

+(EWS
c,n − EWS

v,m )(kx + k0)

)]

(53)

In Fig. 7, the energy spectra of a finite size system
of graphene, calculated numerically from the system of
equations (49)-(50), are shown for different value of the
y component of the wave vector, ky. At ky = 0 [see Fig.
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FIG. 7: Energy spectra of graphene in a constant electric field,
parallel to the x axis. The spectra are calculated numerically
for a finite size system for two values of ky: (a) ky = 0 and
(b) ky = 0.32(2π/a). The number of states in each band is
100. The anticrossing points corresponding to l = 1 and l = 2
are marked by red lines.

7(a)], the system is far away from the Dirac points. In
this case, the dipole matrix element as a function of kx
has a broad peak [see Fig. 3]. For ky = 0.32(2π/a) [see
Fig. 7(b)], the system is close to the Dirac point with
the dipole matrix element having a sharp narrow peak.
In this case, the values of the anticrossing gaps and the
positions of the anticrossing points are close to the ana-
lytical expressions (41) and (42), obtained in the model
with δ-function profile for the dipole matrix element.
The data, shown in Fig. 7, illustrate strong depen-

dence of the spectra on the value of ky, i.e. on the shape
of the function Dx(kx). With increasing ky → Ky, i.e.
when the peak in Dx(kx) becomes sharp, the anticross-
ing points move to smaller values of electric field and the
anticrossing gaps become smaller.
In Fig. 8, the anticrossing gaps and the positions of

the anticrossing points are shown as a function of ky for
l = 1 and l = 2 anticrossing points. A general trend is

that with increasing ky, both the anticrossing gaps, ∆
(l)
g ,

F
 (

V
/Å

)

∆
g
(l

)  (
eV

)

l=1

l=2

l=1

l=2

(a) (b)
4

3

2

5

0.30.20.10.0

ky (2π/a)
0.30.20.10.0

ky (2π/a)

2.4

1.6

3.2

FIG. 8: (a) Anticrossing gaps, calculated for the l = 2 and
l = 1 anticrossing points, are shown as a function of the y
component of the wave vector, ky. (b) The positions of l = 1
and l = 2 anticrossing points are shown as a function of ky .
The electric field is parallel to the x axis.

and the electric fields, F (l), at which the anticrossing
points are observed, are decreasing. The arrows in Fig.
7 show the analytical values of the anticrossing gaps and
the positions of the anticrossing points, obtained from
Eqs. (41) and (42). These numbers are close to the cor-
responding numerical values at ky ≈ Ky = (1/3)(2π/a),
i.e. near the Dirac point [see Fig. 7].

D. Wannier-Stark states of two-band model: two

Dirac points

By changing the direction of electric field, one can re-
alize a situation when along a line of coupled states there
are two Dirac points. For graphene, this happens for a
line shown in Fig. 9(a), i.e. when the angle between the
direction of the electric field and axis x is π/6. Then
for the line, shown in Fig. 9, we introduce one dimen-
sional wave vector, κ, along the direction of electric field
and write the dipole matrix element in terms of two δ-
functions, localized at the Dirac points,

Dx(κ) = eΛ1δ(κ− κ1) + eΛ2δ(κ− κ2), (54)

where κ1 and κ2 are the coordinates of the Dirac points
along the line of coupled states. The wave vector κ
changes from 0 to κ0 = (2π/aκ), where aκ = 2π/κ0 de-
termines the period of the system along the direction of
electric field.

We follow the same steps as in the case of one Dirac
point (see Sec. III B). Namely, we introduce three re-
gions, 0 < κ < κ1, κ1 < κ < κ2, and κ2 < κ < κ0. In
each region, the conduction and valence bands become
decoupled and the wave functions have the form of Eqs.
(24)-(25). At the boundary between the regions, i.e. at
points κ = κ1 and κ = κ2, the boundary conditions have
the form of Eqs. (28)-(29). Combining all these equations
and taking into account the periodic boundary conditions
at poins κ = 0 and κ = κ0, we obtain the following energy
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spectra of the coupled WS states

E(±)
n = ±eF

κ0

{

cos−1

[

cosΛ1 cosΛ2 cos

(

κ0

eF
Ẽc,0

)

−

sinΛ1 sinΛ2 cos

(

κ0

eF
αẼc,0

)]

+ 2πn

}

. (55)

Here Ẽc,0 is defined in terms of the linear integral over
the line of coupled states (see Fig. 9),

Ẽc,0 =
1

κ0

∫ κ0

0

Ec(κ)dκ. (56)

The coefficient 0 < α < 1 in Eq. (55) is defined by the
following relation

α = 1− 2

κ0Ẽc,0

∫ κ2

κ1

Ec(κ)dκ. (57)

In dimensionless variables, ε
(±)
n = E

(±)
n (κ0/eF ) and

ε̃c,0 = Ẽc,0(κ0/eF ), Eq. (55) becomes

ε(±)
n = ±

{

cos−1

[

cosΛ1 cosΛ2 cos ε̃c,0 −

sinΛ1 sinΛ2 cos(αε̃c,0)

]

+ 2πn

}

. (58)

In Fig. 9(b) the dimensionless WS energy spectrum
(58) is shown for parameters Λ1 = Λ2 = Λ0 = 0.6 and
α = 0.7, which correspond to graphene. Specific fea-
ture of this spectrum is a nonmonotonic dependence of
the anticrossing gaps on the value of the dimensionless
band offset, ε̃c,0. These gaps have both large and very
small values. The positions of the anticrossing points are
also irregular. The corresponding energy spectrum in the
original units is shown in Fig. 9(c) as a function of elec-
tric field F . The anticrossing gaps have nonmonotonic
dependence on F . For example, the anticrossing gap at
l = 3 is larger than the gap at l = 2. This behavior
is different from the behavior of the anticrossing gaps of
the WS spectrum for systems where the dipole matrix
elements are almost constant [16] or have a single peak
as a function of the wave vector (see Sec. III B).

IV. CONCLUSION

Within a single (either conduction or valence) band
model, the energy spectrum of an electron in graphene in
a constant external field has a WS ladder structure with
energy levels separated by the Bloch frequency, which
is proportional to both the electric field and the lattice
period of graphene crystal structure in the direction of
electric field. In a two-band model, which is introduced
above within the tight-binding nearest-neighbor approx-
imation, a constant electric field results in mixing of the

K

K

F

ε
n

(±
)

0

4

8

12

εc,0/π
0 4 1612

0.40.30.20.10.0 0.5

E
n

(±
) 
(e

V
)

-4

-2

0

2

4

ћωB (eV)

˜

(a)

(b)

(c)

l=1
l=2

∞       F  F       0

FIG. 9: (a) Line of coupled states in the reciprocal space
is shown by blue solid line. Along this line there are two
inequivalent Dirac points K and K′. The direction of electric

field is also shown. (b) Dimensionless energies ε
(±)
n of WS

states, calculated from Eq. (58), are shown as a function of
dimensionless parameter ε̃c,0 for different values of integer
number n. The parameters Λ1 = Λ2 = Λ0 and α are Λ0 =

0.6 and α = 0.7. (c) The energies E
(±)
n of the WS states,

calculated from Eq. (55), are shown as a function of Bloch
frequency, ~ωB , which is proportional to electric field. The
anticrossing points, corresponding to l = 1 and l = 2, are
marked by red lines. The parameters are Λ0 = 0.6, α = 0.7,
and Ec,0 = 1 eV.
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conduction and valence bands. As a result of such mix-
ing, the energy spectrum of graphene as a function of
electric field shows anticrossing points with the corre-
sponding anticrossing gaps. These gaps also indicate that
a constant electric field opens a gap in the electron en-
ergy spectrum of graphene. This is understandable be-
cause it reduces symmetry of the system by lifting the
equivalence (degeneracy) of the two constituent triangu-
lar sublattices. The magnitudes of the gaps depend on
the electric field.
The strength of the band mixing in an external elec-

tric field is determined by the magnitude of the inter-
band dipole matrix element. The net (integral) interband
dipole matrix element has a value of −eπ/3 universally
determined by the Pancharatnam-Berry phase.
In graphene, this interband dipole matrix element has

unique dependence on the electron wave vector. Namely,
at the Dirac points, it has sharp peaks, i.e., in the recipro-
cal space, the interband coupling is strong near the Dirac
points only. In this case, approximating such a strong de-
pendence of the dipole matrix element on the wave vector
by the δ-function, one can find an analytical expression
for the WS energy spectrum. Such analytical solution
predicts both the positions of the anticrossing points and
the corresponding anticrossing gaps. As a function of
inverse electric field the anticrossing points are equidis-
tant. In the dimensionless units (relative to the Bloch
frequency), the anticrossing gaps have the same value
at all anticrossing points. Thus, in the original energy
units, the anticrossing gaps are proportional to the elec-
tric field at the corresponding anticrossing points and, for

graphene, are ∆
(l)
g = (2.54/l) (eV), where l = 1, 2, . . . is

an integer. Physically, such an anticrossing gap (divided
by ~) is the rate of the Zener tunneling through l unit
cells that transfers an electron in a localized WS state
from the valence to the conduction band. The largest
anticrossing gap ≈ 2.54 eV corresponds to the anticross-
ing point l = 1 at the electric field ≈ 3.59 V/Å. The weak
dependence, ∝ l−1 of the anticrossing gaps on parameter
l is a unique property of graphene and is due to highly
nonuniform, singular profile of the dipole matrix element.
Such high fields, F & 1 V/Å, can be generated only

by laser pulses in the visible/near-infrared [17, 18] or
terahertz [11] spectral regions. Graphene in a time-
dependent electric field (see, for example, Ref. [32]), when
the electron dynamics is described in terms of the pas-
sage of the anticrossing points, the anticrossing gaps de-

termine the characteristic time, τl = ~/∆
(l)
g = 0.26l

fs, which characterizes adiabaticity of the dynamics.
Namely, if time τp of passage of an anticrossing point,
which is also the characteristic time of variation of elec-
tric field, is much larger than τl, τp ≫ τl, then the elec-
tron dynamics is adiabatic. For example, if τl ≈ 1 fs, then
the passages of anticrossing points l = 1 and 2, which
have the characteristic times τl = 0.25 fs and 0.51 fs, are
adiabatic, while the passages of the points l > 2 is non-
adiabatic or even diabatic. It is evident that no matter
what is frequency range, from visible to terahertz, there

always will be several anticrossings with near-resonant
frequencies violating adiabaticity. Thus the rapid adia-
batic passage [32] is not possible in graphene; also Rabi
oscillations will be dephased.

Appendix

We express the general solution of the Schrödinger
equation (1) - (2) in the form (7), i.e., in the basis of
eigenfunctions of field-free Hamiltonian H0. Substitut-
ing expression (7) for the wave function Ψ(r) into the
Schrödinger equation (1) - (2), we obtain

E
∑

k1

[

φv(k1)Ψ
(v)
k1

(r) + φc(k1)Ψ
(c)
k1

(r)
]

= (H0 + eFr)×

∑

k1

[

φv(k1)Ψ
(v)
k1

(r) + φc(k1)Ψ
(c)
k1

(r)
]

(59)

We multiply both sides of Eq. (59) by Ψ
(v)∗
k

(r) and then

integrate it by r. Taking into account that Ψ
(v)
k

(r) are
eigenfunctions of Hamiltonian H0, we obtain

Eφv(k) = Ev(k)φv(k) +

e
∑

k1

φv(k1)

∫

drΨ
(v)∗
k

(r)(Fr)Ψ
(v)
k1

(r) +

e
∑

k1

φc(k1)

∫

drΨ
(v)∗
k

(r)(Fr)Ψ
(c)
k1

(r). (60)

Substituting explicit expression (6) for Ψ
(v)
k

(r), we
rewrite the second term in the right hand side of Eq.
(60) as follows

e
∑

k1

φv(k1)

∫

drΨ
(v)∗
k

(r)(Fr)Ψ
(v)
k1

(r) =

e

2

∑

k1

φv(k1)
(

1 + ei(ϕk−ϕk1
)
)

∫

dr(Fr)eir(k−k1) =

e

2

∑

k1

φv(k1)
(

1 + ei(ϕk−ϕk1
)
)

(

−iF
∂

∂k1

)

δ(k− k1) =

ieF
∂φv(k)

∂k
+

e

2
φv(k)F

∂ϕk

∂k
, (61)

where in the last line, in the sum (integral) over k1, we
use integration by parts. The final expression contains
an additional term e

2φv(k)F
∂ϕk

∂k , which is not included
in the system of equations (8)-(9) since this term can be
eliminated by substitution φv(k) → φv(k)e

i(e/2)ϕk and
does not affect the energy spectrum of the system.

The third term in the right hand side of Eq. (60) can
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be rewritten as

e
∑

k1

φc(k1)

∫

drΨ
(v)∗
k

(r)(Fr)Ψ
(c)
k1

(r) =

e

2

∑

k1

φc(k1)
(

−1 + ei(ϕk−ϕk1
)
)

∫

dr(Fr)eir(k−k1) =

e

2

∑

k1

φc(k1)
(

−1 + ei(ϕk−ϕk1
)
)

(

−iF
∂

∂k1

)

δ(k− k1) =

e

2
φc(k)F

∂ϕk

∂k
= FD(k)φc(k), (62)

where the term proportional to ∂φc(k)
∂k is zero due to or-

thogonality of the conduction and valence band free-field
functions:

(

−1 + ei(ϕk−ϕk1
)
)

δ(k− k1) = 0. (63)

Combining Eqs. (60)-(62), we obtain Eq. (8). Similarly,

multiplying Eq. (59) by Ψ
(c)∗
k

(r) and integrating it by r,

we can derive Eq. (9).
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