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Many topologically nontrivial states of matter possess gapless degrees of freedom on the bound-
ary, and when these boundary states delocalize into the bulk, a phase transition occurs and the
system becomes topologically trivial. We show that tensor networks provide a natural framework
for analyzing such topological phase transitions in terms of the boundary degrees of freedom which
mediate it. To do so, we make use of a correspondence between a topologically nontrivial ground
state and its phase transition to a trivial phase established in1. This involved computing the bulk
entanglement spectrum (BES) of the ground state, upon tracing out an extensive subsystem. This
work implements BES via tensor network representations of ground states. In this framework, the
universality class of the quantum critical entanglement Hamiltonian in d spatial dimensions is either
derived analytically or mapped to a classical statistical model in d + 1 dimensions, which can be
studied using Monte Carlo or tensor renormalization group methods. As an example, we analytically
derive the universality classes of topological phase transitions from the spin-1 chain Haldane phase
and demonstrate that the AKLT wavefunction (and its generalizations) remarkably contains critical
six-vertex (and in general eight-vertex) models within it.

PACS numbers: 03.67.Mn, 75.10.Pq, 03.65.Ud

Despite lacking a local order parameter, topological
states contain a wealth of subtly encoded information2–9,
including in some cases topological invariants such as
Chern number, in other cases ground state degeneracy
on higher genus manifolds, for example. Given the stark
contrast between topological states and classically or-
dered states, it is natural that purely quantum notions
are often necessary for analyzing topological states. In
particular, measures of entanglement, which has no clas-
sical analog, have proven to be extremely useful. For
example, the entanglement entropy between a subsystem
and its complement has been used10–14 to detect topolog-
ical order in a ground state. Moreover, the full spectrum
of the reduced density matrix, called the entanglement
spectrum15–23, has allowed one to simulate the edge ex-
citations of a topological ground state. In other words,
tracing out a subsystem from a ground state achieves a
similar effect as introducing excitations localized at the
boundary of the subsystem.

With this paradigm in mind, two of us have intro-
duced a new technique called bulk entanglement spec-
trum (BES) to study the bulk of a system1. Specifically,
it was found that a topological state contains informa-
tion about its phase transition to a trivial phase. How
is it possible that a single wavefunction can give birth to
quantum criticality associated with a topological phase
transition? By using a special partition of the topologi-
cal state that is extensive in all directions and possesses
symmetry between the remaining and traced out subsys-
tems, the resulting bulk entanglement Hamiltonian (see
eq.1) was argued to be either critical or possess ground
state degeneracy. In the former case, the critical bulk en-
tanglement Hamiltonian sits right at a phase transition
between the original topologically nontrivial phase and a
trivial phase. The essence of this argument is the discrete
nature of topological order and extreme limits of the par-

tition. When nearly nothing is traced out, the remaining
subsystem is in the same topological phase as the orig-
inal nontrivial wave function. When nearly everything
is traced out, the remaining subsystem consists of de-
coupled small “islands” and thus is topologically trivial.
Tuning the geometry of the partition thus induces a phase
transition in the entanglement Hamiltonian. If there is a
single phase transition, then it must occur at the inter-
mediate, symmetric partition defined above. This proto-
col, which is derived from a single wavefunction, differs
markedly from the usual realization of a quantum phase
transition by tuning parameters in a Hamiltonian. As a
proof of concept, BES has been rigorously shown to work
for integer quantum Hall states. The BES produces the
massless Dirac spectrum expected at the transition be-
tween states with Chern numbers one and zero.

In this paper, we study the quantum phase transition
in BES for generic matrix product states (MPS)25,26,
which are efficient representations of generic non-critical
states in one dimension. We analytically implement the
BES technique and obtain a more explicit understanding
of the entanglement Hamiltonian and topological phase
transition. The partition function of this bulk entangle-
ment Hamiltonian serves as the centerpiece of this work,
with three primary uses. First, it allows us to identify the
critical theory of the entanglement Hamiltonian. Second,
it maps the quantum critical d-dimensional system to a
classical d+1-dimensional system, enabling Monte Carlo
numerics or tensor renormalization group methods27 to
tackle quantum critical problems. Finally, it provides a
dynamic picture of a topological phase transition and
highlights the importance of edge states in mediating
such a phase transition. We will explicitly show that the
virtual degree of freedom in the MPS gains a life of its
own in the partition function, and it is precisely the in-
teractions of these virtual elements which constitute the
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FIG. 1: (a) A segment of a matrix product state, partitioned
into two spatial subspaces A and B. The open-ended vertical
links represent physical degrees of freedom and the horizontal
links represent ‘virtual’ degrees of freedom which are summed
over as in equation 2. (b) The reduced density matrix ob-
tained by tracing out B. Boxed is the MPS transfer matrix.

topological phase transition. While we focus on 1d sys-
tems in this work, many of our techniques generalize to
tensor network wavefunctions in any dimension.

We begin by briefly reviewing BES and tensor networks
before using them together. Consider a ground state |Ψ〉
defined on a Hilbert space S and partition S into two
complementary parts A and B. After tracing out part B,
the description of |Ψ〉 on A is given by a thermal density
matrix

ρA = TrB |Ψ〉〈Ψ| ≡ e−HA (1)

corresponding to an entanglement Hamiltonian HA. The
entanglement spectrum is the set of eigenvalues of HA,
and in the following we will be interested in the ground
state of HA and its topological nature.

When an extensive partition is used, i.e. when A and
B are extensive with system size in all directions, one at-
tains a bulk entanglement Hamiltonian: HA has support
on an extensive subsystem A. It was argued in1 that
when the ground state |Ψ〉 is an irreducible topological
state28 and when A and B are related by a symmetry,
HA either 1) has ground state degeneracy or 2) is gap-
less and characterizes a topological phase transition from
nontrivial to trivial. As outlined earlier, this claim can be
motivated by considering extreme examples of extensive
partitions. The critical point occurs at the symmetric
partition in which A and B are related by a symmetry
such as translation.

Tracing out degrees of freedom has a convenient picto-
rial representation in the framework of tensor networks.
Consider a matrix product state (MPS) given by a ten-
sor Mσ

{α} with a physical index σ and virtual indices {α}
emanating from the physical sites (see Fig. 1a). The vir-
tual indices are contracted, leaving a wavefunction |ψ〉
defined by

〈σ1...σN |ψ〉 ≡
∑

virtual indices

Mσ1 ...MσN (2)

The reduced density matrix ρA obtained from tracing
out a part B is

ρA =
∑
σB

〈σB |ψ〉〈ψ|σB〉. (3)

FIG. 2: The tensor network representation of the BES proce-
dure. The reduced density matrices ρA corresponding to dif-
ferent extensive partitions are shown. Tuning the extensive
partition of a topologically nontrivial ground state Ψ real-
izes a topological phase transition, occurring at the partition
where A and B are symmetric (middle). If too little is traced
out (top), ρA ≈ |Ψ〉〈Ψ| is nontrivial. If too much is traced
out (bottom), ρA ≈ ⊗i∈Aρi is trivial.

Graphically, 〈ψ| is simply represented by reflecting the
MPS |ψ〉 and complex conjugating the tensors. Then,
the σB indices are contracted to yield ρA (Fig. 1b). In
this pictorial language, the topological phase transition
realized by tuning the extensive partition is shown in
Fig.2, in which the density matrix interpolates between
the nontrivial projector onto the topological ground state
to a trivial product of density operators. The phase tran-
sition occurs at a partition in which A and B are related
by some symmetry.

It is now extremely useful to construct the parti-
tion function of the entanglement Hamiltonian Z =
tr(e−nHA) = tr(ρnA), where n = 1/T is the inverse ‘tem-
perature’. We will eventually take the limit T → 0
(n→∞) to probe the universality class of HA. Graphi-
cally, one simply stacks n copies of ρA and then contracts
all physical indices, including those at the top of the nth
copy with those at the bottom of the first copy. Because
all indices are contracted, we now have the freedom to
reinterpret the partition function as one involving the
virtual degrees of freedom, thus providing a new per-
spective on the topological phase transition being stud-
ied. In some cases, we can rewrite the partition function

as Z = tr(e−βH̃), where H̃ now acts on the virtual in-
dices as opposed to the physical indices. Hence, we call
H̃ the effective entanglement Hamiltonian. Equally im-
portantly, the partition function can be understood as
that of a classical model (in one higher dimension) if the
Boltzmann weights of all configurations are nonnegative.
The above holds for general extensive partitions, yet it is
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FIG. 3: The partition function corresponding to the entan-
glement Hamiltonian from an extensive partition, tracing out
blocks of N1 sites and leaving N2 sites in between. Boxed in
blue and green are the building blocks of the partition func-
tion, namely the transfer matrices propagating two virtual
degrees of freedom from one layer to the next.

particularly interesting at the symmetric partition, where
the partition function of the critical quantum model can
be studied using Monte Carlo or tensor renormalization
group methods to attain approximate critical exponents.

Choosing the two subsystems A and B of the extensive
partition to be alternating blocks of N1, N2 spins, respec-
tively, we follow the general procedure outlined above
and obtain the TNS structure of the partition function,
shown in Fig. 3. Interestingly, this TNS can be viewed
as a partition function for the virtual degrees of freedom
(depicted by and hereafter referred to as dots) located at
the ends of each block. Each “ladder diagram” obtained
by contracting physical indices (blue or green boxes in
Fig. 3) plays the role of time evolution operator acting
on two virtual sites. The value of the ladder can be eval-
uated by defining the transfer matrix T acting on the
auxiliary indices, defined as Tαβ;γδ =

∑
σM

σ
αγ (Mσ∗)βδ

(see Fig.1). The two basic building blocks boxed in Fig.
3 are then given by TN1 , TN2∗. When we permute the
vertices and view

[
TN1

]
αβ;γδ

as a mapping from auxil-

iary indices αγ to βδ, it describes the “imaginary time
evolution” of the virtual sites i, i + 1 for odd i and on
odd numbered rows. Similarly, TN2 acts on sites j, j + 1
for even j and even numbered rows.

Further simplification can be made by considering
large N1, N2; in this limit, the transfer matrix TN1(2) will
be dominated by leading eigenvalues of T . As is well-
known for MPS, by transformations in the virtual indices
one can always transform T into a canonical form. As we
show in the Supplementary Material29, for the canonical
T in the limit of large N1, N2, neighboring dots become
almost decoupled and TN has the form of

TN ≈ λ(1⊗ 1) + ξN2 (UL2 ⊗ UR2 ) (4)

where λ > 0 is a constant, 1 is the identity operator act-
ing on a single dot, ξ2 is the second largest eigenvalue

of the double tensor of the MPS, and UL,R2 is the cor-
responding left and right eigenvectors, respectively (it is
nonetheless an operator acting on a single dot). The ten-

sor product above is that between two adjacent dots. The
key point is that MPS which represent gapped ground
states have a nondegenerate largest eigenvalue of the dou-
ble tensor. This allows us to analyze the large N , ‘weak
coupling’ limit.

Up to a constant λ, each transfer matrix is
nearly the identity. Therefore we can write TN '
λ exp

[
ξN2 λ

−1UL2 ⊗ UR2
]
. The Suzuki-Trotter expansion

(eAeB ≈ eA+B for small A,B) allows us to ignore the
commutator arising from the overlap of TN1 and TN2

(i.e. the green and blue boxes in Fig. 3) and write

Z ≈ tr(e−nH̃) (5)

H̃ ≡ −
∑
odd i

ξN1
2 λ−1(UL2 )i ⊗ (UR2 )i+1 (6)

−
∑
even j

ξN2
2 λ−1(UL2 )j ⊗ (UR2 )j+1,

up to a constant.
We now demonstrate this procedure explicitly for the

BES of the Haldane phase of the spin-1 chain30. This is
a topologically nontrivial phase protected by either time
reversal, a dihedral subgroup of rotations (detailed later),
or inversion symmetry20,31. We begin by analyzing a
representative of the Haldane phase: the AKLT matrix
product state32

M+ =

√
2

3
σ+,M0 = − 1√

3
σz,M− = −

√
2

3
σ− (7)

Here ±, 0 stand for Sz = ±1, 0, and σ are the Pauli spin
matrices with σ± = 1

2 (σx ± iσy). The transfer matrix

is Tαβ,γδ = 1
3

∑
i=x,y,z σ

i
αγσ

i∗
βδ = 2

3

(
δαβδγδ − 1

2δαγδβδ
)
.

Viewing T as a two-site operator acting on the auxiliary
indices, we can write

T =
1

2

(
1⊗ 1− 1

3
~σ · ~σ∗

)
(8)

This transfer matrix corresponds to ξ2 = − 1
3 , UL2 =

σi, UR2 = σi∗ in the generic formula, with a three-fold
degeneracy in the eigenstates. After a unitary trans-
formation on the odd sites ~σ∗ = −σy~σσy, the effective
entanglement Hamiltonian has the Heisenberg form:

H̃ ≡ −
(
−1

3

)N1 ∑
odd i

Pi,i+1 −
(
−1

3

)N2 ∑
even j

Pj,j+1,

up to a constant. Here P is the projection operator of
two spin-1/2s onto the singlet state.

Hence, we find that for large even N1, N2, the entan-
glement Hamiltonian has the same spectrum as the anti-
ferromagnetic spin-1/2 Heisenberg chain with alternating
nearest neighbor couplings. A quantum phase transition
occurs at the symmetric partition N1 = N2, where the
BES describes a spin 1/2 translation invariant Heisenberg
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chain. The quantum phase transition can also be under-
stood in term of the original spin 1 model. In the limit
N1 � N2, region A consists of isolated blocks, while in
the opposite limit N1 � N2 it is in the Haldane phase.
Therefore the phase transition is one between the Hal-
dane phase and a trivial product state, driven by transla-
tion symmetry breaking. Indeed, this transition is known
to be described by SU(2) level 1 Wess-Zumino-Witten
(WZW) theory34–36, the same conformal field theory that
describes the Heisenberg spin 1/2 chain.

Though the above derivation applies generally to any
extensive partition of any MPS representation of a
gapped ground state, it is valid only in the large N1, N2

limit- an approximation which may not hold in general
in higher dimensions. Hence, we now provide a comple-
mentary analysis that 1) holds for arbitrary N1, N2 and
2) generalizes readily to higher dimensions: we view the
partition function as that of a (two-dimensional) classi-
cal model. Because we are interested in the topologi-
cal phase transition expected from BES, we focus on the
symmetric partition N1 = N2 = N for the AKLT state.
Upon redrawing the tensor network so that each set of N
contracted physical indices serves as an interaction ver-
tex between four spin-1/2 nodes (Fig. 4), we find that
the classical partition function is that of a particular six-
vertex model on a square lattice with vertex weights

V ijkl = δikδ
j
l + λδijδ

k
l , λ =

(−3)N − 1

2

In this model, there are two possible states on each link
of the square lattice, and the weight of each configura-
tion in the partition function is given by the product of
the above vertex terms. It is remarkable that the AKLT
wavefunction “contains” such six-vertex models, which
are exposed by BES. For the above parameters, the model
is critical, equivalent to the 4-state Potts model, and de-
scribed in the continuum limit by the level-1 SU(2) WZW
theory33.

This particular universality class is a consequence of
the SO(3) symmetry of the AKLT MPS. However, recall
that the full SO(3) symmetry group is not necessary to
protect the topological Haldane phase. Hence, we now
consider MPS ground states which are slightly perturbed
away from the AKLT state and we analyze the nature of
the bulk entanglement Hamiltonian in such cases. For
this purpose, it is useful to make the spin symmetries
manifest by parameterizing these MPS as37

Mx = aσx,My = bσy,Mz = cσz, (9)

where a, b, c are real numbers. Compared to (7), we are
simply using a new basis: |±〉 = 1√

2
(x ± iy), |0〉 = z.

When a = b = c, the MPS is the SO(3) symmetric
AKLT state up to an overall normalization, and when
two of the coefficients are equal, the MPS has at least
a U(1) symmetry (in the plane corresponding to those
two coefficients). Finally, when all three parameters are
different, the MPS still has dihedral symmetry generated
by rotations by π about the x, y, z axes.

i j

k l

FIG. 4: The partition function from the entanglement Hamil-
tonian at the symmetric partition is identified as a classical
partition function. (top) The transfer matrix is interpreted
as a vertex interaction between Ising variables (large dots).
(bottom) The resulting classical model is defined on a new
lattice.

Parameterizing small perturbations to the AKLT state
by a = 1, b = 1+δ, c = 1+ε, we proceed as above and find
that the entanglement Hamiltonian from the symmetric
partition in the large N and small δ, ε limit is given by
theXY Z spin-1/2 chain (see Supplementary Material29).
More specifically, the spin symmetry of the MPS ground
state is in one to one correspondence with the symme-
try of the entanglement Hamiltonian: the AKLT MPS
yields the Heisenberg chain, the MPS with U(1) symme-
try yields the XXZ chain, and the most general MPS
of the type (9) yields the XY Z chain. Since the XY Z
chain is either critical or spontaneously orders along a
direction38–40, the corresponding entanglement Hamilto-
nian is either critical or has ground state degeneracy,
both of which are consistent with our general arguments1.

Because of the two free parameters in the MPS, the
resulting entanglement Hamiltonian will generically be
in the gapped part (with ground state degeneracy) of the
XY Z phase diagram. If the MPS is fine tuned so that the
corresponding entanglement Hamiltonian lies on one of
the critical lines, then the universality class can be simply
extracted from the XY Z model. All critical lines in the
XY Z phase diagram map to the XXZ chain40, which
in turn can be mapped via bosonization to (critical) Lut-
tinger liquids with Luttinger parameter depending on the
XXZ anisotropy. We conclude that such critical theo-
ries describe the transition of the Haldane phase to a
topologically trivial dimerized phase.

Alternatively, for finite N , we can also map the par-
tition function of the entanglement Hamiltonian for this
wider class of MPS to classical models in two dimensions,
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as we derived a six-vertex model from the AKLT state.
We find that the general class of MPS of the form (9)
maps into eight-vertex models38, though in some cases
the weights of some configurations may be negative.

By using tensor networks to construct the partition
function of the critical bulk entanglement Hamiltonian,
we gain much insight into the topological phase tran-
sition revealed by BES. Previously, topological phase
transitions have been described by the condensation of
fractionalized excitations or the delocalization of edge
states41; in both cases, the original degrees of freedom of
the model are overshadowed by emergent ones. Thanks
to the partition function and the tensor network frame-
work, we have a clear picture of the virtual degrees of
freedom interacting and giving rise to the phase transi-
tion. As a byproduct of this procedure, we attain classical
lattice models of quantum critical points; as an example,
we unearthed critical six-vertex models from the AKLT

wavefunction. We note that this tensor network imple-
mentation of BES generalizes readily to higher dimen-
sions, in which interesting quantum-classical mappings
may await.
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our conclusions.
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