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Abstract  

We employ semilocal density functionals (LSDA, PBE GGA, and meta-GGAs), LSDA+U, a nonlocal range-separated 

hybrid functional (HSE06), and the random phase approximation (RPA), to assess their performances for the ground-

state magnetism and electronic structure of a strongly-correlated metal, rutile VO2. Using recent quantum Monte Carlo 

results as the benchmark, all tested semilocal and hybrid functionals as well as RPA (with PBE inputs) predict the 

correct magnetic ground states for R-VO2. The observed paramagnetism could arise from temperature-disordered local 

spin moments, or from the thermal destruction of these moments. All semilocal functionals also give the correct 

ground-state metallicity for R-VO2. However, in the ferromagnetic (FM) and anti-ferromagnetic (AFM) phases, 

LSDA+U and HSE06 incorrectly predict R-VO2 to be a Mott-Hubbard insulator. For the computed electronic structures 

of FM and AFM phases, we find that the TPSS and revTPSS meta-GGAs give strong 2p-3d hybridizations, resulting in 

a depopulation of the 2p bands of O atoms, in comparison with other tested meta-GGAs. The regTPSS, MGGA_MS0 

and MGGA_MS2 meta-GGAs, which are free of the spurious order-of-limits problem of TPSS and revTPSS, give 

electronic states close to those of PBE GGA and LSDA. In comparison to experiment, semilocal functionals predict 

better equilibrium cell volumes for R-VO2 in FM and AFM states than in the spin-unpolarized state. For meta-GGAs, a 

monotonic decrease of the exchange enhancement factor ),( αsFx with α for small s, as in the MGGA_MS functionals, 

leads to large (probably too large) local magnetic moments in spin-polarized states. 

PACS number(s):  71.15.Mb  71.27.+a 75.30.-m 75.47.Lx 

 

I. INTRODUCTION 

      Vanadium dioxide (VO2) exhibits an interesting temperature-induced first-order [1] phase transformation between 

two well-known polymorphs, namely monoclinic-VO2 (M-VO2) below 340K and rutile-type VO2 (tetragonal crystal 

class) above 340K. The electronic structure changes significantly from M-VO2 to R-VO2. M-VO2 is a non-magnetic 

insulator, and R-VO2 is a paramagnetic metal [2]. The transition mechanisms from insulating M-VO2 to metallic R-VO2 

are still under debate [2-14]. In some earlier works, using information obtained either from phonon dispersion or 
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electronic structure, the phase transition was found to be driven by the structural distortion or Peierls transition [2, 4-6]. 

This mechanism is supported by some experimental results [8, 9]. R-VO2 is often considered to be a strongly-correlated 

transition metal oxide [3, 10-14]. Liebsch et al. [11] discussed the observed photoemission spectra of both R-VO2 and 

M-VO2, finding that the former VO2 phase is a strongly correlated compound. Haverkort and coworkers [10] studied 

the changes of orbital occupation numbers due to the phase transition in VO2 by measuring the V L2,3 XAS spectrum 

near the transition temperature. They found that the localization of 3d electrons is the prerequisite for occurrence of the 

Peierls distortions. Korotin et al. [3] calculated the electronic structures of both M-VO2 and R-VO2 using LSDA and 

LSDA+U methods. Their results strongly implied a Mott-Hubbard transition in this system. More recently, Eyert [4] 

applied the HSE06 functional to study the magnetism and electronic structures of VO2 structures, finding that the 

HSE06 functional gave the better description for the ground state properties of VO2 polymorphs, compared to semilocal 

functionals. However, Grau-Crespo et al. [12] revisited the magnetic structures and ground-state energies evaluated by 

the HSE06 functional. They concluded that HSE06 opens an insulating band gap for the metallic R-VO2 phase, and that 

the obtained magnetic state is wrong for this structure. For example, the HSE06 functional significantly stabilizes the 

unobserved spin-polarized phases (ferromagnetic and anti-ferromagnetic states), and its results are even less realistic 

than the results computed by semilocal functionals tested previously. Gatti et al. [13] investigated the metal-insulator 

transition (MIT) in VO2 system using the parameter-free GW method. Their calculations indicated that the inclusion of 

correlation effects is the key to correctly reproduce the MIT.  

         The conventional DFT methods are unable to describe the paramagnetic R-VO2 phase, because local moments 

presumably exist and their directions are randomly distributed in real space. Those two features in a realistic 

paramagnetic (PM) phase are significantly different from the spin-compensated PM state. In the latter case, the local 

magnetic moment is exactly zero everywhere and its direction is undefined. The previous studies on M- and R-VO2 

systems are focused on the FM and AFM states [3, 4, 12]. The paramagnetic R-VO2 is sometimes modeled as a spin -

compensated PM state. 

          Interestingly, Zheng and Wagner [14] recently employed fixed-node diffusion quantum Monte Carlo (FN-DMC) 

simulations for both tetragonal and monoclinic VO2 phases. They reported that FN-DMC predicts that the total energies 

of AFM and FM states are much lower than the spin-unpolarized reference for R-VO2 in its ground state. Meanwhile, 

the energy difference between FM and AFM states in the same phase is in the range from 0 meV to 100 meV, 

depending on the computational parameters employed in the FN-DMC method such as nodal surface, cell size and time 

step. We may conclude that previous DFT calculations based on semilocal functionals (LSDA and PBE GGA) actually 

gave the qualitatively correct ground state and electronic structure for R-VO2. On the other hand, the more elaborate 
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DFT+U and HSE06 functionals wrongly open an insulating gap in the partially-occupied 3d bands. In the picture 

suggested by the FN-DMC results, the local spin moments disorder at some temperature below 340K, and a Curie-

Weiss law for the spin-susceptibility might be expected above the spin-disorder temperature. However, the magnetic 

susceptibility above 340 K has no observed dependence on temperature. The data do not allow us to apply the normal 

Curie-Weiss law to extract the transition temperature from the paramagnetic state to the possible ferromagnetic ordering 

somewhere below 340 K. Pouget and coworkers [15] also measured the magnetic susceptibilities of pure VO2 and other 

samples doped with various amounts of Nb. For pure VO2, their experimental magnetic susceptibility is the same as that 

of Ref. [1], and the Curie-Weiss law does not seem to apply to it.                   

         The meta-GGA functionals and RPA are situated on the third and fifth rungs of Jacob’s ladder of density 

functional approximations, respectively [16-18]. Some meta-GGA functionals have been well-developed and tested for 

various properties of atoms, molecules and solids [17, 19-24]. The testing of non-empirically derived meta-GGA 

functionals for magnetic structures of solid is still very rare. In contrast, DFT+U and hybrid or fourth-rung functionals 

(PBE0 and HSE06) have already been applied to various strongly-correlated transition metal oxides [25, 26]. Due to its 

extremely high computational cost, the RPA has only been applied to realistic systems very recently [27-35]. VO2 is 

considered as a model system for studying the phase transition involving electron-electron correlation. Therefore, we 

will apply several non-empirical meta-GGA functionals and RPA in this paper to calculate the magnetic and electronic 

structures of R-VO2. We also compare our meta-GGA results with those of PBE and DFT+U. We find that the 

equilibrium cell volumes agree better with the observed cell volume for the paramagnetic metal when we assume 

ferromagnetic or anti-ferromagnetic phases than when we assume a spin-unpolarized phase. This result suggests either 

that there really are disordered local spin moments in R-VO2, or that spin polarization is mimicking the energetic effect 

of strong correlation (as in DFT calculations for equilibrium Cr2. or stretched H2 [36]). Additionally, we find that the 

tested meta-GGA functionals of the Perdew family fall into two classes that perform differently for the magnetism of R-

VO2, i.e., the older TPSS and revTPSS functionals [20, 22], and the recently developed MGGA_MS family [37-40]. We 

have also analyzed the exchange enhancement factors of semilocal functionals, mostly meta-GGAs functionals, and 

have found that the magnetism of a solid is correlated with the behavior of the exchange enhancement 

factor ),( αsFx of a meta-GGA for small s and large α. It is worth noting that the same range is also related to the 

description of van der Waals interaction between weakly-overlapped closed-shell systems [37-40]. Definitions of xF , 

s , and α will be given in section IV.B. Results for monoclinic-VO2 phase are not reported in this paper [41]. We could 

not test the exchange-correlation functionals of all five rungs on Jacob’s ladder for M-VO2, because it has a bigger unit 
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cell than R-VO2. We find that the HSE06 and RPA methods are too expensive for M-VO2, and in practice the needed 

calculations are not doable with RPA using our current hardware.  

II. COMPUTATIONAL DETAILS 

         The calculations were performed using the projector augmented wave (PAW) method in the Vienna ab initio 

simulation program (VASP) [42]. The PAW pseudopotentials employed in this work for V and O atoms were V3p3d4s 

and O2s2p within the frozen core approximation. The plane wave basis was expanded in the reciprocal space using a 

kinetic energy cutoff of 500 eV. The evaluations of ground-state energy and electron density were conducted in the first 

irreducible Brillouin zone using a 12×12×16 k-mesh of the Monkhorst-Pack type [43].  

         In this paper, we have considered the following meta-GGA-level  exchange-correlation functionals: Tao-Perdew-

Staroverov-Scuseria (TPSS) [20], revised TPSS (revTPSS) [22], regularized revTPSS (regTPSS) [44], meta-GGA made 

simple (MGGA_MS0 [37] and MGGA_MS2 [38, 39]). The first two meta-GGA functionals have been widely tested 

for various systems such as atoms, molecules and solids [17, 21]. The latter two functionals were devised recently in 

order to overcome some limitations of TPSS and revTPSS [39, 44]. Nevertheless, none of these non-empirically derived 

meta-GGA functionals has been tested for magnetic transition metal oxides. The calculations were also performed 

within the local spin density approximation (LSDA) using the Perdew-Zunger parametrization [45] and the generalized 

gradient approximation (GGA) of Perdew, Burke, and Ernzerhof (PBE) [46].  For the LSDA+U method [47], we have 

employed an implementation proposed by Dudarev [48] in the VASP code, and the effective effU = 3.32 eV (U= 4.0 

eV and J= 0.68 eV) was used for 3d shells of the V atom [49]. Calculations using the range-separated hybrid functional 

HSE06 were also conducted for the different magnetic states of R-VO2 [50-53]. Our calculation parameters were 400 

eV for the kinetic energy cutoff and a 6×6×8 k mesh generated by the Γ-centered method, similar to those employed in 

Ref. [12]. The default range separation parameter (μ=0.20 Å-1) for HSE06 in the VASP code was used in the current 

work [50-53].   

           For the RPA calculations, the total energy consists of two different terms, i.e., the correlation energy (Ec) and the 

Hartree-Fock energy (EHF). In the current paper, R-VO2 is considered as a metallic system when the inputs are obtained 

from PBE. For a metal, a special strategy must be employed to achieve numerical convergence [54, 55]. For example, the 

same k-mesh and kinetic energy cutoff must be used for calculating Ec and EHF energies. Moreover, the q→0 part of the 

linear response function (χG,G`(q,iω)) was also omitted in evaluating the two energies.  In our RPA calculations, the kinetic 

energy cutoff was set to 430 eV for FM and spin-compensated PM states, and to 480 eV for the AFM state, to reach 

convergence. The k-point mesh was similar to that employed for semi-local functionals. The convergence tests were 
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conducted for the calculated energy differences between magnetic and non-magnetic states of R-VO2 by varying the kinetic 

energy cutoff and k grid. We found that a 6x8x8 k grid was sufficient to get the converged energy difference at a satisfactory 

numerical uncertainty (± 10meV/VO2 (see Fig. SIII in Ref. [56]). 

           All DFT calculations were spin-polarized. For rutile-type VO2, the calculations were carried out for three 

different magnetic configurations by assuming the local magnetic moments of V atoms in different magnitudes and 

directions, i.e., ferromagnetic (FM, with initial local magnetic moment set to 2μB), anti-ferromagnetic (AFM, with the 

same initial local moment as for FM) and spin- compensated paramagnetic (PM, with 0.1μB as the initial local moment) 

states. Note that the spin-compensated PM state is different from a realistic PM phase. In the former case, the local 

moment is zero for each magnetic ion, because the majority and minority spin densities have the same magnitude at the 

same atomic site. The local moments carried by magnetic ions in the latter case are not only randomly distributed but 

also can vary strongly in magnitude. In Fig. 1, the crystal structure of rutile-VO2 is illustrated for the FM and AFM 

states. Additionally, the experimental lattice constants of rutile-type VO2 (R-VO2) were used in our paper, i.e., a= 

4.5546 Å and c= 2.8514 Å [2]. The internal geometric degrees of freedom of rutile-type VO2 were optimized 

accordingly for each exchange-correlation functional except RPA. Using the current settings, the total energy was 

converged to 0.001 meV/atom and the mean Hellmann-Feynman force acting on the atoms was reduced to 0.01 eV/Å. 

We also considered the effects of lattice constants on the computed energy differences by relaxing both lattice constants 

and atomic positions of R-VO2 in FM, AFM and PM states. The PBE geometries were employed for all RPA 

calculations. Note that, unless stated otherwise, the results presented in this paper were calculated using experimental 

lattice constants with the optimized atomic positions.     

          As can be seen from Fig. 2 (a), the local Cartesian coordinates of Vanadium atoms (VI and VII) in R-VO2 are 

different from the global crystallographic Cartesian coordinates. In order to construct an interpretable angular-

momentum-projected density of one-electron states, we have constructed the proper local 3d` ( 2
'
z

d , 2 2
'
x y

d
−

, '
xyd , '

yzd  

and '
xzd ) orbitals (in x-y-z coordinates) from the five 3d states ( 2z

d , 2 2x y
d

−
, xyd , yzd  and xzd ) of the global 

coordinates (X-Y-Z). Since the VO6 octahedron in R-VO2 has D4h symmetry, the irreducible representations for the five 

3d states under the local Cartesian coordinates are given by following relationship 

 2 2 25 1 2 1( ) ( , ) ( , ) ( , , )g xy g yz xz g xy g xz yzz x y
A d B d d B d d E d d d

−
Γ = + + +  . (1) 
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Here the irreducible representations A1g, B2g, B1g and Eg denote the crystal field splitting of 3d` with D4h point group, as 

shown in Fig. 2(b). For each irreducible representation, a local d` state can be obtained from the linear combination of 

five normal d orbitals. The technical details are presented in the Ref. 56.                                                                                                   

III. RESULTS 

A. Stability of magnetism, and magnetic moments 

          Experimentally, the ground state of R-VO2 above 340 K is a paramagnetic metal [1, 14, 15]. The electronic 

structure and magnetic state of quenched R-VO2 below this temperature are unknown at the moment. Since DFT 

calculations are usually performed at 0 K, the direct comparison of the theoretical predictions with experiments is 

inappropriate. Fortunately FN-DMC results exist, and they imply that R-VO2 is a magnetic metal in the ground state 

[14]. Therefore, we will use FN-DMC results as the benchmark in this work. Note that, from the FN-DMC results, the 

FM and AFM states have lower total energies than the PM state by approximately 300 meV/VO2. One should be 

cautious about FN-DMC results, because the actual values are sensitive to the computational details [14]. Additionally, 

the exact energy difference between FM and AFM states is not available in the FN-DMC calculations.      

         The previous calculations based on either semilocal functionals (LSDA and GGA) or orbital-dependent DFT 

methods (HSE06) reproduce the correct ground-state magnetism of this phase using the experimental lattice constants 

[4, 12]. The obtained total energies of spin-polarized (FM and AFM) states are always lower than that of the spin-

compensated PM state. For example, Williams et al. [57] have calculated the energy differences of R-VO2 in magnetic 

states (AFM and FM) with respect to the non-spin polarized state. It was found that the energies of FM and AFM 

phases are lowered by 135 meV/ VO2 and 56 meV/VO2 using the PBE GGA, compared to the non-spin-polarized phase. 

One should note that, in the works of Williams and coworkers [57], both the lattice constants and atomic positions were 

fixed to their experimental values. However, the atomic positions are allowed to relax in our calculations. HSE06 and 

DFT+U predict a much higher ground-state relative energy for PM R-VO2 than PBE does [12].  

       We have applied the exchange-correlation functionals of all five rungs on Jacob’s ladder (LSDA, LSDA+U, PBE, 

meta-GGAs, HSE06 and RPA) to calculate the energy differences between two magnetic states (FM and AFM) and the 

spin-compensated PM state. The results are given in Table I. Besides LSDA+U, other DFT methods predict the same 

ground magnetic phases as FN-DMC for R-VO2, i.e., the FM and AFM states are always more stable than the spin-

compensated PM state. Moreover, the FM state has a much lower energy than the AFM state. In the LSDA+U method, 

the AFM state is slightly more stable than the FM state by nearly 7 meV per VO2 unit. The DFT+U method favors the 

strong localization of 3d electrons, and the electrons of R-VO2 in the AFM state are more localized than in the FM state. 
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It is worth noting that the energy differences between magnetic and non-magnetic states given by LSDA+U and HSE06 

are significantly more negative than those from semilocal functionals and RPA. Our HSE06 values are similar to those 

reported in Ref. 12. For RPA, the starting Kohn-Sham single-particle energies and orbitals were computed by PBE. The 

obtained energy difference by non-self-consistent RPA is close to PBE values in the FM state. Meanwhile, RPA 

stabilizes the AFM state more than PBE does. Nevertheless, non-self-consistent RPA with PBE inputs indeed shows 

that the ground state of R-VO2 is a ferromagnetic metal. Among the five meta-GGA functionals, the FM and AFM 

states of R-VO2 phase are strongly favored by MGGA_MS0 and MGGA_MS2, because the calculated energy 

differences between the two magnetic states and the PM state are significantly more negative than those from TPSS, 

revTPSS and regTPSS. TPSS and revTPSS give similar results for the calculated energy differences. The magnetization 

energies of regTPSS are slightly more negative than those of revTPSS and TPSS. Although LSDA also gives the lowest 

total energy for FM R-VO2, the total energies of FM and AFM states calculated with LSDA are quite close to that of the 

spin-compensated non-magnetic state. 

           Using the fully relaxed crystal structure, we have recalculated the energy differences for R-VO2 between 

magnetic phases (FM and AFM) and the PM state. The results are illustrated in Figs. 3 (a) and (b). We can see that the 

computed energy differences generally show a dependence on the geometry. Especially for LSDA+U and HSE06, the 

energy differences between magnetic states and the non-magnetic state are greatly reduced by using the optimized 

geometry. Additionally, LSDA+U now predicts lower energy for the FM state than for the AFM.  It is also worth noting 

that LSDA now stabilizes the spin-compensated PM state over the AFM state (see the computed values given in Table 

SI in Ref. 56), i.e., the total energy of the AFM state is slightly higher than that of the PM state by 0.08 meV per VO2. 

Meanwhile, the total energy of the FM state is almost identical to that of the non-magnetic phase in LSDA. Moreover, 

the relative stability of the PM state is comparable to that of the AFM state for most semilocal functionals. Using the 

optimized geometries, RPA values are now less negative than those obtained from experimental crystal structures. In 

summary, in the fully relaxed case, all tested density functional methods give the correct magnetic ground states for R-

VO2 in agreement with the FN-DMC simulation for the ground state.  

          In Fig. 4, the calculated total magnetic moments of V atoms are given according to their Wyckoff positions. For 

R-VO2, the covalent state of V is +4, implying a 3d1 configuration. Therefore, the nominal magnetic moment of V is 1 

μB. Our calculations for the FM state of R-VO2 are roughly in agreement with this conjecture for all tested density 

functionals. One should note that the obtained magnetic moments of V atoms by MGGA_MS0, MGGA_MS2, 

LSDA+U and HSE06 for R-VO2 in the FM state are larger than 1μB. Note that the exact local magnetic moment of the 

V atom in R-VO2 is currently unknown both theoretically and experimentally. Our best (but questionable) standard is 
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provided by revTPSS: 1.0-1.1 Bμ in the FM state, and 0.4 Bμ in the AFM state. We choose revTPSS as our standard 

because Sun et al. [58] have tested TPSS and revTPSS for the magnetic moments of Fe and Ni in ferromagnetic states, 

obtaining results in good agreement with experiment. In Ref. 14, it is also suggested that the local magnetic moment of 

R-VO2 in the FM state is nearly 1.1 Bμ by the FN-DMC method.  Taking the revTPSS magnetic moment as a standard, 

LSDA and TPSS slightly underestimate the local moments in the FM state, while the MGGA_MS variants, LSDA+U, 

and HSE06 all overestimate them. We find that RPA gives exactly 1μB in the ferromagnetic state. In the FM state, the 

RPA local moment for the V atom was obtained by minimizing the total cell energy with respect to magnetic moment, 

based on constrained PBE inputs (orbitals and local magnetic moments) (see Fig. SII in Ref. 56).  

          For the AFM state, the semilocal functionals, LSDA, PBE, TPSS, revTPSS and regTPSS predict much smaller 

magnetic moments for V atoms than the MGGA_MS variants do. The values from the former exchange-correlation 

functionals are only 30%~50% of those of the other functionals (LSDA+U, MGGA_MS0, MGGA_MS2 and HSE06). 

A small local magnetic moment in the AFM state implies that the spin-up and spin-down components nearly 

compensate one another, resulting in an electron distribution similar to that of the spin-compensated PM state. The local 

moments obtained by LSDA+U, MGGA_MS2 and HSE06 are close to the nominal value of 1μB for the free V4+ cation.  

Again taking revTPSS as our standard, it appears that the MGGA_MS variants and the more elaborate functionals 

overestimate the local magnetic moment in the AFM as in the FM state. But a more reliable standard is needed. 

B. Electronic structures 

The weighted band dispersions of ferromagnetic R-VO2 in the up-spin direction are shown in Fig. 5 for the PBE, TPSS, 

MGGA_MS2 and HSE06. In Ref. 56, we also display the results computed by other DFT methods such as LSDA, 

LSDA+U, revTPSS and regTPSS in Figs. SV-SVIII.  The results for the spin-down electrons are quite similar to those 

of the up-spin channel except that the band energies are shifted due to the exchange splitting. The unit cell of R-VO2 

has two VO2 structural units, implying that the total number of bands in each spin channel is doubled, compared to one 

VO2 formula unit. In our plots, the four lowest lying bands (below -15 eV) mainly consist of 2s orbitals of O atoms. The 

2s bands are less dispersive and their band energies are also far below the Fermi level. Therefore, the overlap of 2s 

orbitals between atoms are expected to be negligible. From Fig. 6, we find that meta-GGAs predict more negative 

energy for 2s bands than LSDA, LSDA+U and PBE. Among meta-GGAs, MGGA_MS0 and MGGA_MS2 give less 

negative band energy than TPSS, revTPSS and regTPSS for 2s orbitals. Meanwhile, MGGA_MS variants also predict 

narrower band widths for 2s orbitals than other functionals. The main reason why meta-GGAs tend to lower the 2s band 

energy can be explained using their exchange enhancement factors in the limit of small s when α is zero. Unlike LSDA 
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and PBE, the meta-GGAs tested in this paper use α to distinguish the single-orbital region (α=0) from the uniform 

electron gas (α=1) having the same s [16, 20, 22, 39]. In the single-orbital region, we have α=0 and small s. The 

exchange gradient enhancement factor in a meta-GGA is always larger than those of LDA and PBE in such cases. 

Therefore, meta-GGAs lower the energy of the 2s orbital below that of the latter functionals.  

          The valence bands of R-VO2 are dominated by 2p orbitals of O atoms. In our simulated crystal structure, each 

spin direction has 12 electronic bands. Except for RPA, the average eigenenergy and band position of the 2p bands are 

calculated for each functional at the Γ point in the first Brillouin zone, and the results are listed in Table SIII [56]. The 

computed band positions indicate that the TPSS value is too high and regTPSS is too low. The remaining functionals 

give similar values for this quantity.  

           It can be clearly seen from Fig. 5 that the conduction bands of R-VO2 are mainly attributed to 3d states of V 

atoms. Without considering the tetragonal distortion of VO6 octahedra (Oh point group), the lower part of the d bands is 

made of six T2g type orbitals ( '
xyd , '

yzd  and '
xzd  ). Otherwise, the upper d bands consist of four other Eg type orbitals 

( 2
'
z

d  and 2 2
'
x y

d
−

). The band gap of Eg-T2g splitting due to Oh (or D4h) crystal field for 3d states in R-VO2 was described 

in some previous works [2-4, 6]. In our calculations, part of the T2g band is always overlapped with the Eg bands. 

Therefore, no obvious crystal-field-created band gap can be observed between the Eg and T2g bands. The mixture of 3d 

bands with 2p states determines the strength of V-O covalent bonds in the structure. For TPSS and revTPSS, the 2p-3d 

hybridizations are significantly stronger than for other tested functionals, which is clearly illustrated in the calculated 3d 

weighted band dispersions in Fig. 5 and also in the electron populations given in Fig. SIX in Ref. 56.  For example, all 

2p bands predicted by revTPSS and TPSS exhibit a strong 3d character. Meanwhile, the 3d bands are populated with 

more electrons than those of other semilocal and nonlocal functionals. We should note that there is no decisive 

experimental result available at the moment for the electronic structure of R-VO2. Therefore, strong 2p-3d hybridization 

in TPSS or revTPSS calculation cannot be totally ruled out.     

             In the case of PBE+U and HSE06, the band gap is opened between occupied and unoccupied 3d states. As a 

result, in LSDA+U and HSE06 calculations, R-VO2 is a Mott insulator in the FM and AFM states (see Figs. SV-SVIII 

in Ref. 56).  

             In R-VO2, the actual point group of a VO6 octahedron is D4h, resulting in the splitting of T2g and Eg states 

further according to Eq. 1. Specifically, the correct ordering of five 3d` states in FM R-VO2 is given in Fig. 2 (b) as Eg 

( xzd ′ , yzd ′ ) < B1g ( xyd ′ ) < A1g ( 2z
d ′ ) < B2g ( 2 2x y

d
−

′ ).  From Eqs. (S7) and (S8) in Ref. 56, in the local coordinates, 2z
d  and 
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2 2x y
d

−
 only show T2g (B1g + Eg) symmetry in an undistorted VO6 octahedron. Meanwhile, the linear combinations of 

xyd , yzd  and xzd  can have both T2g (B1g + Eg) and Eg (A1g + B2g) characters. The angular momentum projected local 

densities of states of FM R-VO2 are shown in Fig. 7 for the tested semilocal and nonlocal functionals. The Kohn-Sham 

single-particle energies of five 3d states ( xyd , yzd , xzd , 2z
d  and 2 2x y

d
−

) and their relative positions in Fig.7 are 

generally in agreement with the ordering of local 3d` states constructed from Eqs. (S7) and (S8) using group theory. 

Our current results also agree with Ref. 54. Finally, it is worth noting that, in the [001] direction, the sublattice of V 

atoms can form d-d σ-bonds through the overlapping of '
xyd  (B1g) orbitals between the nearest unit cells, and this has 

been considered as one possible driving force for tetragonal VO2 transforming into the monoclinic phase at low 

temperature (below 340 K) [1, 2].  

           The computed electronic densities of states by different DFT methods for the FM state are shown in Fig. 7, and 

for the AFM and spin-compensated PM phases in Fig. SVII [56]. The electronic structures of AFM and PM states 

resemble those of the FM phase. The discussions are omitted here for brevity.               

IV. DISCUSSION 

A. Error cancellation of semilocal functionals in a strongly-correlated system; unit cell volume 

          The likeliest interpretation of our results, in light of previous works [1, 14, 15], is that the observed 

paramagnetism of R-VO2 arises from temperature-disordered local moments. However, an alternative interpretation is 

that R-VO2 is a spin-compensated but strongly-correlated paramagnetic metal, in which the magnetic states found in 

DFT simply mimic the energetic effects of strong correlation [36]. 

          Sometimes standard density functionals can imitate strong correlation by developing a spin polarization [32]: The 

extra exchange then keeps the electrons apart in the same way that strong correlation does. The classic example is the 

stretched H2 molecule. LSDA and GGA descriptions wrongly localize the spin-up electron on one site and the spin-

down on the other, but this leads to a nearly correct energy. Using the correct spin-unpolarized singlet density of 

stretched H2 (spin-compensated PM state in our case) leads to an energy that is much too high. As a consequence, it is 

expected that the ground-state energy and equilibrium cell volume of R-VO2 computed in an energy-minimized 

magnetic phase should be more accurate than those computed in the spin-compensated PM state. In Fig. 8, we show the 

calculated percent errors of different DFT methods for the equilibrium cell volume. It is generally true that the AFM 

and FM calculations predict better lattice geometry than that of the spin-compensated PM case except for LSDA and 
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RPA. One special case is the PBE functional for which the cell volume obtained for the AFM state is almost the same 

as for the spin-compensated PM state, and both values are in good agreement with the experimental value. Otherwise, 

the optimized cell volumes of R-VO2 by TPSS, revTPSS and regTPSS in the AFM state are identical to the 

corresponding values in the PM state. Since the local magnetic moments given by LSDA, PBE, TPSS, revTPSS and 

regTPSS are significantly smaller than those of other tested DFT methods (LSDA+U, HSE06 and two MGGA_MS 

variants), the ground-state electron density distribution of the AFM state predicted by them is close to that of a spin-

compensated PM solution. Therefore, for LSDA, PBE, TPSS, revTPSS and regTPSS, the ground-state energy and 

equilibrium cell volume in AFM state do not differ too much from those of the spin-compensated PM state. For LSDA, 

the predicted local spin magnetic moments are too small for both FM and AFM phases, indicating that the spin- 

compensated PM state is more favored by this functional than by other semilocal functionals. As a result, the obtained 

percent errors for cell volume in three different magnetic states are similar to each other.  

           The RPA optimized cell volume can be obtained by minimizing the total RPA energy as a function of PBE cell 

volume through fitting of the equation of state (EOS), fixing the c/a ratio to the experimental value and the internal 

degrees of freedom to PBE results. We find that this geometry optimization procedure gives a very poor equilibrium 

cell volume for all three R-VO2 magnetic states.  In contrast to the tested semilocal functionals, LSDA+U and HSE06, 

accurate cell volumes are not found from a spin-polarized state for RPA. One possible explanation is that the current 

RPA is not implemented self-consistently.   

             Previous studies [31-35] showed that RPA energy differences can be sensitive to the DFT inputs. Our RPA 

results are based on PBE orbitals and orbital energies. It would be interesting to employ instead selfconsistent RPA 

orbitals or inputs from other semilocal (meta-GGAs) and non-local (HSE family or PBE0) exchange-correlation 

functionals in the future. The large difference between spin-up and -down channels in the exchange potential can be 

significantly reduced by adding the correlation potential in the selfconsistent RPA+EXX method [60, 61]. However, 

selfconsistent RPA is not available yet in VASP. 

B. Analysis of the effects of the exchange enhancement factor 

         Although different semilocal functionals may have different correlation parts, it is often possible to correlate their 

differences in performance to differences in their plottable exchange enhancement factors ).,( αsFx   

          In a meta-GGA, the total exchange energy of a spin-unpolarized density is computed as 

 3[ ] ( ) ( , )unif
x x xE n n n F s d rε α= ∫  , (2) 
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where n is the total electron density ( 2/nnn == ↓↑ ) and ( )unif
x nε  is the exchange energy per particle of uniform 

electron gas.  The exchange energy ],[ ]↓↑ nnEx of a spin-polarized density follows from Eq. (2) via a spin-scaling 

relation [46]. The exchange enhancement factor over LDA, a function of both s and α, is given by ( , )xF s α [20, 22, 37-

39]. The two ingredients (s and α) in ( , )xF s α are defined as: 

 2 4/32(3 )
n

s
nπ

∇
=  , (3) 

 W

unif

τ τα
τ
−

=  . (4) 

  In Eq. 4, the orbital kinetic energy density σσ
τ τ=∑ with 21

2 i
i

σ στ φ= ∇∑ ; 2 / 8W n nτ = ∇  is the von Weizsäcker 

kinetic energy density, which is exact for one- and two-electron densities; 2 2/3 5/33 (3 )
10unif nτ π=  represents the kinetic 

energy density of the uniform electron gas. s  is the dimensionless or reduced  density gradient, present even in GGAs, 

while α  is the dimensionless deviation from a single orbital shape, present only in meta-GGAs. 

         First, we note that the TPSS and revTPSS meta-GGA’s, unlike the other semilocal functionals considered here, 

display an unphysical order-of-limits error in which the value of )0,0( == αsFx depends on which ingredient is 

taken first to zero.  We have already seen in section III.B that TPSS and revTPSS predict strong hybridization of O 2p 

with V 3d orbitals, in comparison with the band structures of the other semilocal functionals. One might attribute this 

excess hybridization to the order-of-limits error in TPSS and revTPSS [44], although we have no physical explanation 

for this. 

         We plot the enhancement factors of LDA, PBE, and several meta-GGAs as functions of α in Fig. 9. In meta-

GGAs, α is used to distinguish different orbital regions and chemical bonds [39]. For the PBE GGA, the gradient 

enhancement factor does not depend on α; its value is explicitly determined by the reduced density gradient (s) only. 

Therefore, it is represented by a horizontal line for each s in plots of Fx(s, α) versus α. Moreover, the LDA 

enhancement factor  1=xF  is independent of both s and α, implying that it is represented by a horizontal line with a 

value of unity. In Table. SV, the exchange enhancement factors of five meta-GGAs in different limits are summarized 

[56].  
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          In Fig. 4, we found that MGGA_MS0 and MGGA_MS2 predict much larger local magnetic spin moments than 

the other semilocal functionals do (and too large in comparison with our uncertain standard, revTPSS). Fig. 9 shows 

that MGGA_Ms0 and MGGA_MS2 are also distinguished by a monotonic decrease in ),( αsFx  with α  at small s . 

Our results suggest that the limit α→∞ and s→0 is relevant to the magnetism of a material as predicted by meta-GGAs. 

It is also interesting to note that the same limit is also important for a semilocal functional to capture a portion of 

intermediate-range van der Waals interaction between weakly-overlapped densities [39].  

             In Fig. 10, we plot α as a function of distance from the V nucleus in R-VO2. The radial factors of all-electron 3p 

and 3d orbitals for a free V+4 ion are also shown in the same figure. In the region d < 0.2 Å, α is very large, due to the 

pseudopotential approximation used in VASP calculations. In the range from 0.2 Å to 0.5 Å, we can see the overlap of 

3p and 3d orbitals. In this region, α  is also >> 1.  Moving outside further (d > 0.7 Å), we have α ≈  1, and the density 

is more dominated by the 3d orbital. Fig. 10 suggests the relevance of 1>>α  to magnetism. 

              In order to further verify the correlation between magnetism and exchange enhancement factor of a meta-GGA 

functional, we have calculated the magnetic moment of Fe in the body-centered cubic (BCC) structure [63]. It is known 

that BCC Fe is a ferromagnetic metal below its Curie point (1043 K) with a large local moment as 2.22 μB per atom 

[58]. In this case, the local moment is underestimated by LSDA (1.94 μB). PBE (2.17 μB), TPSS (2.20 μB) and revTPSS 

(2.19 μB) give results in good agreement with experiment. On the other hand, regTPSS (2.46 μB), MGGA_MS0 (2.63 

μB), MGGA_MS2 (2.62 μB), LSDA+U (2.60 μB) and HSE06 (2.82 μB) overestimate the value. We suggest that the 

over-prediction of the local magnetic moment in BCC Fe by regTPSS and two MGGA_MS variants is related to their 

exchange enhancement factors at large α and small s.  

V. CONCLUSIONS 

              We have assessed the performances of several semilocal (LSDA, GGA and meta-GGAs), LSDA+U, and 

nonlocal (HSE06 and RPA) density functionals for the ground-state energy, electronic structure and magnetism of 

strongly-correlated R-VO2. Our calculations indicate that all these functionals can predict the FM ground state for this 

metal oxide at low temperature, in agreement with a recent FN-DMC calculation. All semilocal functionals predict R-

VO2 to be a metallic ferromagnetic phase. However, LSDA+U and HSE06 incorrectly give a Mott-Hubbard insulating 

phase for R-VO2 with large local magnetic moments. In addition, the TPSS and revTPSS meta-GGAs give qualitatively 

different (much more hybridized) electronic structures for R-VO2 from those of either the widely-used LSDA and PBE 

functionals or the recently developed meta-GGA functionals (regTPSS and MGGA_MS family of density functionals), 
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possibly due to the order-of-limits error in TPSS and revTPSS. Using PBE inputs, the ground state of R-VO2 is found to 

be a ferromagnetic metal by RPA. Full RPA selfconsistency might be required in some systems, especially strong-

correlated ones.  

             For most semilocal functionals, the development of magnetic states (FM or AFM) gives more realistic 

equilibrium cell volumes than those of the spin-unpolarized state. This result suggests either that there really are 

temperature-disordered local spin moments in R-VO2, or that spin-polarization is mimicking strong correlation (as it 

does in DFT calculations for equilibrium Cr2 or stretched H2 [36]). LSDA and RPA (with PBE inputs) behave 

differently, where for the former all three computed magnetic states (FM, AFM and spin compensated PM) 

underestimate the equilibrium cell volume with similar percent errors; while for the latter the optimized cell volume for 

a magnetic state is significantly overestimated. 

            In meta-GGAs, there is a correlation between the predicted magnetic moment and the behavior of the exchange 

enhancement factor. Our calculations for either R-VO2 or BCC Fe tell the same story: The monotonic decrease of Fx(s, 

α) with α for small s results in a large local magnetic moment for the magnetic phase. Although the meta-GGAs 

exhibiting an exchange enhancement factor similar to MGGA_MS variants seem to be less accurate than other tested 

semilocal functionals for the local magnetic spin moments of R-VO2, they are able to capture a portion of intermediate-

range van der Waals interaction for the same reason that they predict too-large local magnetic moments.  

           From our work and the FN-DMC work of Ref. 14, it appears likely that the ground state of R-VO2 would be 

magnetic, and that the observed paramagnetic state above the transition temperature (340 K) is one of temperature-

disordered local spin moments. Some of the FN-DMC results find a very small energy difference between FM and 

AFM phases, suggesting that temperature could easily disorder the spins. It is a puzzle that the observed magnetic 

susceptibility of R-VO2 [1, 15] does not seem to display the expected Curie-Weiss law. Perhaps in R-VO2 below 340 K 

there is a thermal transition to the spin-compensated paramagnetic state. 

          After our manuscript was completed, we discovered Ref. 64, which shows that the range-separated hybrid HSE06 

works better for VO2 with 10% of exact exchange than with the standard 25%.  With 10% of exact exchange, M-VO2 

properly remains an insulator while R-VO2 is properly a ferromagnetic metal.  We note that 25% of exact exchange 

(with 75% of PBE GGA exchange) is only a good average for molecules and semiconducting solids. Less or no exact 

exchange is needed in metals, and more than 25% is needed in large-gap insulators.  The fraction of exact exchange 

should vary locally throughout any system, as it does in a local hybrid functional [65]. 
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Figure Captions 

FIG. 1. (Color online) The two magnetic states of rutile-type VO2. (a): Ferromagnetic state (FM); (b): Anti-

ferromagnetic state (AFM). Note that the big blue balls are V atoms and the small red ones are O atoms, respectively. 

The green solid arrows represent the directions of local magnetic moments of V atoms. The octahedra represent VO6 

structural units. 

FIG. 2. (Color online) (a): The relationship between global crystallographic coordinates (X-Y-Z) and local coordinates 

(x-y-z) of V atoms; (b): The irreducible representations of 3d orbitals in Oh and D4h point groups under the local 

coordinate system (x-y-z). 

FIG. 3. (Color online) The energy differences between two magnetic states (FM and AFM) and the spin-compensated 

non-magnetic state are calculated using the experimental lattice constants (Expt, see also Table I for the precise values) 

and fully relaxed geometry (Opt) in frames (a) and (b), respectively. The energy difference between FM and AFM 

states is given in frame (c).  Note that for RPA the values marked as “Opt” are obtained by minimizing the total energy 

with respect to the PBE cell volume. The FN-DMC calculation of Ref. [14] predicts -300 meV/VO2 for FM-PM and 

AFM-PM. 

FIG. 4. (Color online) The computed local magnetic moments of V atoms by different exchange-correlation functionals. 

The horizontal line represents the exact value of the local magnetic moment carried by a free V4+ cation. (a): FM; (b): 

AFM. The fractional coordinates for VI and VII are (0, 0, 0) and (0.5, 0.5, 0.5), respectively. 

FIG. 5. (Color online) The weighted up-spin band dispersions of FM rutile-type VO2 calculated by semilocal 

functionals and also HSE06. The size of the black dots represents the weights of 3d orbitals of V atoms. The solid blue 

lines are the energy bands of bulk R-VO2. The fractional coordinates for these special high-symmetry k points are Z (0, 

0, 1/2), A (1/2, 1/2, ½), M (1/2, 1/2, 0), Γ (0, 0, 0), R (0, 1/2, 1/2) and X (0, 1/2, 0). (a): PBE; (b): TPSS; (c): 

MGGA_MS2; (d): HSE06. The Fermi level is set to zero at the top of the valence band. 

FIG. 6. (Color online) The relative positions of O 2s bands computed by semilocal functionals in FM and AFM states. 

The 2s band positions obtained from LSDA are set to zero. The value of Fx(s, α) is evaluated with the assumption that 

s→0 and α=0 for the spherical-like single orbital region. 

FIG. 7. (Color online) The calculated spin-polarized density of states of FM rutile-type VO2 from different exchange-

correlation functionals. The angular-momentum-projected densities of states on to 3d orbitals are also shown for the up- 

spin direction. The vertical line refers to the Fermi level. (a): PBE; (b):TPSS; (c): MGGA_MS2; (d): HSE06. The 

notations for five 3d states of the V atom are defined in crystallographic Cartesian coordinates (X-Y-Z). 
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FIG. 8. (Color online) The computed percent errors of equilibrium cell volume in three different magnetic states by 

semilocal and nonlocal functionals. For RPA, the equilibrium cell volume is obtained by fitting the total energy versus 

volume curve to the equation of state. 

FIG. 9. (Color online) The α dependence of meta-GGA exchange enhancement factors for different s values. LDA and 

PBE are represented by horizontal lines, because both exchange functionals show no dependence on α.  

FIG. 10. (Color online) Position dependence of α near a V nucleus in R-VO2. The all-electron 3p and 3d orbitals for a 

free V+4 ion, in arbitrary units, are also shown.  These orbitals are obtained by solving the non-relativistic Schrödinger 

equations using PBE for the exchange-correlation energy in the OPIUM code [62].  
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Tables 

Table I The relative stabilities of ferromagnetic (FM) and anti-ferromagnetic (AFM) states with respect to the spin- 

compensated paramagnetic (PM) state of the R-VO2 structure. The energy difference between FM and AFM states is 

indicated by FM-AFM. The energy differences are computed using the experimental lattice constants with the 

optimized atomic positions. For RPA, the PBE inputs are used in the calculations. The unit for the calculated energies is 

meV/VO2. The FN-DMC calculation of Ref. [14] predicts -300 for FM-PM and AFM-PM. 

Magnetism LSDA LSDA+U PBE TPSS revTPSS regTPSS MGGA_MS0 MGGA_MS2 HSE06 RPA 

FM -33.5 -827.4 -100.7 -95.2 -103.7 -115.6 -275.1 -196.9 -826.1 

-739.0a 

-85.9 

AFM -0.4 -834.8 -8.1 -5.0 -5.8 -7.8 -104.4 -49.7 -568.0 

-700.0a 

-43.2 

FM-AFM -33.1 7.4 -92.6 -90.3 -97.9 -107.8 -170.7 -147.3 -258.1 

-39.0a 

-42.6 

aReference [12]. 
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FIG. 1. (Color online) The two magnetic states of rutile-type VO2. (a): Ferromagnetic state (FM); (b): Anti-

ferromagnetic state (AFM). Note that the big blue balls are V atoms and the small red ones are O atoms, respectively. 

The green solid arrows represent the directions of local magnetic moments of V atoms. The octahedra represent VO6 

structural units. 

   

                                                (a)                                                                                 (b) 

 

FIG. 2. (Color online) (a): The relationship between global crystallographic coordinates (X-Y-Z) and local coordinates 

(x-y-z) of V atoms; (b): The irreducible representations of 3d orbitals in Oh and D4h point groups under the local 

coordinate system (x-y-z). 
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FIG. 3. (Color online) The energy differences between two magnetic states (FM and AFM) and the spin-compensated 

non-magnetic state are calculated using the experimental lattice constants (Expt, see also Table I for the precise values) 

and fully relaxed (Opt) geometry in frames (a) and (b), respectively. The energy difference between FM and AFM 

states is given in frame (c).  Note that for RPA the values marked as “Opt” are obtained by minimizing the total energy 

with respect to the PBE cell volume. The FN-DMC calculation of Ref. 14 predicts -300 meV/VO2 for FM-PM and 

AFM-PM. 
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FIG. 4. (Color online) The computed local magnetic moments of V atoms by different exchange-correlation functionals. 

The horizontal line represents the exact value of the local magnetic moment carried by a free V4+ cation. (a): FM; (b): 

AFM. The fractional coordinates for VI and VII are (0, 0, 0) and (0.5, 0.5, 0.5), respectively. 
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                                             (c)                                                                                                 (d) 

FIG. 5. (Color online) The weighted up-spin band dispersions of FM rutile-type VO2 calculated by semilocal 

functionals and also HSE06. The size of the black dots represents the weights of 3d orbitals of V atoms. The solid blue 

lines are the energy bands of bulk R-VO2. The fractional coordinates for these special high-symmetry k points are Z (0, 

0, 1/2), A (1/2, 1/2, ½), M (1/2, 1/2, 0), Γ (0, 0, 0), R (0, 1/2, 1/2) and X (0, 1/2, 0). (a): PBE; (b): TPSS; (c): 

MGGA_MS2; (d): HSE06. The Fermi level is set to zero at the top of the valence band. 
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FIG. 6. (Color online) The relative positions of O 2s bands computed by semilocal functionals in FM and AFM states. 

The 2s band positions obtained from LSDA are set to zero. The value of Fx(s, α) is evaluated with the assumptions that 

s→0 and α=0 for the spherical-like single orbital region. 
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                                                     (c)                                                                                   (d) 

FIG. 7. (Color online) The calculated spin-polarized density of states of FM rutile-type VO2 from different exchange-

correlation functionals. The angular-momentum-projected densities of states on to 3d orbitals are also shown for the up- 

spin direction. The vertical line refers to the Fermi level. (a): PBE; (b):TPSS; (c): MGGA_MS2; (d): HSE06. The 

notations for five 3d states of the V atom are defined in crystallographic Cartesian coordinates (X-Y-Z). 
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FIG. 8. (Color online) The computed percent errors of equilibrium cell volume in three different magnetic states by 

semilocal and nonlocal functionals. For RPA, the equilibrium cell volume is obtained by fitting the total energy versus 

volume curve to the equation of state.  
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(b)                                                                          

FIG. 9. (Color online) The α dependence of meta-GGA exchange enhancement factors for different s values. LDA and 

PBE are represented by horizontal lines, because both exchange functionals show no dependence on α. 
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FIG. 10. (Color online) Position dependence of α  near a V nucleus in R-VO2. The all-electron 3p and 3d orbitals for a 

free V+4 ion, in arbitrary units, are also shown. The orbitals are obtained by solving the non-relativistic Schrödinger 

equations using PBE for the exchange-correlation energy in the OPIUM code [62].  

 


