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The cumulant expansion is a powerful approach for including correlation effects in electronic
structure calculations beyond the GW approximation. However, the expansion is not generally
valid, as current implementations ignore terms that mix particle- and hole-states and lead to partial
occupation numbers of one-electron states. These limitations are corrected here using a cumulant
expansion of the retarded one electron Green’s function that includes both particle and hole contri-
butions. The approach provides a consistent framework that improves on the GW approximation
to the spectral function without additional computational effort. The method is illustrated with
results for the homogeneous electron gas and comparisons to experiment and other methods.
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I. INTRODUCTION

One of the major challenges in condensed matter the-
ory is to capture the effects of electron-electron interac-
tions. Such many-body effects are responsible for the
renormalization of energies and redistribution of spectral
weight, but they also lead to new features such as satellite
structures in the spectral function and partial occupa-
tion numbers, e.g., as observed in XPS.1–4 These features
arise from the coupling of electrons to excitations (e.g.,
plasmons) and cannot be captured by any independent-
particle description. While this coupling can be treated
formally, e.g., using many-body perturbation theory for
the electron Green’s function G, such expansions often
converge poorly. Thus it is often preferable to introduce
some auxiliary quantity from which G is obtained. This
is a general strategy in many-body theory, a prominent
example being the Dyson equation G = G0 + G0ΣG,
where the auxiliary quantity is the electron self-energy
Σ. The self-energy is then expanded to low order, com-
monly via the GW approximation of Hedin,5–7 while the
Green’s function contains contributions from diagrams
of all orders. The GW approximation achieves its effi-
ciency by expanding Σ in the screened – rather than the
bare – Coulomb interaction W , and retaining only the
leading term. This is accomplished by summing certain
classes of diagrams, e.g., the “bubble-diagrams” in the
random phase approximation (RPA). However, while the
GW approximation generally yields good quasi-particle
properties, it often gives a poor description of the spec-
tral function,2,3 and in particular the satellite structure
beyond the quasi-particle peak. One of the primary ob-
jectives of the present paper is to describe an approach
that overcomes this limitation.

An attractive alternative to the GW approximation is
the so-called cumulant expansion,8 which is the primary
theoretical tool in our approach. This expansion is usu-
ally based on an exponential ansatz for the time ordered
Green’s function G = G0eC , where the cumulant C is
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FIG. 1: (Color online) Spectral function Ak(ω) of an electron
gas at zero-temperature for rs = 4.0 in units of the plasmon
energy ωp, for a range of k from the retarded cumulant (RC)
approach of this work (thick red lines); the time-ordered (TC)
cumulant (filled green curves); and the G0W 0 approximation
(thin black lines). G0W 0 fails to produce multiple satellites
while TC cumulants only exhibit satellites on one side of the
Fermi energy. The largest discrepancy between RC and TC
is near kF . The inset shows the existence of a dispersion-
less satellite below the Fermi energy with increasing k from
k/kF = 1.0+ (top) to 1.45 (bottom) in steps of 0.025, as pre-
dicted by RC. The dashed vertical line in both plots is set at
the chemical potential µ.

now the auxiliary quantity and practical calculations are
carried out with a low order approximation for C. Sur-
prisingly, however, this ansatz is not generally valid so
both approaches have limitations. To make progress, one
must answer three questions: (i) What is the best funda-
mental quantity to calculate; (ii) What is the best ansatz,
e.g., what auxiliary quantity should be used?; and (iii)
What is the optimal approximation for that quantity? It
is desirable that the development be exact in principle,
and that even a simple approximation gives good results.
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The usual procedure to address the above difficulties,
is to try to improve (iii), i.e., search for higher order
approximations such as vertex corrections. However,
as yet, no practical direct approximation for the vertex
has been found. In addition, physical properties such
as positive spectral weight and normalization are vio-
lated at 2nd order in W .9–11 These shortcomings have
led to the development of an exponential ansatz, i.e.,
with the cumulant C instead of Σ as the auxilliary quan-
tity in (ii).6,10–13 The exponential representation is mo-
tivated by analogy to the case of core-electrons coupled
to bosonic excitations,12,14 where the cumulant expan-
sion is exact. This representation is physically appealing
as it systematically includes higher order diagrams that
serve implicitly as dynamical vertex corrections.3 This
strategy is advantageous in many cases, e.g., systems of
electrons coupled to plasmons and phonons,6 multiple
plasmon-satellites in photoemission,2,3,13,15–18 the time-
evolution of excitations,19 correlation energies,20 and dy-
namical mean field theory.21 Exponential forms are also
found in a wider context, e.g. summations over vacuum
bubbles based on the linked cluster theorem,22 coupled
cluster methods,23 the Thouless theorem for determinan-
tal wave functions,24 and the Landau formula for electron
energy loss.25

Despite these successes, many difficulties remain. For-
mal proofs of the validity of the cumulant expansion are
lacking,26 and indeed, none of the formulations proposed
for valence spectra1–3,9,13 is fully satisfactory. Neither is
the method appropriate for interactions that cannot be
treated in terms of bosonic excitations.13

The remainder of the paper is organized as follows.
In Sec. II, the time-ordered cumulant approach is briefly
reviewed, and a derivation of the retarded cumulant for-
malism given. Sec. III presents our results, and finally
Sec. IV contains a summary and conclusions.

II. THEORY

In this section, we summarize the application of the
cumulant expansion to the one electron Green’s func-
tion. Here and elsewhere, unless specifically stated, we
use Hartree atomic units (e = h̄ = m = 1) with ener-
gies in Hartrees = 27.2 eV. For simplicity we illustrate
the theory for the case of the homogeneous electron gas,
where G and G0 (the non-interacting Green’s function)
are diagonal in the same independent particle states k.
This case is well defined and illustrates the difficulties
of conventional cumulant approaches. This case is also
used in our numerical tests and comparisons presented in
Sec. III. To be clear, the non-interacting Green’s func-
tion G0(t) is defined by the single particle Hamiltonian
h = p2/2 + V ext + V H + V xc, where V H is the Hartree
potential, and V xc is an appropriate exchange correla-
tion potential. In the case of the homogeneous electron
gas, V ext + V H = 0, and we choose V xc = 0 as well,
so that the single particle eigenstates |k〉 have energy

eigenvalues ǫk = k2/2. The generalization to more real-
istic systems is reasonably straightforward, as discussed
in the Appendix.

A. Time-ordered cumulant

To illustrate the difficulties posed by previous cumu-
lant expansions, we briefly describe the standard time-
ordered approach for the cumulant (TC). The cumu-
lant ansatz for the zero-temperature TC Green’s function

GT
k (t) = −i〈N |Tak(t)a†k|N〉 is given by

GT
k (t) = GT,0

k (t)eC
T

k
(t), (1)

where a†k and ak are Fermionic creation and destruc-
tion operators, T is the time ordering operator, and
CT

k (t) is the TC cumulant. A serious problem with Eq.

(1) is that GT,0
k (t) (and thus GT

k (t)) vanishes for neg-
ative (positive) times for particles (holes), but this is
not the case for the exact (or even GW ) Green’s func-
tions. Thus Eq. (1) cannot be exact for all times, even
in principle. Moreover, the resulting Green’s functions
have no spectral weight below (above) the Fermi en-
ergy, and the occupation numbers nk remain unchanged
from their non-interacting values.20 This unphysical be-
havior follows from the form of the non-interacting part

GT,0
k (t) = ∓iθ(±t)θ(±(ǫk − ǫkF

))e−iǫkt, where the up-
per (lower) sign refers to particles with k > kF (holes
k < kF ), and θ is the unit step function. Physically these
defects can be traced to the neglect of diagrams with
negatively propagating intermediate states;27 e.g., recoil
effects that mix particle and hole-states.9 The missing
terms account for partial occupation numbers nk, which
are a general property of interacting Fermi systems, as
observed e.g., in Compton scattering. Such terms are
crucial to understanding correlation effects since nk is
typically 0.1− 0.4 above kF in condensed matter.6

B. Retarded cumulant

To overcome these difficulties, a different strategy for
question (i) is needed. Instead of GT

k (t), we take the fun-
damental quantity of interest to be the retarded Green’s

function,28 GR
k (t) = −iθ(t)〈N |{ak(t), a†k}|N〉, where {, }

denotes the anti-commutator. The cumulant representa-
tion analogous to Eq. (1) is,

GR
k (t) = GR,0

k (t)eC
R

k
(t), (2)

with a cumulant CR
k (t) that includes particle and hole

branches on an equal footing. The above equation gives
a relation between the Green’s function and the cumu-
lant valid for all relevant times provided that G0,R and

GR are invertible for t > 0. G0,R
k (t > 0) is invertible

for any retarded Green’s function defined by a Hermi-
tian single-particle Hamiltonian and we conjecture that
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this is also true for the exact Green’s function, although
we have no formal proof. Here and below we refer to this
representation as the retarded cumulant expansion (RC).
Remarkably, many of the difficulties with the TC form
disappear with this formulation, yet the approximate ex-
pression for CR

k (t) remains simple. Thus a seemingly
small change in the starting point has dramatic quanti-

tative and qualitative consequences. In particular, the
RC permits calculations of electronic properties that de-
pend on both branches, including occupation numbers,
density matrices, and correlation energies. To achieve
a practical method, we follow Ref. 13, and approximate
CR

k (t) by expanding to first order in W and matching to
the diagrammatic expansion, which gives

CR
k (t) = ieiǫkt

∫

dω

2π
e−iωt[G0,R

k (ω)]2ΣR
k (ω). (3)

Note that in the above equation and in the remainder of
this paper (unless specifically stated) we use the symbol
Σ to denote the G0W approximation to the self-energy
for a given W. The approximation of Eq. (3) can be re-
lated to a quasi-boson treatment of the excitations of the
system. The integral in Eq. (3) can be evaluated exactly
by contour integration over the poles in the lower-half

frequency plane with G0,R
k (ω) = [ω − ǫk + iδ]−1 and the

spectral representation of the G0W self-energy

ΣR
k (ω) = Σx

k +

∫

dω′

π

∣

∣ImΣR
k (ω

′)
∣

∣

ω − ω′ + iδ
, (4)

where the static Σx
k = iG0v exchange self-energy is sep-

arated out. Carrying out the integrations then yields

GR
k (t) = −iθ(t)e−iǫx

k
teC̃

R

k
(t), (5)

C̃R
k (t) =

∫

dω
βk(ω)

ω2
(e−iωt + iωt− 1),

βk(ω) =
1

π

∣

∣ImΣR
k (ω + ǫk)

∣

∣ ,

where ǫxk = ǫk +Σx
k, and C̃R

k is the dynamic part of CR
k ,

which is found by replacing ΣR
k with ΣR

k −Σx
k in Eq. (3).

Note that altough the integrand in the expression for
the cumulant above appears to be singular with a double
pole at ω = 0, this singularity is cancelled by the factor
[exp(−iωt) + iωt − 1] so that C̃k is well defined even in
cases where β(0) = 0. Finally, the spectral function is

Ak(ω) = − 1

π
ImGR

k (ω). (6)

While the above equations are similar to the TC
formulae,2 a major difference lies in the excitation
spectrum βk(ω) = β+

k (ω) + β−
k (ω), where β±

k (ω) =
∣

∣ImΣR
k (ω + ǫk)

∣

∣ θ(±(ǫkF
− ǫk − ω)). While the RC con-

tains all frequencies and builds in particle-hole symmetry,
the TC forms only contain β+

k or β−
k for particles or holes,

respectively. For particles (+) or holes (−) for example,
the TC formalism gives

C̃T
k (t) =

∫

dω
β±
k (ω)

ω2
(e−iωt + iωt− 1). (7)

Consequently the spectral functions are substantially dif-
ferent (see Fig. 1). The simplicity of the RC allows one to
check that the basic requirements and sum-rules are ful-
filled. Thus Ck(t = 0) = 0, so that Ak(ω) is normalized
to unity. In addition, C′

k(t = 0) = 0 so the spectral func-
tion has a centroid at the unperturbed (non-self consis-
tent) Hartree-Fock energy ǫxk, consistent with a one-shot
calculation of Ak(ω). One also easily obtains the renor-
malization constant Zk, quasi-particle energy shift ∆k,
and occupation numbers nk,

Zk = e−ak , (8)

ak =

∫

dω
βk(ω)

(ω − iδ)2
,

∆k =

∫

dω
βk(ω)

(ω − iδ)
,

nk =

∫ µ

−∞

dω Ak(ω),

where the chemical potential µ is fixed by enforcing total
occupation Σknk = N . This definition of the chemi-
cal potential is reasonable for the electron gas, although
enforcing the occupations in this manner can cause prob-
lems in semiconductors, where µ may not lie in the band
gap. In any case, this problem occurs with the G0W 0 ap-
proximation as well.29 These quantities permit a separa-
tion of the quasiparticle and satellite parts of the Green’s
function;2 however, this separation may not always be
reasonable, e.g., in cases when the real part of the renor-
malization constant is negative (see Fig. 2). Neverthe-
less, the total cumulant and related Green’s function as
given by Eq. 5 are always well defined within either the
RC or TC methods. Note also, that when βk(0) > 0, ak
and thus Zk are complex. For the electron gas, this is
the case for all k 6= kF . One can also express ak in terms
of the derivative of the self-energy, i.e.,

ak = −dΣk(ω)

dω

∣

∣

∣

∣

ω=ǫk

, (9)

which leads to the familiar GW form of the renormal-
ization constant Zk = 1/(1 − Σ′

k(ǫk). The primary
many-body ingredient in the RC is βk(ω), the imagi-
nary part of the retarded G0W self energy ΣR

k , where
W is defined by a given screening approximation and
has a structure that reflects peaks in the loss function
|Im ǫ−1(ω)|. Thus the computational effort in the RC
is comparable to that in G0W 0 if we also use the RPA
W = W 0. Going to higher order is technically difficult
and not necessarily an improvement, since higher order
terms can lead to non-physical behavior in Ak(ω).

9,13 The
complex renormalization constant Zk describes the re-
duction in strength, and assymetry of the quasi-particle
peak and agrees to 1st order in W with that for G0W 0

where ZGW
k = 1/(1+ ak). Physically the behavior of the

RC in Eq. (5) can be interpreted as a transfer of spec-
tral weight away from the quasi-particle peak by quasi-
boson excitations at frequency ω, with coupling constants
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g2 ∼ β(ω). The “shake-up” counts ak = a+k + a−k cor-
respond to the mean number of bosons coupled to the
electron (or hole), and account for the satellite strengths
a±k =

∫

dω β±
k (ω)/(ω − iδ)2 in Ak(ω) above (+) and be-

low (−) the quasi-particle peak. To further interpret
the RC and compare to previous approaches, it is use-
ful to examine various limits. Due to the separation
βk = β+

k + β−
k , a complete calculation of Ak(ω) requires

a Fourier transform of the product eC
+

k
(t)eC

−

k
(t), where

C±
k are the TC cumulants which contain β±

k instead of
βk. Since one of the branches is always small (except
close to k = kF ), and vanishes far from kF , one can
estimate the contributions separately using the identity

eC
R

k
(t) ≡ eC

−

k
(t) + eC

+

k
(t) − 1 + (eC

+

k
(t) − 1)(eC

−

k
(t) − 1).

For example, for hole spectra (k < kF ), the leading term

eC
−

k
(t) corresponds to the TC cumulant,2,6 to which the

RC reduces when k ≪ kF (Fig. 1). Interestingly, the cu-
mulant C−

k (t) is identical to that obtained with the recoil

approximation of Hedin.9 The next terms eC
+

k
(t) − 1 cor-

respond to the minor branch of Ref. 13. However, that
approximation does not conserve spectral weight, and the
remaining terms that mix particles and holes are needed
to preserve normalization.

III. RESULTS AND DISCUSSION

Below we illustrate the RC with explicit results for
the homogeneous electron gas at zero temperature. This
model is often used as a standard for quantitative theo-
retical approaches. The case with rs = 4.0 corresponds to
bcc Na, which is also a widely used prototype material for
treatments of plasmon-satellites.2,7,14,20 For consistency
we use the same RPA approximation for W as in Ref. 7,
and we checked that our results agree to high accuracy
with previous G0W 0 calculations.14,30 The integrations
involved in the cumulants, occupation numbers, and to-
tal energies were performed using the trapezoidal rule,
except near ω = 0 where the integrand was expanded to
avoid the singular point. Fourier transforms from time to
frequency were performed with minimal Gaussian broad-
ening. Integrals were converged with respect to range
and spacing of points to sufficient accuracy for all val-
ues reported here. Fig. 1 shows Ak(ω) from the RC for
a range of k compared to the standard TC and G0W 0

(thin solid line) approximations. The largest discrepancy
between the RC and TC forms is near k = kF , where
the RC exhibits a nearly symmetrical particle-hole spec-
trum, consistent with a reduction of the jump in nk at
the Fermi surface from its non-interacting value. As ex-
pected, the TC Ak(ω) agrees with the RC far from kF , so
that previous cumulant treatments are preserved in that
limit. Note too that the quasiparticle peak has substan-
tial broadening at large k due to the onset of particle-
hole and plasmon excitations. In all cases, Ak(ω) differs
markedly from the G0W 0 approximation, thus demon-
strating the importance of vertex corrections. The differ-
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FIG. 2: (Color online) Occupation number nk vs k calculated
for an electron gas with rs = 4.0 from RC (red) compared
to TC (green), G0W 0 (blue), Compton experiment for Na32

(black error bars), and QMC (pink squares).32 Inset: Re[Zk]
vs k from RC (red) and G0W 0 (green).

ences are especially noticable at k = 0, where RC and TC
exhibit multiple plasmon peaks; in contrast G0W 0 has
only one sharp “plasmaron” peak, shown previously to
be in qualitative disagreement with experimental photoe-
mission spectra in metals and semiconductors.2,3,16 The
inset in Fig. 1 shows a nearly dispersionless satellite at
µ− ωp, not predicted by TC and ill-described by G0W0,
where ωp =

√
4πne is the plasma frequency. This feature

may be experimentally observable, e.g., via ARPES, and
would provide an additional measure of correlation ef-
fects. Values of nk and Zk are important diagnostics of
the quality of a given many-body approximation.14,30,31

Also nk are central ingredients in the one-body density
matrix. Fig. 2 shows nk from RC compared to G0W0

for an electron gas with rs = 4.0, together with values
extracted from Compton scattering data for Na32 and
QMC.32 The RC gives nk in reasonable agreement with
G0W0 and quantum Monte Carlo (QMC) though slightly
lower for k < kF . They are also consistent with, though
somewhat higher than, Compton data below k = kF .
The real part of the calculated renormalization constant
Re[Zk] is shown in the inset to Fig. 2, and Table I sum-
marizes results at k = kF compared to G0W 0, GW ,

TABLE I: Quasiparticle renormalization factor ZF at k = kF
from RC, TC, G0W 0, self-consistent GW ,33 and QMC.30 No
imaginary part is reported since Zk is real at the Fermi mo-
mentum. Note that within the TC formalism, Zk is discon-
tinuous at the Fermi momentum, thus we have reported both
values as ZkF−δ,ZkF +δ.

rs RC TC G0W 0 GW QMC
1 0.85 0.91,0.90 0.86 - 0.84
2 0.73 0.85,0.81 0.76 0.85 0.77
4 0.57 0.76,0.68 0.64 0.79 0.64
5 0.50 0.73,0.63 0.59 - 0.58
10 0.29 0.63,0.42 0.45 - 0.40
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and QMC for a range of rs.
30,33 Note that within the

TC approach, Zk is discontinuous at the Fermi momen-
tum. This unphysical behaviour is due to the fact that
within the TC approximation, particles contain only par-
ticle sattelites, and holes contain only hole sattelites. The
weight of these sattelites is related directly to the imag-
inary part of the self-energy, thus Zk is continuous only
if Im[ΣkF

(ω)] is symmetric about ω = µ, which is not
the case for the electron gas. We find reasonable agree-
ment between the RC and QMC at higher densities and a
larger discrepancy at smaller values. Interestingly, G0W 0

results compare well with QMC, while those for self con-
sistent GW are too large, confirming that some correla-
tion effects are underestimated by self-consistent GW .33

Finally we present a RC calculation of electron corre-
lation energies using the Galitskii-Migdal formula. This
formula was previously applied to the TC cumulant ap-
proximation in Ref. 20. Other formulations, such as the
variational Luttinger-Ward functional may give improved
energies but do not appear straightforward to implement
with the cumulant representation. Assuming a paramag-
netic system the total energy E is given by

E =
1

2

∑

kσ

lim
t→0−

[∂t − iǫk]Gk(t) (10)

=
∑

k

∫

dω [ǫk + ω]Ak(ω).

The correlation energy per particle is defined as ǫcorr =
(E − EHF )/N , where the total Hartree-Fock energy is

EHF =
∑

k

[ǫk + ǫxk] θ(kF − k). (11)

For example, for the electron gas at rs = 4.0, ǫk =
(1/2)k2 and EHF /N = −0.0445. Note that the above
formula for the Hartree-Fock energy is only correct in
the homogeneous electron gas where the eigenfunctions
are not modified by the exchange potential. In a real sys-
tem, the energies would be defined by the self-consistent
Hartree-Fock energy. Table II presents correlation ener-
gies calculated from Eq. (10) and (11) for rs from 1 to 5,

TABLE II: Homogeneous electron gas correlation energies as a
function of rs calculated using RC (Eq. (10) and compared to
TC, G0W 0, self-consistent GW 33,34 and QMC calculations20 .

rs RC TC G0W 0 GW QMC
1 -0.070 -0.064 -0.074 -0.058 -0.0600
2 -0.051 -0.049 -0.055 -0.044 -0.0448
3 -0.041 -0.041 -0.044 -0.037 -0.0369
4 -0.035 -0.036 -0.038 -0.031 -0.0318
5 -0.030 -0.033 -0.033 -0.027 -0.0281

and for comparison, results for TC, G0W 0, GW ,33,34 and
QMC.20 For all cases RC yields some improvement in cor-
relation energies compared to G0W 0, while improvement
in comparison to TC is seen only for rs > 3. While some

correlation energies reported in Ref. 20 are also close to
QMC, their prescription uses some approximations that
go beyond TC.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have presented a cumulant approxi-
mation based on a retarded one-particle Green’s function
formalism with a cumulant expanded to first order in W .
The RC provides a unifying framework for the electron
Green’s function that yields partial occupations, multi-
ple satellites in the spectral function on both sides of
the Fermi energy, and total energies, all in reasonable
agreement with available theoretical and experimental
data. In contrast, the GW approximation and previous
TC cumulant approximations fail to account for one or
more of these properties. Differences between the RC and
TC Green’s functions are especially significant near kF .
These differences are important in many contexts, e.g.,
cases with particle-hole symmetry such as phonons and
other low energy excitations. Moreover, the approach
can be straightforwardly extended to finite temperature,
whereas the TC cannot. Also, differences with respect to
the GW approximation provide insights into the nature
of vertex corrections. Results for the homogeneous elec-
tron gas show that this level of theory gives correlation
energies that quantitatively improve on G0W 0 compared
to QMC. But they are still slightly low, and the renormal-
ization constants Zk too small. However, the RC permits
some freedom in the choice of initial one-particle states
and the screened interaction W . Thus based on differ-
ences between self-consistent GW and G0W 0, it is plau-
sible that part of the remaining discrepancy can be ex-
plained by some form of self-consistency.33,35–37 For these
reasons the RC provides an attractive approach for going
beyond the GW approximation without additional com-
putational complexity, and with a simplicity that points
to its utility for real systems.
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Appendix: Generalization to inhomogeneous systems

For a general inhomogeneous system, G0, G, and Σ
may not all be diagonal in the same single particle states,
so the the exponential ansatz must be generalized, i.e.,

GR
kk′ (t) = G0,R

k (t)eC
R

kk′(t), (A.1)

where k denotes the eigenstates of the initial one-particle
Hamiltonian, and G0,R is the related Green’s function. It
is desirable to choose our single particle states such that
the starting Green’s function G0,R is as close as possible
to the full Green’s function, without making the calcula-
tions impractical. For example, the choice of Kohn-Sham
states with a density functional Hamiltonian is appropri-
ate for many systems. Alternatively one could start with
a quasiparticle Green’s function, in which case ǫk refers
to the quasiparticle energies. As the derivation of the
full, off diagonal cumulant expansion is somewhat more
complicated, we limit our attention here to the diago-
nal approximation. With Kohn-Sham initial states, this
amounts to the assumption that the operator Σ − V xc

is nearly diagonal in the same states as G0. Within this
approximation, the derivation of the RC now largely par-
allels that given in Sec. II. For example, Eq. (3) becomes

CR
k (t) = ieiǫkt

∫

dω

2π
e−iωtG0,R

k (ω) (A.2)

×
[

ΣR
k (ω)− V xc

k

]

G0,R
k (ω),

where ǫk are the Kohn-Sham energies, V xc the associated
exchange correlation potential, and G0(ω) = [ω − (h0 +
V xc]−1. The leading cumulant CR

k can again be found
by contour integration, which gives

GR
k (t) = −iθ(t)e−iǫ̃kteC̃

R

k
(t), (A.3)

C̃R
k (t) =

∫

dω
βk(ω)

ω2
(e−iωt + iωt− 1),

βk(ω) =
1

π

∣

∣ImΣR
k (ω + ǫk)

∣

∣ ,

where ǫ̃k = ǫk + Σx
k − V xc

k . While the diagonal ap-
proximation is not always reliable (e.g. transition metal
oxides), the self-energy is nearly diagonal in many sys-
tems, and has been used with much success within the
GW approximation.6,38–40 The diagonal approximation
has also been used previously for the TC cumulant ex-
pansion for a variety of materials.2,3,15,16
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