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Nanoscale electronic transport is of intense technological interest, with applica-

tions ranging from semiconducting devices and molecular junctions to charge mi-

gration in biological systems. Most explicit theoretical approaches treat transport

using a combination of density functional theory and non–equilibrium Green’s func-

tions. This is a static formalism, with dynamic response properties accommodated

only through complicated extensions. To circumvent this limitation, the carrier den-

sity may be propagated using real–time time–dependent DFT (RT–TDDFT), with

boundary conditions corresponding to an open quantum system. Complex absorbing

potentials can emulate outgoing particles at the simulation boundary, though these

do not account for introduction of charge density. It is demonstrated that the desired

positive particle flux is afforded by a class of PT –symmetric generating potentials

that are characterized by anisotropic transmission resonances. These potentials add

density every time a particle traverses the cell boundary, and may be used to engineer

a continuous pulse train for incident packets. This is a first step toward developing

a complete transport formalism unique to RT–TDDFT.
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I. INTRODUCTION

The conjunction of density functional theory (DFT) [1] and the non–equilibrium Green’s

functions (NEGF) method [2, 3] has afforded a tool of unprecedented utility for the compu-

tational description of electrical transport in nanoscale devices. Fruitful applications have

extended from metallic or semiconducting constrictions to molecular junctions, with trans-

mission regions spanning a broad swath of chemical parameter space. While inherently

a single–particle approach, many–body corrections may be phenomenologically included

through the DFT+U method or through direct modification of self–energy terms appearing

the NEGF expansion [4]. The scope of these extensions suggests a universal framework for

the atomic–resolution simulation of transport in technologically–relevant materials, which is

necessary for the engineering of functional nanoelectronic components. The flexibility and

simplicity of this method nonetheless comes at a price, as the calculated conductances are

generally between one to two orders of magnitude greater than those observed experimentally

[5]. Furthermore NEGF+DFT calculations employ static, ground–state electronic structure

calculations by construction, and hence there is no possibility of calculating time–dependent

response properties within this framework.

In a first–order attempt to circumvent this limitation, the NEGF method has been ex-

panded to include time–dependent density functional theory (TDDFT) [6–8]. While this

method is sufficient for model Hamiltonians, self–consistent calculations are difficult to ex-

ecute [9], and self–consistency is requisite for the study of real materials. One appealing

alternative to the NEGF+TDDFT method entails direct propagation of the electronic wave-

function with real–time TDDFT (RT–TDDFT) [10]. This scheme likewise ameliorates the

cost of NEGF+TDDFT calculations as the numerically expensive determination of Green’s

functions in the lead regions is no longer necessary [11]. Nonetheless, a known difficulty

associated with RT–TDDFT propagation is the treatment of boundary conditions at the

edge of the simulation cell, which must correspond to those of an open quantum system.

Recent investigations with both NEGF+TDDFT [11–13] and RT–TDDFT propagation [10]

have employed a complex absorbing potential in this region to attenuate the wavefunction

and avoid spurious reflections. While previously proposed for transport problems in model

systems [14, 15], these investigations comprise the first application to a realistic case. The

complex potential is itself a non–Hermitian extension to the Hamiltonian that diminishes the
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net electron density in the system as a function of simulation time. Reducing the number of

electrons within the leads will alter the contribution from Hartree and exchange–correlation

terms in the DFT Hamiltonian, and lead to a jamming process in which transport no longer

occurs as the system becomes ionized. Thus, the absorbing potentials only comprise half of

the framework required for a comprehensive treatment of transport, as generating potentials

for incoming charge carriers are also required.

The addition of a complex potential V̂cplx to a quantum system has an unusual effect on

the time evolution of a state vector. Consider a non–Hermitian Hamiltonian Ĥ = Ĥ0+ V̂cplx

in which V̂cplx may be arbitrarily applied, and let Ĥ0 be a Hermitian Hamiltonian which is

applicable at all times. Furthermore, let |ψ(x, t = 0)〉 be an initial eigenstate of Ĥ0 when

V̂cplx is zero. As |ψ(x, t)〉 propagates, assume that a purely imaginary V̂cplx ≈ iΓ 6= 0 is

turned on starting at time t1 and turned off at time t2 > t1. In the course of this process,

the state vector evolution is afforded by the operator Û(t′, t) = exp[−iĤ(t′ − t)/~] so that

|ψ(x, t2)〉 = Û(t2, t1) |ψ(x, t1)〉, or explicitly

|ψ(x, t2)〉 = exp[−i(Ĥ0 + iΓ)(t2 − t1)/~] |ψ(x, t1)〉 (1)

= exp[−iÊ(t2 − t1)/~] exp[Γ(t2 − t1)/~] |ψ(x, t1)〉 . (2)

The first term in the product is simply the time evolution operator for the system under the

action of Ĥ0 alone, whereas the second term characterizes the effect of the complex potential.

Taking the inner product 〈ψ(x, t2)|ψ(x, t2)〉 = exp[2Γ(t2−t1)/~] 〈ψ(x, t1)|ψ(x, t1)〉, it is clear
that the norm of the particle is rescaled by a factor of exp[2Γ(t2 − t1)/~]. Furthermore, just

as the Hamiltonian is no longer Hermitian in the presence of V̂cplx, the evolution operator

Û(t′, t) ceases to be unitary.

If the complex potential strength Γ < 0, the norm of the state vector is decreased and the

effective particle number in the system is diminished. This behavior is key when using the

complex potential to mimic open boundary conditions that accommodate an incoming or

outgoing particle flux [16–22] as well as for the treatment of resonances in wavepacket propa-

gation [23–25], atomic [26], and nuclear systems [27]. Conversely, if the sign of the potential

is flipped so that Γ > 0, the potential then generates norm for a given state, which may

be conceptualized as the addition of particles to the system. The presence of such ‘source’

and ‘sink’ terms is a general property of simple non–Hermitian extensions [14, 18, 21]. One
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particularly useful category of these theories are the PT –symmetric Hamiltonians, in which

the condition of Hermicity is relaxed in favor of symmetry under conjugation by the product

of the parity P̂ : {p̂, x̂, iI} 7→ {−p̂,−x̂, iI} and time reversal T̂ : {p̂, x̂, iI} 7→ {−p̂, x̂,−iI}
operators [28–30]. The construction of PT –symmetric theories extends the spectrum of

effective Hamiltonians which may be employed to describe open quantum systems, and has

led to several experimentally verified predictions in optics [31–33].

Given these considerations, it is natural to ask if an appropriately constructed PT –

symmetric theory can fully mimic the progressive, time–dependent addition and removal

of particles in an open system, particularly in a manner that does not require continuous

tuning of source and sink terms. By constructing an appropriate scheme using recent lessons

from PT –symmetric optics this question is answered in the affirmative. In particular, it is

demonstrated that particle generation and attenuation may be integrated under conditions

corresponding to either an applied voltage or current bias. Analytical and numerical results

are evaluated for the particular problem of real–time one–dimensional wavepacket propa-

gation to demonstrate the efficacy of this method. It is further demonstrated that such a

framework may be naturally extended to density functional theory without limitations.

II. ANALYTICAL CONSIDERATIONS

A. PT –Symmetric Quantum Mechanics

In a PT –symmetric quantum system, the requirement that Hamiltonian be Hermitian

is relaxed to a more general conjugation condition [29, 30]. Specifically, a new operator

P̂T̂ is introduced as a product of the parity P̂ : {p̂, x̂, iI} 7→ {−p̂,−x̂, iI} and time–reversal

T̂ : {p̂, x̂, iI} 7→ {−p̂, x̂,−iI} operations, such that the composite operator P̂T̂ and the

new Hamiltonian ĤPT share a common set of eigenfunctions. Invariance under Hermitian

conjugation is replaced with the commutator [P̂T̂ , ĤPT ] = 0. Note that ĤPT need not

commute with the action of P̂ and T̂ alone, but only with the operator product. When these

conditions are collectively satisfied, the system is said to possess exact or unbroken PT –

symmetry [28, 29]. If the potential is only a function of the particle position, the Hamiltonian

ĤPT may be written in the elementary form ĤPT = p̂2/2m + V̂PT (x̂), whereupon PT –

symmetry requires that V̂PT (x̂) = V̂ ∗
PT (−x̂) with the asterisk denoting complex conjugation.
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Accordingly, the potential may be expanded as V̂PT (x̂) = Re[V̂PT (x̂)]+ iIm[V̂ (x̂)], where the

real and imaginary parts are even and odd functions of x̂, respectively.

Despite the presence of an imaginary potential, the unbroken symmetry phase of a PT –

symmetric theory is characterized by a real eigenvalue spectrum. Conversely, in the so–called

broken symmetry phase, P̂T̂ and ĤPT cease to share a common eigenfunction space and

the roots of the eigenvalue problem become complex. This spectral behavior has been sys-

tematically investigated for several potentials, including those of the form V (x) = αx2(ix)ν

with α ∈ R and ν ∈ N [28, 34]. It is conjectured that an arbitrary PT –symmetric complex

potential V (x) must be analytic to possess a real spectrum [35, 36], though other more

stringent requirements may also apply [30]. This surprising observation of a well–defined

real eigenvalue spectrum led to the proposition that PT symmetry could represent a gen-

eralization of quantum mechanics, especially when formulated in terms of an inner product

structure with additional symmetries [29].

Nonetheless, a local PT symmetry allows arbitrarily fast quantum state evolution [30],

including superluminal propagation [37], thus limiting the applicability of such Hamiltoni-

ans as a fundamental extension of quantum mechanics. Furthermore, global PT symmetric

Hamiltonians are isomorphic to conventional Hermitian Hamiltonians for finite–dimensional

systems [38–42], differing only in their unconventional definition of the inner product. In

spite of such restrictions, these structures afford a mathematically useful framework for

effective theories in the condensed matter realm, particularly for open quantum systems

[16–22, 43], for the computational treatment of resonances in wavepacket dynamics and

scattering [23–25] and for light propagation in certain optical lattices [44–47]. Several exper-

imental realizations of PT –symmetry have been explored in this optical context, including

loss–induced optical transparency [31] and left–right asymmetric power oscillations [32] in a

nonlinear optical device, unidirectional invisibility in a PT –symmetric optical lattice, and

the existence of coherent perfect absorbers assembled using passive optical components [33].

B. Quantum Transport in PT –Symmetric Potentials

A characteristic of PT –symmetric non–Hermitian theories is the presence of ‘source’

and ‘sink’ terms for the wavefunction norm [14, 18, 21]. While a self–consistent norm has

been devised for PT –symmetry [29], we are interested in physical systems for which ĤPT
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is an effective Hamiltonian and thus do not adopt this definition. Accordingly, denote by

N = 〈ψ(x, t)|ψ(x, t)〉 the L
2(R) norm of ψ(x, t) in a Hilbert space H. Calculating the

time dependence directly in terms of the PT –symmetric potential VPT (x) = Re[VPT (x)] +

iIm[VPT (x)] yields

dN (t)

dt
=

∫ ∞

−∞
dx

d

dt
(ψ∗(x, t)ψ(x, t))) (3)

=

∫ ∞

−∞

(

dψ∗(x, t)

dt
ψ(x, t) + ψ∗(x)

dψ(x, t)

dt

)

(4)

=
1

i~

∫ ∞

−∞
dx

(

ψ∗(x, t)ĤPTψ(x, t)− Ĥ†
PTψ

∗(x)ψ(x)
)

(5)

=
1

~
〈ψ|(ĤPT − Ĥ†

PT )|ψ〉 (6)

=
2

~
〈ψ|Im(V̂PT )|ψ〉 (7)

The condition for norm attenuation, dN (t)/dt < 0, requires that 〈ψ|Im(V̂PT )|ψ〉 < 0. A

similar condition for norm generation applies when dN (t)/dt > 0, indicating that the imagi-

nary part alone determines the ‘source’ or a ‘sink’ behavior. Interestingly, since this process

is contingent upon an expectation value, the source term is incapable of generating norm in

the absence of some finite probability amplitude within the spatial extent of the potential.

Once a state is completely attenuated, it many never be recovered by a generating term.

This relation has an important association with transport properties. Specifically, the net

outgoing change in norm for all particles in a many–particle system ∂NT /∂t =
∑

i ∂Ni/∂t

due to the presence of the imaginary potential must be equal to the integrated divergence

of the current through the system −
∫

V
∇ ·~j(~x, t)dV = ∂NT (t)/∂t, where ~j(~x, t) is the local

probability current density

~j(~x, t) =
e~

2mi

∑

i

[ψ∗
i (~x, t)∇ψi(~x, t)− ψi(~x, t)∇ψ∗

i (~x, t)] . (8)

This relationship between norm and net current is obtained by directly integrating the

continuity equation for the particle density.
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C. Complex Absorbing Potentials

Complex absorbing potentials have been systematically developed using functional forms

including linear and step potentials [48], higher–order polynomials [49–53], exponential

[49, 54] and hyperbolic functions [55], as well as through functions with singular behavior at

isolated points in the complex plane [56, 57]. These investigations do not suggest a universal

‘optimal absorbing potential,’ however, the criteria necessary for an effective absorber may

be distinguished. In particular, complex polynomial potentials significantly enhance absorp-

tion over purely imaginary polynomial terms, particularly in low energy cases where the

deBroglie wavelength of the incident wavepacket is comparable to the characteristic length

of the absorbing region [51]. Adding a negative real component to the potential will increase

the energy of the incident particle and thereby reduce the wavelength of the packet, en-

hancing norm attenuation by the imaginary part while concurrently reducing reflection. It

should be noted that the Wentzel–Kramers–Jeffreys–Brillouin (WKJB) approximation yields

quantitatively inaccurate results where λ/L ≥ 1, which is the domain of interest for most

applications of absorbing potentials [51]. Despite these limitations, potentials optimized

in the semiclassical limit will be utilized as–is, with the assumption that general trends in

absorbing efficiency are transferrable. This approximation is found to be sufficient, provided

that the numerical parameters defining the potential are adjusted at runtime.

A further consideration is related to the specific application of a given potential within

a simulation. In the first case, a complex potential may be located at the boundary of the

simulation cell to absorb particles leaving the system (Fig. 1). Such a potential should

switch on smoothly outside of the interaction region and attain larger values as the distance

from this region increases. A smooth profile is essential to minimize reflections, as any

discontinuous step will be reflection generating [52, 53]. While satisfied by simple cases such

as complex polynomials, a particularly efficacious attenuator is the potential VA,edge(w) =

−iEminf(w), with

f(w) =

(

1− 16

c3

)

w − 1

c2

(

1− 17

c3

)

w3 + 4

(

1

(c− w)2
− 1

(c+ w)2

)

(9)

where the variable w = 2δkmin(x − xi) has been introduced. In this case, xi marks the

incoming boundary of the potential, and xf corresponds to the edge of the simulation cell,

Emin is the lowest energy of interest for an incident particle, and δkmin =
√

2mEmin/~2 is
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the corresponding wavevector. In order that the potential become singular as x −→ xf , it

is necessary to set δkmin = c/2L, where L = (xf − xi) is the length of the potential [57].

This particular functional form was constructed as the solution of a semiclassical differential

equation derived for plane wave scattering from a complex potential. The sum of reflection

and transmission coefficients |R|2+ |T |2 was minimized as a constraint during construction,

thereby ensuring optimal absorption. Furthermore, the divergent growth as x −→ xf ensures

complete attenuation before the cell boundary is reached (Fig. 2A).

While the aforementioned potential is ideal for boundary attenuation, it may also become

necessary to attenuate the wavefunction within the interaction region (Fig. 1). Such a

potential must be symmetric to ensure isotropic scattering from each side and bidirectionally

smooth to minimize reflections. The simplest such choice is a Gaussian function

VA,int(x) = −iV0e−(x−x0)2/2α2

(10)

where α2 delimits the spread of the Gaussian. Since the spatial extent of this potential

is infinite, it must be defined on a piecewise subdomain |x − x0| ≤ L/2, where α and

L are chosen so that the Gaussian becomes sufficiently small at x = x0 ± L/2 (Fig. 2B).

Taken together, these two functional forms comprise a sufficient armamentarium of absorbing

potentials to handle any scenario that may be encountered in a routine transport simulation.

As a final note, if necessary and irrespective of the application, a negative real part may

always be added to decrease the deBroglie wavelength of the incident particle and enhance

absorption.

D. PT –Symmetric Generating Potentials

Just as a negative imaginary potential attenuates wavefunction norm, a positive imagi-

nary potential will increase the wavefunction norm. Consider a simple experiment in which

a Gaussian wavepacket of unit norm 〈ψ(t2)|ψ(t2)〉 = 1 is incident on a potential of the form

V (x) =







iV0x
n 0 ≤ x ≤ L

0 Otherwise.
(11)

at t = t1, and emerges from the potential later at time t = t2. During transmission, the

norm of the packet will have been increased in magnitude, however, the shape of the packet
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will be unchanged (Fig. 3). If an additional unit of norm is added to the packet so that

〈ψ(t2)|ψ(t2)〉 = 2, this may be interpreted as the addition of a second particle to the system.

Nonetheless, this scenario is unphysical as the particles coincide spatially and copropagate

under time evolution. To avoid such complications, the use of these potentials in transport

calculations requires systematic system and bias dependent tuning [16, 19].

A more suitable option is provided through PT –symmetric potentials possessing anisotropic

transmission resonances (ATR), also known as ‘unidirectional invisibility.’ Such potentials

were first theoretically investigated in the context of optical heterostuctures and Bragg

gratings characterized by alternating gain / loss regions [47], with subsequent experimental

realization in a temporal optical lattice [58]. At the spontaneous PT –symmetry breaking

point, these systems permit near–perfect transmission of a wave incident from either side

while simultaneously reflecting waves at one boundary and being reflectionless at the other.

This anisotropy is a manifestation of the generalized unitarity condition satisfied by PT –

symmetric potentials [59]. Furthermore, the reflecting side of such an optical structure may

exhibit enhanced gain; that is, the reflected wave may have an amplitude greater than that

of the incident wave. This phenomena has direct implications for matter–wave scattering,

as the paraxial approximation to the equation of motion for propagation of electromagnetic

radiation E(x) in a medium is formally equivalent to the Schrödinger equation. In the case

of an optical heterostructure, the variation in the index of refraction n occurs longitudinal

to the incident wave, and this assumes the form of a Helmholtz equation

∂2E(x)

∂x2
+ k2

(

n

n0

)2

E(x) = 0 (12)

where the wavevector k = n0ω/c, the index of refraction of the surrounding medium is n0, c

is the speed of light in vacuum, and ω is the angular frequency of the wave. Introducing the

convention that (n/n0)
2 = (1+2VATR(x)) establishes a formal connection to the Schrödinger

equation and the quantum case. To mimic the aforementioned heterostructures assume that

the complex potential, and hence index of refraction, acts over a range 0 ≤ x ≤ L and has

the functional form

VATR(z) = VA cos(2βx) + iVB sin(2βx) (13)

= V0e
2iβx (14)
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where VA = VB = V0 is assumed in the second line and β = π/Λ for a lattice of spatial

periodicity Λ. It is clear that this potential satisfies the condition VATR(x) = V ∗
ATR(−x) as

required for PT –symmetry. Note that the choice VA = VB places the system at the critical

point for PT –symmetry breaking, with a real energy spectrum retained for VB/VA ≤ 1.

This ratio likewise controls the left/right–reflection asymmetry. Within the coupled–mode

approximation [47], the transmission coefficient is found to vanish for wavevectors with

δ = β − k = 0, as does the reflection coefficient for left–incident (right–incident) plane

waves. Conversely, the reflection coefficient for right–incident (left–incident) plane waves

grows as L2(kVA)
2. Note that, unlike the Schrödinger equation, the “potential” appearing

in the Helmholtz equation is energy dependent through the k terms. For shallow gratings

this dependence is negligible and hence the equivalence is exact [60].

The aforementioned analysis of invisibility is nonetheless performed in an approximate

regime. A exact solution of the this Schrödinger equation at the PT –symmetry breaking

point

∂2ψ(x, t)

∂x2
+

2m

~

(

E − V̂ATR(x)
)

ψ(x, t) = 0 (15)

with V̂ATR(x) = V0 [cos(2βx) + i sin(2βx)] for 0 < x < L may be obtained. Performing a

change of variables to y = (Λ
√
V0/π) exp[iπx/Λ], the Schrödinger equation becomes

y2
d2ψ

dy2
+ y

dψ

dy
− (y2 + ν2)ψ = 0 (16)

where ν = kΛ/π, and the convention that ~ = 2m = 1 has been adopted for convenience of

notation. In this case k is the wavevector associated with the momentum of the quantum

particle through p = ~k. This is a Bessel equation with solutions ψk(x) = Iν(y) and

ψ−k(x) = I−ν(y) given in terms of the modified Bessel functions of the first kind. These

functions remain linearly independent provided that kΛ/π is not an integer [61–63]. It is

significant to note that these solutions are not orthogonal in the conventional sense, however,

they are orthogonal under the PT –symmetric inner product. At exceptional points where

ν = n ∈ N, there exists a spectral singularity [45, 64], whereupon ψ±k(x) become degenerate.

To resolve this situation, the solutions must be extended by the addition of Jordan associated

functions [61]. This general solution will be neglected herein, with the approximation of

solutions at all points by the Bessel functions in subsequent calculations. As before, β = π/Λ
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with the provision that L = NΛ with N ∈ N, corresponding to a PT –symmetric crystal N

cells in length.

Analysis of these solutions indicates that invisibility is not exact for δ = β − k 6= 0, with

a nontrivial breakdown of this assumption particularly apparent beyond a critical length

Lc = (2π3/V 2
0 Λ

3) [62]. This observation is consistent with the modified unitarity condition

for PT –symmetric potentials, T − 1 = ±√
RLRR, which bounds the deviation from ideal

behavior [59]. Numerical results further indicate that the transmission (T ) and unenhanced

reflection coefficients (RL) oscillate rapidly as a function of δ, however, the amplitude of this

oscillation remains small. The enhanced reflection coefficient RR, on the other hand, affords

a strong enhancement only within a narrow window of values about δ = 0 [63].

A unique phenomena is observed when a Gaussian wavepacket is incident on an ATR

potential (Fig. 4). Assuming the packet is incident on the generating interface of the ATR,

the reflected wave eventually saturates in amplitude, emerging with an extended, flattened

peak. This extrusion process occurs during the entire period for which the maximum of the

incident packet remains under the barrier. This phenomena was first observed in numerical

simulations and perturbative calculations [64] and later rationalized in terms of the Jordan–

block structure of the eigenfunction space for the potential [61]. Physically, this saturation

occurs due to the presence of spectral singularities, with the resultant spectral broadening

causing a saturation in the secular growth of scattered waves. While a linear scaling behavior

would be expected at this point, the excited Jordan associated functions grow linearly to

precisely compensate the decrease in contribution from the nondegenerate states, leading to

the stalled growth. Formally, this corresponds to an incident Gaussian packet being reflected

as a sum of error functions [65] and thus the incident pulse is lengthened into an extended

packet of peak width ∼ L upon reflection [63].

E. Wavepacket Propagation and Transmission / Reflection Coefficients

Consider the barrier penetration problem depicted in (Fig. 1), where the potential region

V̂PT consists of a PT –symmetric medium that permits anisotropic transmission resonances

as per Eq. (13). In a first order approach, the wavefunctions in the left and right regions

may be expanded in terms of plane–wave eigenstates
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ψ(x) =







ψL,k(x) =
1√
2π
(ALe

ikx +BLe
−ikx) x ≤ 0

ψR,k(x) =
1√
2π
(ARe

ik(x−L) +BRe
−ik(x−L)) x ≥ L

(17)

The wavefunctions on either side of the scattering region are linked through the transfer

matrix M̂(k) with components





AR

BR



 =





M11(k) M12(k)

M21(k) M22(k)









AL

BL



 (18)

from which the transmission amplitude tR = 1/M22 as well as left rL = −M21/M22 and

right rR =M12/M22 reflection amplitudes are readily obtained. Evaluating the Bessel func-

tion solutions for this potential at the boundaries, the transfer matrix M(k) is constructed

explicitly [62]:

M11(k) = cos(kL) + i
Λ sin(kL)

2k sin(πν)

(

k2Q1Q2 − V0D1D2

)

(19)

M12(k) = −i Λ sin(kL)

2k sin(πν)

(

V0D1D2 + k2Q1Q2 + k
√

V0 (D1Q2 +D2Q1)
)

(20)

M21(k) = i
Λ sin(kL)

2k sin(πν)

(

V0D1D2 + k2Q1Q2 − k
√

V0 (D1Q2 +D2Q1)
)

(21)

M22(k) = cos(kL)− i
Λ sin(kL)

2k sin(πν)

(

k2Q1Q2 − V0D1D2

)

(22)

where the notation

Q1 = Iν(∆), D1 = ∂xIν(∆)

Q2 = I−ν(∆), D2 = ∂xI−ν(∆)
(23)

has been introduced with ∆ = Λ
√
V0/π and 2m = 1. Similar solutions for other masses may

be recovered through the substitution k 7→ k/
√
2m and consistent rescaling.

These relations afford the reflection and transmission coefficients for plane–wave scatter-

ing through the PT –symmetric media. Nonetheless, the corresponding result for wavepacket

transmission will differ substantially, especially when the packet width is comparable to the

extent of the PT –symmetric region. To derive the corresponding coefficients for a finite–

width packet, create an initial envelope of width σ2 and wavevector k0 centered at x = a:

φ(x, 0) =
1

(πσ2)1/4
eik0(x−a)e−(x−a)2/2σ2

, (24)
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from which the momentum–space representation may be obtained via a Fourier transform

φ(k, 0) =
1√
2π

∫ ∞

−∞
φ(x, 0)e−ikx dx (25)

=

(

σ2

π

)1/4

e(k−k0)2σ2/2e−ika. (26)

Using this expression, the wavefunction may be synthesized in terms of the plane wave

eigenfunctions ψk(x)

ψ(x, t) =

∫

ψk(x)φ(k, 0)e
−iE(k)t dk, (27)

where E(k) = k2 is the energy of a given plane–wave component. For illustrative purposes,

assume that ψk(x) = C(k)(2π)−1/2eikx for a rightmoving packet. Expanding Eq. (27)

explicitly affords

ψ(x, t) =
1√
2π

(

σ2

π

)1/4 ∫

e(k−k0)2σ2/2e−ikae−ik2tC(k)eikx dk (28)

=

∫
(

1√
2π
eikx

)

φ′(k, t) dk, (29)

where in the second line ψ(x, t) was rewritten in terms of the Fourier transform of a func-

tion φ′(k, t) = C(k) exp[−ik2t]φ(k, 0) comprising a Gaussian envelope with amplitude C(k)

inherited from the plane wave. Using this representation, the norm of the packet is simply

N = ||φ′(k, t)||2 =
∫

[φ′(k, t)]∗φ′(k, t) dk (30)

=

(

σ2

π

)1/2 ∫

e(k−k0)2σ2 |C(k)|2 dk. (31)

Assuming unit incident norm, the norm of the transmitted or reflected packet equates to the

transmission or reflection amplitude, respectively. To compute this explicitly, let a packet

be incident on the right side of the PT symmetric region (BR = 1 and AL = 0) so that the

amplitude of the reflected wave is AR = M12(k)/M22(k). Then the reflection coefficient for

the wave on the right side is given by

RR =

(

σ2

π

)1/2 ∫

e(k−k0)2σ2

∣

∣

∣

∣

M12(k)

M22(k)

∣

∣

∣

∣

2

dk, (32)
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and, with BR = 1/M22(k), we have the transmission coefficient

TR =

(

σ2

π

)1/2 ∫

e(k−k0)2σ2

∣

∣

∣

∣

1

M22(−k)

∣

∣

∣

∣

2

dk, (33)

with the sign change due to the opposite motion of the plane wave, though this is strictly

formal since |M22(k)| is an even function of k for the given potential. Note that these

integrals are well defined with a removable singularity at k = 0. The accuracy of this

framework requires that the barrier width and phase factor are suitably chosen so that the

packet does not spread appreciably on the traversal timescale. One caveat of this analysis

is that the reflected packet must maintain a Gaussian profile; a condition which is only

satisfied for a certain range of parameters due to the saturation of anisotropic transmission

resonances.

F. Potential Structure

Having developed a toolkit containing both absorbing and generating potentials, these

components may be assembled to afford an effective simulation method for open systems.

The most intuitive construction entails placing an edge absorbing potential V̂A,edge at the

boundary of the simulation cell, which is assumed to lie within an infinite square well, and

an ATR generating potential V̂ATR near the other boundary (Fig. 5). The generating face of

the absorbing potential is oriented toward the scattering region, so that any particle incident

on this region will transmit and be compensated by an additional reflected particle. The

transmitted particle will ultimately reflect off the square well boundary at xmin and reenter

the system. Within the center of the cell these wavepackets encounter a scattering region

in which the particles interact with static potentials or through many–body interactions.

After traversing this region, the particle reaches V̂A,edge, where it is completely attenuated.

This establishes a net current from the generating region to the absorbing region. Note that

neither the generating or attenuating potentials overlap with the scattering region, ensuring

that the transport processes are unperturbed.

In this scenario, the absorbing potential V̂A,edge is chosen so that any packet entering this

region is completely attenuated before reaching the edge of the square well. If the potential

is sufficiently strong, reflections and transmission will be minimized, thereby eliminating a

source of artifacts. The definition of the ATR potential is slightly more complicated. Due
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to the saturable reflections inherent in ATR potentials, the generated packet will only be

Gaussian (and not an extended Gaussian), if the width of the incident wavepacket is greater

than the region LATR = |g1− g2| over which V̂ATR is defined. Furthermore, the width of this

region and the distance Ld = |xmin−g1| determine the interpacket spacing or the delay time

2(Ld + LATR)/vg between packet arrivals. Note that, by construction, this method requires

the density from within the scattering region to impinge on the generating potential in order

to afford a positive flux of norm. Thus, the bias across the simulation must be suitably small

so that backscattered packets continue to reach V̂ATR. For steady–state current (no time–

dependent potentials or charge accumulation) we require that that the total norm within

the cell remain constant at all times, and hence 〈∂NG/∂t〉 = −〈∂NA/∂t〉, where NG is the

generated norm and NA is the attenuated norm for the system.

A second scenario may be envisioned, in which a generating potential consistently adds a

stream of packets with fixed delay spacing to the system. In such a configuration, the outgo-

ing particles are once again attenuated by a potential at the cell boundary V̂A,edge, however, a

second absorbing potential V̂A,1 and generating potential V̂ATR are utilized to create a pulse

generator (Fig. 6). Specifically, a wavepacket ψG(x, t) of norm 〈ψG(x, t)|ψG(x, t)〉 = Ng

with Ng > 1 is placed between the ATR and the cell boundary, with the generating face

of the ATR facing toward the cell edge. During simulation, the packet ψG(x, t) impinges

on the reflecting surface of the ATR causing an identical packet to be reflected into the

delay region accompanied by transmission of the incident packet toward the scattering re-

gion. The transmitted packet then passes through V̂A,1, which attenuates the particle to

unit norm before it interacts with the scatterers. In the same manner, V̂A,1 attenuates any

packets passing from this interaction region toward the pulse generator, isolating it from the

simulation. The new packet generated in the delay region reflects off the cell boundary at

xmin and propagates back toward the generating surface at g1 to begin this process anew.

The use of pulse trains generated in this manner is particularly appealing for situations

where non–equilibrium charge accumulation, 〈∂NG/∂t〉 6= −〈∂NA/∂t〉 is desirable such as

in capacitive charging.

In the packet generator configuration, the pulse generation delay time is given by 2Ld/vg,

and hence is a tunable parameter. The norm Ng of the generating packet must be adjusted

for the given absorbing potential V̂A,1, as the attenuation rate is a function of both the

potential itself and the norm of the incident wavefunction (Eq. 3). Note that the attenuation
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rate is larger for a packet with a larger norm, and thus the rate of absorption for a unit

packet incident from the scattering region will be less than that for a packet incident from the

packet generator. The applicable timescale for this method is likewise limited by the scheme

utilized to maintain the wavepacket(s) in the generating region, as they will ultimately

broaden under time evolution in the absence of measurement.

In this scheme, a complication regarding transferability to different biases results from the

use of generating potentials. At a finite bias voltage V the energy E0 of a given particle will

undergo a shift to E = E0+eV . This corresponds to a new wavevector k =
√

2m(E0 + eV ),

and hence a new group velocity for the packet vg =
√

2m(E0 + eV )/m. Thus, the absorbing

potential parameters need to be reoptimized at each finite bias, or the bias range chosen to

be sufficiently narrow, to ensure the addition of unit norm packets with minimal reflection.

This is less of a concern for the boundary absorbing potential, as the strength and width

may be initially chosen so as to attenuate any incident packets for a range of energies

E0 ± eV . Nonetheless, the widths of absorbing and generating regions must be altered

for both propagation schemes since the shift in group velocity affects the extent of norm

generation or loss. Specifically, the net norm removed from the system is

NA =

∫ tf

ti

dt
∂NA

∂t
(34)

=

∫ tf

ti

dt 〈ψ(~x, t)|Im(V̂PT )|ψ(~x, t)〉 (35)

=

∫ tf

ti

dt

∫

V
dNxψ∗(~x, t) [Im(VPT (~x))]ψ(~x, t) (36)

such that ∆t = tf − ti = tS = L/vg is the duration for which the attenuating potential acts,

V is the volume of the absorbing region, and N is the dimensionality of the system. The

delay region must likewise be modified to ensure a proper inter–packet delay time. Finally,

an ultimate timescale must be assigned to the stability of these simulations, due to aberrant

accumulation or loss of norm resulting from departures from perfect transmission, reflection,

and generation, as well as from the inevitable wavepacket spread.
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III. NUMERICAL RESULTS

A. Propagation Parameters

Numerical simulations are performed through real–time propagation of an initial wavepacket.

The propagation method, detailed in the Appendix, employs a forward finite difference al-

gorithm to propagate real and imaginary components of the wavefunction. The initial

wavepacket is described by the product of a normalized, unit mass Gaussian centered at x0

and a monochromatic plane wave as

ψ(x, 0) =
1

(πσ2)1/4
e−(x−x0)2/2σ2

eik0(x−x0) (37)

where k0 =
√
2E is the initial wavevector for a particle of energy E and 2σ

√
2 log 2 is the full–

width half maximum spatial extent of the packet. The packet propagates in the direction

of k0 with frequency ω = k2/2 and group velocity vg = ∂ω/∂k = k. The wavepacket is

discretized on a spatial lattice comprising N = 1 × 104 elements and integrated with finite

temporal and spatial steps, ∆t = 1.0× 10−9 and ∆x = 1.0× 10−4 respectively. This ensures

that the lattice spacing is smaller that the phase oscillation length of the packet for a typical

choice of parameters (σ2 = 0.001 and k0 = 500). Arbitrary potentials are defined within

the confines of the lattice, with infinite square–well boundary conditions ensuring that the

wavefunction vanishes at the edges of the cell.

B. ATR Potential Numerics

Scattering from an ATR potential was simulated via real–time propagation of an initial

Gaussian wavepacket (k0 = −500, σ2 = 0.001, x0 = 0.80) incident on an ATR region of

width L = 20Λ = π/25 centered about x = 0.50. The scaling behavior of the reflection and

transmission coefficients exhibits good agreement with analytical calculations, with a few

notable deviations (Fig. 7). In particular, the right (enhanced) reflection coefficient Rright

and the transmission coefficient T are found to be nontrivially smaller than the analytical

result when the ATR potential strength is greater than V0 ∼ 6.0 × 10−3. This corresponds

to a regime for which Rright > 1.0, and hence where the wavefunction norm is doubled.

The discrepancy may arise from the approximation of eigenfunctions within the ATR region
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as modified Bessel functions of the first kind, and thus the neglect of Jordan associated

functions. Additional deviations are due to the spread of the wavepacket during propagation,

as the FWHM no longer corresponds to that defined by σ2 = 0.001 in the initial distribution.

Nonetheless, calculations in which wavepacket propagation was initiated as close as possible

to the ATR region demonstrate that violations of the quasistatic approximation arising from

wavefunction spread do not account for these large discrepancies in the data.

There is a strong dependence of the enhanced reflection coefficient on the incident

wavevector when scattering from a grating with fixed ATR mode wavevector Λ = π/kgrating =

π/500 (Fig. 8). Nonetheless, the reflection coefficient Rright is reduced by a factor of 0.90

for wavevectors k0 = 500 ± 10, corresponding to incident packet energies ranging between

E = E0 ± 5000. Thus, if used as a generating potential in transport calculations, this ATR

configuration would ensure greater than 90.0% generation for bias values of eV = ±5000,

or ∼ 4.0% of the incident packet energy. Such a dispersion is more than suitable for most

transport applications, in which the bias need not exceed a few electron volts.

The enhanced reflection coefficient (Rright) is found to exhibit an initial quadratic depen-

dence on the number of PT –symmetric ATR unit cells, followed by a linear increase at cell

numbers N ≥ 5 (Fig. 9). The transmission coefficient drops below unity for large ATR

crystals, however, the overall magnitude of this effect is rather small (T ∼ 0.989 at N = 30).

For simulation purposes, it is desirable to keep the length of the ATR region smaller than

the width of the Gaussian to prevent extrusion of the generated packet. For σ2 = 0.001,

which represents a rather broad packet, this requires N ≤ 20.

The dependence of transmission properties on σ2 is important for the stability of a packet

generator, yet this is difficult to quantify numerically due to spread of the packet during

real–time propagation. Using the analytical results as a guide, a strong dependence exists

between the enhanced reflection coefficient Rright and the incident packet width (Fig. 10). As

the packet broadens spatially under time evolution, σ2 −→ ∞, the momentum distribution

narrows and Rright asymptotically approaches the value expected for an incident plane wave.

Thus, if a broad initial packet is chosen, there will be little change in the enhanced reflection

coefficient as a function of time, leading to a longer timescale for stable packet generation.

Conversely, if a narrow initial packet is chosen, the enhanced reflection coefficient will vary

substantially between subsequent generation events as σ2 grows, lending inconsistency to

the simulation.
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C. Transport Through A Scattering Region

Calculations employing the ATR generator were performed using broad wavepackets σ2 =

0.01 with large norm N = 8 and an incident wavevector k = 500 corresponding to an

energy of E = 1.25 × 105. The generating wavepacket was situated between the edge of

the simulation cell and an ATR generating potential of width L = 5Λ = π/100. The

potential was numerically optimized to yield V0 = 16049.5, which affords unit generation and

transmission of the incident packet. A Gaussian absorbing potential was situated between

the ATR and the scattering region, and defined over a distance LGau = 0.10 with α2 =

1.0 × 10−4. The magnitude of the absorber was numerically optimized to yield VGau =

520.1, which attenuates an incident N = 8 wavepacket to unit norm. The use of a large

incident packet permits a large Gaussian filter, which reduces the penetration of reflected

wavepackets into the ATR region. Wavepackets were attenuated at the outgoing boundary

of the scattering region using a singular absorbing potential with c = 2.0, kmin = 250, and a

width Latt = 0.250. The scattering region was occupied by a rectangular potential barrier

Lbarrier = 0.095 units in extent and evaluated at a variety of potential strengths Vbarrier to

determine conductance characteristics. All components were enclosed in an infinite square

well measuring 2.0 units in spatial extent (Fig. 6). The spatial integration step was taken

to be ∆x = 2.0× 10−4 in this case.

Calculations performed with Vbarrier = 0 reveal that the norm of the generating and trans-

mitted packets are well maintained, with a deviation of ∼ 10% observed after generation of

twelve packets, corresponding to over 5.0×106 integration timesteps (Fig. 11). This is com-

parable to the divergence expected for the simple first–order integration scheme employed

herein. Accordingly, the only factor that varies substantially between subsequent iterations

aside from this systematic error is the spread of the wavepacket. To ascertain the current

flow through a scattering region, the probability current was averaged over two small spatial

windows, measuring 0.04 units in width, placed on either side of the rectangular barrier and

a bias potential Vbias was added to the incident packet E = Ek0 + Vbias. This configuration

conceptually resembles a conventional four–probe conductivity measurement. The conduc-

tivity G of the scattering region at a given bias eV may be obtained as a function of the

transmission coefficient T :
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G(eV ) =
e2

π~
T (eV ) =

e2

π~

|JT (eV )|
|JI(eV )| (38)

where JI is the incident wavepacket current and JT is the transmitted wavepacket current

[66]. The spread of the wavepacket in the ATR region has a demonstrable effect on successive

transmitted packets as measured at zero applied bias, which manifests through a decrease

in the peak current density (Fig. 12). Nonetheless, the conductance values remain remark-

ably stable even as the barrier strength is increased, with the first four transmission events

affording nearly identical conductance determinations (Table I). When including the full

set of nine transmission events the calculated conductance varies by only 6.4% of the value

calculated from the first event. As a point of reference, the conductance was analytically

determined using the transmission coefficient for a plane wave through a square barrier

T =

(

1 +
V 2
barrier sin

2(kLbarrier)

4E(E − V )

)−1

(39)

in conjunction with Eq. (33). In this context, Vbarrier is the barrier height and Lbarrier the

barrier width, and k =
√
2E is the incident wavevector. The analytically–determined values

agree closely with those obtained numerically for low barriers, with a slight departure from

analytical results in the high–barrier case. This discrepancy likely arises due to deviation of

the generated packet shape from a proper Gaussian, made more apparent due to reflection

from a stronger potential. In either case, the magnitude of this deviation never exceeds 10%

of the analytical value affording an accuracy beyond other numerical schemes for conductance

determination (Table I).

The ATR packet generating scheme employed herein is essentially a response formalism,

in which the reaction of a system to a probe packet is measured. Accordingly, there exists

a nonzero current at zero applied bias, which comprises the reference state for such deter-

minations. Physically, the zero bias state in a material is associated with zero net current,

and hence an isotropic movement of charge carriers in the system. The formalism herein

corresponds to the short time limit, in which a single carrier has passed in a given direc-

tion but before an additional compensatory carrier may pass in the opposite direction. To

demonstrate the scaling of transport with applied bias, it is more instructive to consider the

relative conductance versus bias than the raw transmitted current. The relative conductance

GRel(Vbias) is defined as
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GRel(Vbias) =
G(Vbias)− G(0)
G0(Vbias)− G0(0)

(40)

=

(

JT (Vbias)

JI(Vbias)
− JT (0)

JI(0)

)/(

J0,T (Vbias)

J0,I(Vbias)
− J0,T (0)

J0,I(0)

)

(41)

where a subscript of zero indicates the current or conductance calculated in the absence of

a barrier. The normalization of the transmitted current by the incident current is required

for comparative purposes between calculations with different barriers, as the presence of

the barrier itself introduces a boundary condition which may alter the incident flux. Fur-

thermore, as all determinations are taken with respect to a probe packet, the conductance

must be measured relative to that observed in the absence of a barrier to provide a refer-

ence point for free propagation and accommodate variation in peak–to–peak current due

to packet spread. The result of this analysis is in some sense analogous to the I–V curves

typically presented in the context of experimental transport measurements. The scaling

of the relative conductance GRel(V ) exhibits the expected correlation with increasing bias

and increasing barrier strength (Fig. 13). Notably, the increase in barrier strength affords

a greater slope for dGRel(V )/dVbias, consistent with the expected scaling for the transmis-

sion coefficient through an increasingly strong rectangular barrier. It is notable that the

formalism herein affords the conductance at both zero and finite bias with no additional

computational cost.

IV. COMPUTATIONAL LIMITATIONS OF COMPLEX POTENTIALS IN

MANY–BODY SYSTEMS

While evolution under the action of VPT mimics a multiparticle state, this does not

embody all the requisite properties for a true many–body configuration. To see this, assume

a simple system with a wavefunction given by the product ansatz |Ψ(t)〉 = |ψ0(t)〉⊗ |ψ1(t)〉,
where |Ψ(t)〉 ∈ H(2) = H⊗H is a two–particle Hilbert space. For now we ignore the effects

of symmeterization, as this elementary form is sufficient for illustrative purposes. The full

Hamiltonian for this system is

Ĥ = Ĥ0 ⊗ Ĥ0 + V̂A/G ⊗ I+ V̂2p (42)
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where Ĥ0 is the Hamiltonian for an isolated particle, V̂A/G is the complex potential term

acting only on |ψ0(t)〉, and V̂2p is a two–particle interaction defined by

V̂2p =
∑

ij

(|ψi〉 ⊗ |ψj〉)V ij
2p (〈ψi| ⊗ 〈ψj |) (43)

=
∑

ij

(|ψi〉 ⊗ |ψj〉)U ij
2p(δij − 1)(〈ψi| ⊗ 〈ψj|) (44)

(45)

which approximates the Hartree–like term in an electronic structure method. Assume once

again that V̂A/G may be turned on or off arbitrarily, or asymptotically localized to a region

of space, so that the interaction will apply to |ψ0(t)〉 as it traverses this region. The latter

scenario is representative of the complex absorbing and generating potentials utilized herein.

To further simplify discussion, take V̂A/G to be entirely imaginary, as the real part of this

potential may be absorbed into Ĥ0 as a single–particle potential term. The time evolution

operator decomposes as a tensor product in this formalism

Û = (Û0 ⊗ Û0)(ÛA/G ⊗ I) (46)

where Û0(t2, t1) = exp[−i(Ĥ0+ V̂2p)(t2−t1)/~] is the evolution in the absence of the complex

potential and ÛA/G = exp[−iV̂A/G(t2 − t1)/~] is the nonunitary evolution afforded by the

Hermicity breaking term.

Assume that |Ψ(t)〉 evolves in the absence of V̂A/G up to a time t1 after which |ψ0(t1)〉 en-
ters the interaction region. Furthermore, let the interaction with V̂A/G |ψ0(t1)〉 = iΓ |ψ0(t1)〉
end at t2 sometime later. During this propagation, the wavefunction is carried to the fi-

nal state |Ψ(t2)〉 = |ψ′
0(t2)〉 ⊗ |ψ1(t2)〉, where |ψ′

0(t2)〉 = exp[Γ(t2 − t1)/~] |ψ0(t2)〉, so that

|ψ0(t2)〉 corresponds to time evolution under the Hermitian part of the Hamiltonian. Defin-

ing α = exp[2Γ(t2 − t1)/~], it is clear that 0 ≤ α ≤ 1 for an attenuating potential V̂A and

1 ≤ α < ∞ for a generating potential V̂G. Focusing on the latter case, it is desirable to

choose V̂G such that α ∈ N, thereby ensuring that norm generation occurs in units of a single

particle. If the norm of |ψ′
0(t2)〉 is enhanced to correspond to a two–particle state (α = 2),

then the interaction with |ψ1(t2)〉 are scaled accordingly as

〈Ψ(t2)|V̂2p|Ψ(t2)〉 = 2U01
2p (47)
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which corresponds to the doubling of the potential term due to the interaction of a single

particle in |ψ1(t2)〉 with the two ‘particles’ in |ψ′
0(t2)〉. Nonetheless, this result is not physi-

cally meaningful, as the system is now analogous to a three–particle problem in which two

of the particles interact with the third particle, but not with each other. The origin of this

fault arises from the nature of the generating potential itself, which superposes additional

norm onto an existing wavefunction instead adding an additional state vector as required

for a true multiparticle configuration. Since the net effect of the complex potential is only

to elongate a state vector and not to create a new state, the presence of a nonzero coupling

term for the new particle and its parent can only be achieved by artificially introducing a

self–interaction term in the Hamiltonian. For any conventional two–body potential, how-

ever, the vanishing diagonal terms in equation (43) will prevent these states from acting as

a true multiparticle configuration. These observations collectively impose strong limitations

on the computational scope of any calculation that employs complex generating potentials.

Specifically, the use of generating potentials excludes any wavefunction based method, or

any method that includes Hartree–Fock exchange, from consideration in this context.

These limitations may be circumvented through the use of of theories that are formulated

in terms of the norm of constituent states, such as DFT. The DFT Hamiltonian is defined

solely in terms of the single–particle density ρ(x) such that

ρ(~x) = N

∫

d3~x2 . . . d
3~xN |Ψ0(~x, ~x2, . . . , ~xN)|2 (48)

where Ψ0(~x, ~x2, . . . , ~xN ) is the N–particle ground–state wavefunction characterizing the sys-

tem. In this scheme, terms that are pathological for generating potential–modified wave

functions, such as the Hartree interaction

VHartree[ρ(x)] =
e2

2

∫ ∫

d3~x d3~x′
ρ(~x)ρ(~x′)

||~x− ~x′|| (49)

cease to be problematic as there is no explicit dependence on single–particle state vectors.

The role of an absorbing or generating potential is then to modulate ρ(x) in a manner that

adds density to or subtracts density from the system. Note that these considerations apply

only to pure DFT. Hybrid methods, which incorporate a degree of exact exchange from

Hartree–Fock theory, will suffer from the same failures as full wavefunction methods.

The results for the propagation of a single wavepacket considered in this manuscript are
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directly applicable to DFT by construction. In the single–particle limit, the particle density

from DFT reduces to ρ(x) = ψ∗(x)ψ(x), and thus the rescaling induced by the absorbing or

generating potential transforms the density in a manner identical to the wavefunction norm

discussed herein. Furthermore, the choice of Gaussian wavepackets underscores the corre-

spondence with DFT, in which Gaussian functions are a popular functional form in localized

and hybrid localized/delocalized basis set schemes. Thus, the single–packet simulations are

analogous to a valence electron traversing the system boundaries in the limit of vanishing

coupling to the other electrons and ions.

V. CONCLUSIONS

The computational methods developed herein outline a path through which PT –symmetric

potentials may be employed to afford open boundary conditions in the context of RT–

TTDFT transport calculations. Existing methods have utilized absorbing boundary con-

ditions to attenuate wavefunction norm at simulation boundaries, however, this does not

permit the complimentary positive probability density flux required for a physically real-

istic system. A judicious assembly of ATR regions permits construction of a wavepacket

pulse generator that can inject a train of probe wavepackets into the scattering region.

By measuring the ratio of outgoing to incoming current, the transmission coefficient and

hence conductance are calculated as those of a single conducting channel [66]. As an an-

cillary benefit, the zero bias and finite bias conductivity may be readily determined in the

presence of time dependent processes including, but not limited to, the oscillatory electric

fields associated with photoexcitation. This transport formalism is demonstrated to ex-

hibit excellent agreement with analytical results, paralleling the recent success using similar

PT –symmetric methods to describe open quantum dots [18, 21], dipolar Bose–Einstein

condensates in open double–well potentials [20], and the topologically trivial and nontrivial

phases of the Su–Schrieffer–Heeger model with open chain boundaries [22]. A particular

property of PT –symmetric Hamiltonians prevents these methods from generating a true

many–body wavefunction and hence this formalism is not applicable to Hartree–Fock or

explicit multireference methods. Nonetheless, these limitations do not apply to modulation

of the probability density, so that PT –symmetric potential terms may be employed without

restriction in any DFT–based formalism.
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This method is numerically robust, exhibiting stable transmission characteristics for up

to nine transfer events in a simple model system. This exceeds the timescale accessible

through prior real–time propagation calculations by several orders of magnitude, in which

only a fraction of a carrier may be transferred before the simulation becomes unstable due to

carrier depletion [10]. Furthermore, the temporal upper limit for RT–TDDFT calculations

in actual materials is limited by the highest phonon frequency of the material. On this

timescale, the lattice undergoes spatial translation, electron–phonon coupling terms become

nontrivial, and the adiabatic approximation ceases to hold. This corresponds to only a

few carrier transfer events. Thus, the framework herein affords boundary conditions for

RT–TDDFT throughout its range of physical applicability.

Nonequilibrium Green’s function methods currently comprise the mainstay for explicit

quantum transport calculations, though time–dependent phenomena are inaccessible in this

context due to their static nature. Conductances calculated in this scheme likewise de-

viate from experimentally determined values by one to two orders of magnitude, limiting

this method to use as a qualitative tool that indicates physical mechanism through scaling

behavior. RT–TDDFT ameliorates the restrictions imposed by the quasi–static approxima-

tion, while affording conductance values within 10% of analytical results for a model system.

Thus the conjunction of RT–TDDFT with ATR potentials is a firm step toward the devel-

opment of broadly applicable and quantitatively accurate electronic structure methods for

quantum transport in real materials.
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VII. APPENDIX: WAVEPACKET PROPAGATION

The behavior of a wavepacket in the presence of a complex potential is readily determined

through a real–time propagation scheme. Writing the packet wavefunction and complex

potentials in terms of their real and imaginary parts, ψ(x, t) = Re[ψ(x, t)] + iIm[ψ(x, t)]

and V (x) = Re[V (x)] + iIm[V (x)] [67], respectively, and substituting these into the single–

particle Schrödinger equation (with ~ = m = 1)

i
∂ψ(x, t)

∂t
= −1

2

∂2ψ(x, t)

∂x2
+ V̂ (x)ψ(x, t), (50)

a coupled pair of equations for wavepacket evolution is obtained after equating real and

imaginary parts:

∂

∂t
[Im[ψ(x, t)]] =

1

2

∂2

∂x2
[Re[ψ(x, t)]] + (Im[V (x)])(Im[ψ(x, t)]) (51)

−(Re[V (x)])(Re[ψ(x, t)]) (52)

∂

∂t
[Re[ψ(x, t)]] = −1

2

∂2

∂x2
[Im[ψ(x, t)]] + (Im[V (x)])(Re[ψ(x, t)]) (53)

+(Re[V (x)])(Im[ψ(x, t)]). (54)

For the purposes of numerical evaluation, the derivatives are evaluated in a finite centered–

difference approximation. Within such a scheme, the first derivative of the wavefunction is

given by

∂

∂t
ψ(x, t) ≈ ψ(x, t +∆t)− ψ(x, t−∆t)

2∆t
(55)

while the second derivative is

∂2

∂x2
ψ(x, t) ≈ ψ(x+∆x, t)− 2ψ(x, t) + ψ(x−∆x, t)

(∆x)2
. (56)

Given these approximations, the imaginary propagation equation becomes

[Imψ(x, t +∆t)] = [Imψ(x, t)] + s(Re [ψ(x+∆x, t)]− 2[Reψ(x, t)]+

[Reψ(x−∆x, t)]) + (∆t)([Im V (x)][Imψ(x, t)]− [ReV (x)][Reψ(x, t)]) (57)
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where s = ∆t/2(∆x)2 has been introduced as the parameter controlling integration. The

real term is evaluated similarly

[Reψ(x, t+∆t)] = [Reψ(x, t)]− s(Im [ψ(x+∆x, t)]− 2[Imψ(x, t)]+

[Imψ(x−∆x, t)]) + (∆t)([ReV (x)][Imψ(x, t)]

+ [ImV (x)][Reψ(x, t)]. (58)
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FIG. 1. Contexts for the use of complex absorbing potentials in an infinite square well. The

potential VA,edge(x) is employed to absorb wavepackets impinging on the simulation cell boundary to

mimic the effect of a particle leaving an open system. Conversely, the VA,int(x) absorbs wavefunction

norm incident from either side of the potential, with a net effect of “disconnecting” two regions of

the simulation.
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FIG. 2. Wavepacket attenuation for two distinct classes of complex potentials, as demonstrated

through numerical wavepacket propagation. (A) Propagation of a Gaussian wavepacket with k0 =

500, σ2 = 0.001, and x0 = 0.5 (blue) into a potential VA,edge(x) (orange) with singularity at the

cell boundary. The potential switches on at x = 0.75 with a width L = 0.25 and a strength of

Emin = 4.0. Each packet envelope corresponds to a configuration advanced by ∆t = 2.5 × 104

units. (B) Propagation of a right–moving Gaussian wavepacket k0,R = 500 and x0,R = 0.2 (blue)

alongside a left–moving Gaussian wavepacket k0,L = −k0,R and x0,R = 0.8 (yellow) into a Gaussian

absorbing potential VA,int(x) (orange). The potential is applied for all x ∈ [0.4, 0.6] with a width

α2 = 1.0× 10−4 and strength V0 = 5.0× 103. Each packet envelope corresponds to a configuration

advanced by ∆t = 2.5 × 104 units, with an additional configuration shown at t = 1.35 × 105 units

for the rightmoving packet. Packets are propagated using default propagation parameters.
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FIG. 3. Enhancement of packet norm by a complex generating potential of the form V̂G,Gau =

iV0e
−(x−x0)2/2α. The incident packet has a wavevector k0 = 500 and width σ2 = 0.001 with

the envelope initially centered at x0 = 0.2, while the potential parameters are V0 = 250 and

α2 = 1.0 × 10−4, with a center at x0 = 0.5. In the course of propagation, the norm of the packet

increases so that 〈ψ(x, tf )|ψ(x, tf )〉 = 2.72. Wavepackets are plotted at time steps ranging from

ti = 0 to tf = 2.1 × 105 in units of ∆t = 3.0× 104 using default parameters.
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FIG. 4. Interaction of a wavepacket with a complex potential V̂ATR(x) exhibiting anisotropic

transmission resonances on a scale broader than the incident wavepacket. Note that the reflected,

generated packet (purple) is enhanced in width. The incident packet (yellow) has a wavevector

k0 = 500 and width σ2 = 0.001 with the envelope initially centered at x0 = 0.2, while the potential

strength is V0 = 6500, the unit cell spacing is Λ = 6.28 × 10−3 = π/k, and the total width is

L = 20Λ with a center at x0 = 0.5. Wavepackets are plotted at time steps of ti = 0, t = 1.5× 105,

and t = 2.5× 105. Wavepacket propagation is performed using default parameters.
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FIG. 5. Cross–sectional geometry for wavepacket propagation with boundary wavepacket gener-

ation. The interaction region with scattering potential V̂scatter is situated between an absorbing

potential V̂A,edge and a generating potential V̂ATR. The edge absorbing potential V̂A,edge completely

attenuates any wavepacket that enters this region, while the PT –symmetric ATR potential V̂ATR

has a generating surface oriented toward the scattering region. Any wavepacket that crosses the

ATR edge causes a new counter–propagating packet to be reflected, while passing through the

potential and reflecting off the wall of the infinite square well.
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FIG. 6. Cross–sectional geometry for wavepacket propagation from an ATR pulse train generator.

The interaction region with scattering potential V̂scatter is situated between an absorbing potential

V̂A,edge and the pulse generator comprising an ATR potential V̂ATR, a Gaussian absorbing potential

V̂A,1 and the seed wavepacket ψG(x, t). The reflecting surface of the ATR potential faces ψG(x, t),

ensuring a packet will remain in the generator while affording a pulse stream toward the interaction

region.
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FIG. 7. Analytical (solid lines) and simulated (points) transmission T , standard reflection Rleft and

enhanced reflection Rright coefficients for passage of a wavepacket (k0 = 500, σ2 = 0.001) through

an ATR potential region (LATR = 20Λ) as a function of the potential strength V0.
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Rright as a function of incident wavevector k0 for a Gaussian wavepacket (σ2 = 0.01) impinging on

an ATR potential (V0 = 5500, LATR = 20Λ).
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enhanced reflection Rright coefficients for passage of a wavepacket (k0 = 500, σ2 = 0.001) through

an ATR potential region of variable length L = NΛ where Λ = π/500.
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cients for passage of a Gaussian wavepacket (k0 = 500) through an ATR potential region of length

L = 20Λ and V0 = 5500 as a function of the wavepacket extent σ2.
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from the ATR packet generator during successive enhanced reflection events.
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FIG. 12. Incident JI and transmitted JT current arising from an ATR potential and incident on a

rectangular barrier with Vbarrier = 2.5× 104 and Lbarrier = 0.1 units. The initial generating packet

is a Gaussian with wavevector k0 = 500 and σ2 = 0.01 characterizing the packet width.
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FIG. 13. Relative conductance (G(V ) − G(0))/(G0(V ) − G0(0)) calculated as a function of bias

E = Ek0 + Vbias for several rectangular barrier strengths Vbarrier. The initial generating packet is

a Gaussian with k0 = 500 as the initial wavevector and σ2 = 0.01 characterizing the packet width,

while the scattering potential has an extent of Lbarrier = 0.1 units.
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Vbarrier GAna GP1 GP2-4 GP1-9

2.50 × 105 0.314 0.315 0.315 0.315

5.00× 105 0.306 0.306 0.307 0.309

7.50× 105 0.262 0.281 0.282 0.288

10.0× 105 0.232 0.219 0.212 0.233

TABLE I. Comparison of analytically–determined conductances GAna with simulation–derived con-

ductances for the first transmission event GP1, the mean of the subsequent three events GP2–4,

and the collective mean of all simulated events GP1–9 for transmission through a barrier with

Lbarrier = 0.1 units at several barrier strengths Vbarrier.
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