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A topological Kondo insulator (TKI) is a strongly-correlated material, where hybridization be-
tween the conduction electrons and localized f -electrons gives rise to a crossover from a metallic
behavior at high temperatures to a topologically non-trivial insulating state at low temperatures.
The existing description of the TKIs is based on a slave-boson mean-field theory, which neglects
dynamic fluctuation phenomena. Here, we go beyond the mean-field theory and investigate the role
of Kondo fluctuations on the topological surface states. We derive an effective theory of the Dirac
surface states coupled to fluctuations and show that the latter mediate strong repulsive interactions
between surface excitations. We show that these effects renormalize the plasmon spectrum on the
surface. We also argue that Kondo-mediated interactions may drive a magnetic instability of the
surface spectrum.
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Introduction – The last decade has witnessed a flurry of
interest and tremendous advance in the studies of topo-
logical states of matter. By now, a new class of topolog-
ical insulating state has been theoretically predicted1–6

and experimentally discovered in both two- and three-
dimensional material systems (see Refs. [7–9] and refer-
ences therein). Moreover a complete topological classi-
fication of non-interacting band structures has been put
together10,11. Despite this impressive progress, there still
remain a number of open fundamental questions, and un-
derstanding the interplay between interactions and topo-
logical states is arguably the chief challenge among them
on the theoretical side12,13.
While some of these fundamental questions are aca-

demic at this stage, there is also an experimental moti-
vation to look closer at the effect of interactions on the
topological surface states, which comes from the recent
discovery of a topological Kondo insulator in Samarium
hexaboride14–25. Indeed, these heavy-fermion topologi-
cal insulators represent the first known class of material
where the topological behavior arises not from the non-
interacting band structure, but due to strong interactions
and correlations26,27. Furthermore, a recent experiment
by the Paglione group28 on SmB6 suggests that interac-
tions in this TKI are not a minor complication, but may
be of the utmost importance, because they appear to
drive the topological surface states into a ferromagnetic
phase. The nature of the latter is not understood as of
now and this calls for a critical revision of the underlying
theoretical framework.
The theoretical description of a Kondo insulator is usu-

ally based on the Anderson model [see, Eq. (1) below],
which describes hybridization between the conduction d-
electrons and localized, strongly-interacting f -electrons.
To solve the model, the slave boson technique29 is usu-
ally employed, which allows to conveniently circumvent
complications associated with strong (formally, infinite)
repulsion between the f -electrons by “splitting” the phys-
ical f -electron into a product of a fermion and a slave
boson, supplemented with a constraint to remove the

double occupancy. A mean-field analysis (reiterated in
more detail below) involves condensing the boson field
and neglecting all of its dynamics. This effectively leads
to a non-interacting model of an insulator, where the
gap is proportional to the condensate and hybridization
parameter, and makes it amenable to a topological anal-
ysis. Since the electron states being hybridized have the
opposite parities, the resulting Kondo insulator is topo-
logical26,27 and contains its hallmark feature - the Dirac
surface states.
There is a good evidence that the mean-field theory is

reasonable, and actually works at least at the qualitative
level. In particular, the existing data on SmB6, including
the observation of surface states there15,16,19, appear to
be in a good agreement with it. However, there are also
reasons, both experimental and theoretical, to study ef-
fects beyond mean field and this is the focus of our work.
There has been a large amount of prior work on the

effect of Kondo fluctuations in heavy-fermion materials
both metallic30–37 and insulating38. The theory is well-
controlled in the large-Nf limit (where Nf is the degen-
eracy of the f level) and the mean-field approximation
becomes exact for Nf → ∞. In realistic systems (with
Nf = 2 or Nf = 4), the consensus appears to be that fluc-
tuations play an important role in heavy-fermion metals,
but are essentially irrelevant in (conventional) Kondo in-
sulators. The case of a topological Kondo insulator con-
sidered here is of a mixed character, because the “matter
fields,” which the Kondo fluctuations are coupled to, are
gapped in the bulk, but gapless on the surface.
To succinctly summarize the results of our theory de-

tailed below, we find that Kondo fluctuations manifest
themselves as strong short-range repulsive temperature-
dependent interactions between surface Dirac states.
Therefore, a proper description of the TKI’s surface state
is a strongly-interacting Dirac liquid. The interaction
can drive the magnetic instability on the surface, which
is accompanied by opening of an insulating gap in the
Dirac spectrum. In the absence of a phase transition,
these interactions distort the spectrum of surface collec-
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tive modes.
Mean-field slave-boson theory of a TKI – Our starting

point is the following Anderson lattice Hamiltonian

Ĥ =
∑

ijσ

ǫdij d̂
†
iσ d̂jσ +

∑

ijα

ǫf0ij f̂
†
iαf̂jα+

+
∑

ijσα

(V σα
ij d̂†iσ f̂jα + h.c.) +

U

2

∑

iα

f̂ †
iαf̂iαf̂

†
iᾱf̂iᾱ,

(1)

where the first two terms describe hopping of d- and f -
electrons, with ǫdk and ǫf0k being their bare dispersion laws
as a function of the lattice momentum, k. As our goal
is to extract new physics associated with the fluctuation
effects in TKIs, we would like to separate them from non-
universal phenomena associated with a particular com-
pound. Hence, we will focus from now on a generic topo-
logical Kondo insulator with the simplest band structure
and assume that the relevant f -states form a Kramers
doublet (labeled by the index α =↑, ↓ and ᾱ =↓, ↑),
ǫdk = −Ed+k

2/2md and ǫf0k = −E0
f −k

2/2mf . The model
requires an ultraviolet cutoff, Em

d , which corresponds to
the width of the conduction band. All energies are mea-
sured from the position of the unoccupied f -levels. As
shown below, the resulting theory is described by 4 × 4
matrices in the bulk and one Dirac cone on the surface
(as opposed to a 8×8 bulk Hamiltonian and three surface
Dirac cones for SmB6

39–41). The third term in Eq. (1) de-
scribes hybridization between the f - and d-states. Since
they have different parities, which dictates V̂−k = −V̂k
for their Fourier transforms, and the time reversal sym-
metry is respected, the hybridization matrix element at
small momenta can be approximated as V̌k = V k · σ̌.
This particular form of the hybridization is the source
of non-trivial topology of the emergent bands. The last
term in Eq. (1) is the Hubbard repulsion between two f
electrons on a level. The Hubbard energy scale, U , much
exceeds all other energy scales in the problem and hence
the last term effectively enforces a no-double-occupancy
constraint on each site. This constraint is ultimately a
source of fluctuation effects we are studying.
To exclude the double occupation of the f -states we

use the slave-boson approach, with spinon f̂i and holon

b̂i operators introduced in the following way

f̂iα → f̂iαb̂
†
i , f̂ †

iα → f̂ †
iαb̂i. (2)

Singly-occupied f -states correspond to the occupation
numbers |1↑s, 0↓s, 0h〉 (|0↑s, 1↓s, 0h〉) in terms of the
spinons and holons, and an empty f -level corresponds
to a state occupied by a holon |0↑s, 0↓s, 1h〉. The doubly-
occupied f -levels are excluded by the constraint on each
site Q̂i = 0 (operator identity), where Q̂i is given by

Q̂i =
∑

α

f̂ †
iαf̂iα + b̂†i b̂i − 1. (3)

The reason behind this construction is that an equality
is straightforward to enforce in the Lagrangian formal-
ism by introducing a functional delta-function (while the

original inequality in terms of the physical f -electrons
is not as easy to implement). The Lagrangian for our
system takes the form:

L =
∑

i

b̄i(τ)∂τ bi(τ) +
∑

i

iλi(τ)Qi(τ)+

+
∑

ij

Ψ̄i(τ)

(

∂τ + ǫdij V̌ij b̄j(τ)

bi(τ)V̌
†
ij ∂τ + bi(τ)ǫ

f0
ij b̄j(τ)

)

Ψj(τ).
(4)

Where Ψi = (di↑, di↓, fi↑, fi↓)
T is a column of Grassmann

fields combining the d- and f -electrons, and λi(τ) is a
time-dependent auxiliary real field, which enforces the
no-double-occupancy constraint. V̌ is a 2× 2 hybridiza-
tion matrix in the spin/pseudo-spin space and the diag-
onal components of the matrix in (4) are proportional to
a 2× 2 identity matrix (not shown).
The phase degree of freedom of slave particles is a re-

dundant variable and can be integrated out after a gauge
transformation35–37, which separates the phase, θi, and
amplitude of holon field bai

bi = bai e
iθi , fi → fie

iθi , λi → λi −
dθi
dτ

. (5)

In mean field theory, the holon field condenses and it,
together with the auxiliary field, acquires site- and time-
independent values bai → b0 and iλi → δEf . The re-

sulting mean-field Hamiltonian, ĤMF, reads

ĤMF =
∑

k

Ψ̂†
k

(

ǫdk b0V̌k
b0V̌

†
k ǫfk

)

Ψ̂k, (6)

where ǫfk = −E0
f + δEf − b20k

2/2mF is a renormal-
ized dispersion law of the f -states. The spectrum con-
sists of two bands ǫ±k , separated by direct gap ∆k =

b0(Tr[V̌
†
k V̌k]/2)

1/2 and given by ǫ±k =
(

ǫdk + ǫfk
)

/2 ±
√

(

ǫdk − ǫfk
)2
/4 + ∆2

k. There is an indirect gap ∆b ∼

∆2
k/E

m
d and it is assumed that the chemical potential of

TKI bulk lies within it. The set of self-consistent equa-
tions for b0 and δEf can be derived from the mean-field
action and are given by

b20+
∑

α

〈f̂ †
iαf̂iα〉 = 1, b0δEF = −

∑

iσα

V σα
ij 〈f̂ †

jαd̂iσ〉. (7)

These equations should be suplemented by additional one
for the number of particles, nf +nd = Nf , which imposes
full occupation of the band ǫ−k . This equation fixes the
position of the chemical potential for renormalized energy
bands. The position of the chemical potential, and Fermi
momentum are changing within gap opening, that can be
expected from Luttinger’s theorem arguments42–46 . The
phase diagram of the model, depending on the energy
of localized states, degeneracy and the lattice symmetry,
has been extensively discussed recently27,39,41,47–49. Here
we are interested in studying Kondo fluctuations relative
to the mean-field saddle point. So, we treat the mean-
field values, b0 and δEf , as parameters of the model and
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assume that the system is within TKI phase. Note the
following hierarchy of energy scales: ∆b ≪ ∆k ≪ Em

d .
The shift of the f -levels is of order δEf ∼ Em

d and the
Kondo temperature where the formation of an insulating
band structure commences can be estimated as TK ∼
∆b. The holon condensate b0 appears at temperatures
of order ∆k, and smoothly increases with decreasing of
temperature.
Kondo fluctuations in the TKI’s bulk – Here we re-

store the dynamics to the fluctuations of holon con-
densate δbai (τ) = bai (τ) − b0 and the constraint field,
δλi(τ) = λi(τ) + iδEf . A Lagrangian, describing Gaus-
sian Kondo fluctuations and their interactions with elec-
trons, is given by

Lb
fl =

∑

ij

Ψ̄i(τ)

(

0 V̌ijδb
a
j(τ)

δbai (τ)V̌
†
ij iδλj(τ)

)

Ψj(τ)+

+
∑

i

{

δEf [δb
a
i (τ)]

2
+ 2ib0δb

a
i (τ)δλi(τ)

}

.

(8)

The “valence fluctuations” of the auxiliary field, λi (de-
scribing local fluctuations of f -states’ occupation) do not
have a bare mass or bare field-theory all together, and
therefore its bare fluctuations are gapless. Note that an
effective field theory for δλi appears upon integrating out
the matter fields - the f -electrons. On the other hand,
the fluctuations of the holon amplitude are massive and
can be integrated out. Introducing Fourier components
for fermionic and bosonic fields, we get a continuous low-
energy part of the fluctuation Lagrangian

Lb
fl =

∑

kq

iλq(τ)f̄k+qα(τ)fkα(τ) +
∑

q

|δλq(τ)|
2

2Ub

, (9)

Here Ub = δEf/2b
2
0nb corresponds to short-range repul-

sive interactions mediated by Kondo-fluctuations and nb

is the three-dimensional concentration of f -levels. It is
very strong since energy of interaction between two elec-
trons on a cite is of order δEf/b

2
0 and considerably exceeds

the gap, ∆b. The value of the interaction decreases with
the formation of the holon condensate. It can be shown
that the interaction Ub is inverse-proportional to the de-
generacyNf of the f -states. So in the limit, Nf → ∞, the
slave-boson mean-field theory is exact. For a finite Nf ,
the strong short-range interaction is important in both
thermodynamics and transport if bulk is metallic as was
extensively discussed30–34. But if the bulk is insulating,
electronic excitations at low temperatures T ≪ ∆b form
a dilute gas, for which short-range interaction is unim-
portant. A TKI has an insulating bulk but topologically
protected surface states. These Dirac surface states in-
herit interactions mediated by the Kondo fluctuations in
the bulk.
The Dirac surface states – Now we consider a TKI

with open boundary conditions (requiring that the elec-
tron’s wave-function vanish on the surface), and find the
topological surface states from the mean-field Hamilto-
nian (6). If the surface is perpendicular to the z-axis and

the TKI occupies the z < 0 half-space, the contribution
of surface states to the field operator Ψ̂s(r, z) is given by

Ψ̂s =
∑

p

ψ(z)eipr






χ̂↑
p







u
0
iw
0






+ χ̂↓

p







0
u
0

−iw












. (10)

Here χ̂↑,↓
p are a pair of annihilation operators for surface

states with the in-plane momentum, p, and up-/down-
spin. Projection of the bulk mean-field Hamiltonian onto
these states yields the Dirac Hamiltonian Ȟs = vs[p×σ̌]z
with the velocity vs = 2uwb0V ≈ 2b20V

√

md/mf , which
is temperature dependent. The coherence factors u2 and
w2 define contributions to the surface states from the con-
duction and f -states and are given by u2 = b20md/(mf +
b20md) and w

2 = mf/(mf + b20md). Since md ≪ mf , then
u2 ≪ w2 and Dirac surface states mostly consist of the f -
electron states. We find the wave function of the surface
states exponentially decaying in TI’s bulk and vanishing
on its surface as follows ψ(z) = N [eη−

z − eη+z]. Here N
is a normalization factor, and η± are given by

η± =

√

κ1 − κ2 ±
√

(κ1 − κ2)2 − κ22, (11)

with κ1 = 2mdmfV
2/~2 and κ2 = 2mdmf(Ed −

Ef)/~(mf + b20md).

The full field operator Ψ̂ = Ψ̂s + Ψ̂b has contribu-
tions from both the surface, Ψ̂s, and the interior, Ψ̂b.
To project the bulk model onto the surface we insert Ψ̂
into the action (8) and neglect terms that contain the

bulk states, Ψ̂b. This approximation is justified, if the
energy of surface states is deep inside the gap of the bulk
spectrum. Neglecting variation of the fluctuation field
in the transverse direction (on the length-scale of order
penetration length of the surface states), integrating the
action over z, and integrating out massive fluctuations of
the holon field’s amplitude, δbai , we obtain the continuous
low-energy model for surface Dirac states

Ls(τ) =
∑

p

χ̄p(τ)(∂τ + vs[p× σ̌]z − µ)χp(τ)+

+
∑

p,q

iw2λq(τ)χ̄p+q(τ)χp(τ) +
w4

2Us

∑

q

|λq(τ)|
2.

(12)

Here χp = (χ↑
p, χ

↓
p)

T and µ is the chemical potential of

surface states; Us = δEfw
4/2b20ns is the Fourier trans-

form of an effective short-range interaction mediated by
the Kondo fluctuations; ns is the surface concentration
of f -sites. As seen from Eq. (12), the valence fluctua-
tions mediate repulsive interactions between the emer-
gent Dirac excitations in the density-density channel,
whose strength depends on the properties of the under-
lying mean-field state. With the formation of the holon
condensate, Kondo fluctuations and interections media-
teed by them are decreasing.
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FIG. 1. (Color online) Dispersion law of plasmons on the
surface of a TKI, calculated from (15), for dimensionless
Coulomb coupling constant α = e2/~vsǫ = 0.7 and for dif-
ferent values of dimensionless short-range coupling constant
λs = νFUs = 0, 1, 4, 12. Black dotted lines are borders of con-
tinuums ω < vsq and ω > 2µ−vsq, corresponding to intraband
and interband single-particle excitations.

Now we discuss possible manifestations of these fluctu-
ations/interactions in the observables. Since our theory
is generic we can not provide universal predictions, but
we can discuss two distinct scenarios: either interactions
lead to a phase transition or not.
Modification of the plasmon spectrum – If the effec-

tive repulsion is sufficiently weak and no phase transition
takes place, Kondo fluctuations do not induce a recon-
struction of the surface spectrum, but have only quali-
tative consequences (much like in the theory of Landau
Fermi-liquid). One such effect is a correction to the spec-
trum of collective modes on the surface. Since the two-
dimensional Dirac electrons are charged, there is a long-
range Coulomb interaction, which gives rise to collective
charge oscillations – plasmons. This Coulomb interac-
tion between Dirac surface states can be introduced by
inserting an additional term in the action (12)

Lφ =
∑

p,q

iφq(τ)χ̄p+q(τ)χp(τ) +
∑

q

|φq(τ)|
2

2Uq

. (13)

Here φq(τ) is a bosonic field, which originates from the
Hubbard-Stratonovich decoupling of the Coulomb inter-
action and plays the role of a scalar electrical potential;
Uq = 2πe2/ǫq is the Fourier transform of the Coulomb
potential in two dimensions and ǫ is an effective dielec-
tric permittivity of TKI surface. Fields φq and λq can

be incorporated in a single field Φq = φq+w
2λq and one

of them is redundant and can be integrated out. After
the integration the action for Φq is given by

LΦ =
∑

p,q

iΦq(τ)χ̄p+q(τ)χp(τ) +
∑

q

|Φq(τ)|
2

2(Uq + Us)
. (14)

In the random-phase approximation (RPA), the disper-
sion law of collective excitations satisfies the equation

1− (Uq + Us)Π(ω,q) = 0, (15)

where Π(ω,q) is the polarization operator of a Dirac elec-
tron gas, which has been calculated in Refs. [50] and [51]
(See also Ref. [52] and references therein). The disper-
sion law of collective excitations depends on two dimen-
sionless coupling constants αs = e2/~vsǫ and λs = νFUs,
which describe the strength of the interactions. Here
νF = µ/2π(~vs)

2 is the density of Dirac states at the
Fermi level. For vsq ≪ ω ≪ µ the polarization opera-
tor can be approximated as Π(ω,q) = νF(vsq)

2/2ω2. In
the long-wave-length limit, the long-range Coulomb in-
teraction dominates, but at q & q0 = pFα/λ, where pF is
the Fermi momentum, the short-range interaction takes
over. For q . q0, the plasmon dispersion is the standard

in two dimensions square-root law, ω = vs
√

αspFq/2,
while for q0 . q ≪ pF it is a linear zero-sound-like

mode, ω = vs
√

λs/2 · q. For estimates, we have used
the following set of parameters, relevent to SmB6

16,39,
vs ≈ 0.5 · 105 m/s, δEf ≈ 0.15 eV, b0 ≈ 0.05, ǫ ≈ 50,
∆b ≈ 1 meV, ns ≈ 4 · 1014 cm−2, which corresponds
to the coupling constants αs ≈ 0.7 and λs ≈ 1.3. The
dispersion law of surface plasmons for αs = 0.7 and dif-
ferent values of parameter λs = 0, 1, 4, 12 is presented
in Fig. 1. If ω < vsq or ω > 2µ − vsq the plasmons
are strongly damped due to intraband (Landau damp-
ing) or interband transitions (the corresponding borders
are shown by dotted lines in the figure). Since plasmons
are undamped only for q < pF, the fluctuation-mediated
interaction is important in that case only if q0 ≪ pF,
which is satisfied if αs ≪ λs.
Magnetic phase transition in the Dirac liquid – While

the gapless Dirac spectrum on a TKI’s surface is pro-
tected by the time reversal symmetry, this symmetry can
be spontaneously broken due to sufficiently strong inter-
actions (with the appearance of an out-of-plane spin po-
larization53 or spin-density wave54 order parameter). An
out-of-plane spin polarization opens a gap in the Dirac
spectrum, which can be energetically favorable since it re-
duces both the kinetic energy and exchange interaction
energy of Dirac electrons. This state can also be inter-
preted as an excitonic insulator of electrons and holes
from the conduction and valence bands of the surface
Dirac spectrum, the possibility of which has been widely
discussed in the context of graphene55–57. The critical
value of short-range repulsion is53 U∗

s = 4πvF~/kΛ, where
kΛ ≈ ∆b/~vF is an ultraviolet cutoff of the linear spec-
trum and ∆b is the indirect gap in TKI’s bulk. Using
the same set of parameters as above, we get Us/U

∗
s ≈ 0.6
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and conclude that the short-range repulsion mediated by
Kondo fluctuations is in the neighborhood of the criti-
cal value in realistic materials and may potentially drive
the system into a magnetic phase. Furthermore, since
the interaction strength is decreasing with lowering tem-
perature, a highly unusual scenario of a double magnetic
transition (where a ferromagnetic state would appear as
an intermediate phase in a finite temperature window)
is conceivable. Apart from this speculative scenario, an-
other possibility is that the Dirac liquid on the TKI’s sur-

face remains magnetically ordered in the ground state,
which may be consistent with the experiment of the
Paglione group28 in Samarium hexaboride (where, how-
ever, the situation is complicated by the presence of three
Dirac cones, whose Dirac points are offset relative to one
another39,40,58).
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