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Scanning photocurrent maps of gapless materials, such as graphene, often exhibit complex patterns
of hot spots positioned far from current-collecting contacts. We develop a general framework that
helps to explain the unusual features of the observed patterns, such as the directional effect and the
global character of photoresponse. We show that such a response is captured by a simple Shockley-
Ramo-type framework. We illustrate this approach by examining specific examples, and show that
the photoresponse patterns can serve as a powerful tool to extract information about symmetry
breaking, inhomogeneity, chirality, and other local characteristics of the system.

I. INTRODUCTION

Many existing schemes of photodetection rely on trans-
forming photon energy into electrical signals1. Photore-
sponse proceeds in three stages: 1) incoming radiation
creates electron-hole pairs; 2) photoexcited pairs gener-
ate electric fields and charge movement in the system,
inducing current in current-collecting contacts; 3) the in-
duced current is amplified and converted to the output
signal. Studies of photogalvanic effects typically focus on
stage 1, which includes the phenomena occurring locally
in the photoexcitation region (see e.g. Refs.2–6). In con-
trast, stage 2 received relatively little attention. Here
we discuss signal transduction in the system at stage 2,
in particular the mechanisms of spatially non-local re-
sponse.

As we will see, these mechanisms have much in com-
mon with the processes in charge detectors studied a
long time ago by Shockley and Ramo in the context of
vacuum-tube electronics.7–9 They pointed out that the
response of charge detectors is governed by long-range
effects: The instantaneous electric currents induced by a
moving charge are due to the electric field flux seen by
each electrode rather than the amount of charge enter-
ing the electrode per second. As a result, the induced
currents are only weakly sensitive to the charge position
but depend strongly on the charge velocity magnitude
and direction. The Shockley-Ramo (SR) approach—
the seminal SR theorem—allows one to easily calculate
the response. As we demonstrate, even though photore-
sponse in gapless materials originates from very different
physics, it is described by a formalism similar to that of
the SR theorem.

Spatial nonlocality of optoelectronic response is com-
mon for many gapped materials where it arises due to
slow recombination of photoexcited carriers1. Recently,
however, a long-range photocurrent response was re-
ported in systems where carrier recombination is fast
on the carrier diffusion timescales. Notably, this is the
case in scanning photocurrent experiments that probe
new gapless materials, such as graphene and topologi-
cal insulators10–16. Photoresponse in these systems is of
a distinctly global character: rather than being local-

FIG. 1: (a,b) Toy model for long-range photoresponse and
directional effect in a strip 0 < y < w with current-collecting
contacts at the sides y = 0, w (see Sec II). Different photocur-
rent sources jph are schematically shown by arrows. The ar-
row color and intensity indicate the sign and magnitude of
the induced net current I. The value I does not depend on
the source position within the strip (a) but has strong depen-
dence on its orientation (b). (c) Photocurrent pattern due to
floating contacts that do not draw current (yellow semi-circles
labeled 3-8). The photocurrent, drawn from contacts 1 and 2,
is modeled as described in Sec. IV, see Eq.17,19.(d) Scanning
photocurrent image of a 12 µm-long graphene device with six
floating contacts 3-8. Note that the sign of photoresponse
near floating contacts is correlated with the direction to the
current-collecting contacts 1 and 2, but essentially indepen-
dent of contact location within the system (data taken from
Fig.2(a) of Ref.12).

ized near current-collecting contacts, the photocurrent
hot spots feature complex spatial patterns spanning the
entire system area, typically separated by many microns
from the contacts11–15. These large length scales may
seem hard to reconcile with the short picosecond-scale
recombination times over which the photoexcited car-
riers lose their energy and become part of the thermal
distribution, traversing distances much less than system
size.

The observed photoresponse also displays other strik-
ing features, in particular the directional effect (Fig.1).
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Namely, the photocurrent hot spots are highly sensitive
to the orientation of inhomogeneities and interfaces, at
which the hot spots are pinned, but totally independent
of the distance from the contacts. The global charac-
ter of photoresponse in combination with its strong de-
pendence on the orientation relative to contacts is par-
ticularly striking in the data from Ref.12 where this ef-
fect was first reported [reproduced in Fig.1(d)]. Here we
introduce a framework that naturally explains how the
non-locality can arise in the absence of slow recombina-
tion. This framework also provides a simple explanation
for the directional effect.

II. THE ORIGIN OF THE NONLOCAL AND
DIRECTIONAL BEHAVIOR

The reasons photoresponse in gapless materials is me-
diated by ambient carriers can be summed up as follows.
On one hand, short recombination times lead to a rapid
decay of the primary photoexcited carriers, preventing
them from reaching contacts and directly contributing
to photocurrent. On the other hand, ambient carriers
can generate currents and fields reaching far from the
photoexcitation spot. The main contribution to photore-
sponse is therefore an indirect one: a local photocurrent
sets up an e.m.f. that drives ambient carriers outside the
excitation region, and into the contacts.

These processes can be modelled by a spatially local-
ized photogalvanic current jph(r) induced by photoex-
citation, and a diffusion current jd(r) due to ambient
carriers in the material, obeying

∇ · (jd + jph) = 0, jd = −σ(r)∇φ, (1)

where σ(r) is position-dependent conductivity tensor, φ
is the electrochemical potential. As we will see, the re-
sulting response does not diminish with distance and dis-
plays the directional effect.

The origin of such a behavior can be understood by
analyzing a special case: a spatially uniform system with
constant conductivity. With regard to this toy model,
some points of clarification are in order. First, on gen-
eral symmetry grounds, local inhomogeneities, interfaces
and boundaries are essential for generating photocurrent.
Thus, a ‘spatially uniform system’ assumption only per-
tains to transport properties far outside the area where
jph is concentrated. Second, the assumption of spatial
uniformity is used here merely to simplify the discussion.
A more general situation will be analyzed in Sec. III.
Third, as we discuss in Sec. IV, photocurrent patterns
are sensitive to the symmetries which govern photore-
sponse via a relation between jph and local density gra-
dients, see Eq.(19) and accompanying discussion.

As a warm-up, we consider transport in an infinite
2D system in the presence a spatially localized photo-
galvanic current jph(r). Fourier-transforming transport
equations, Eq.(1), yields algebraic equations, giving a

non-local relation

jd,i(r) =

∫
d2r′Dik(r, r′)jph,k(r′), (2)

Dik(r, r′) = −
∑
q

eiq(r−r
′) qiqk

q2
=

2nink − δik
2π(r− r′)2

, (3)

where n is a unit vector pointing from r′ to r.
Parenthetically, in writing Eq.(1) we make the usual

assumptions that the magnetic effects are negligible and
the electric field propagates instantaneously. Under these
assumptions, the problem can be treated as electrostatics
at each moment of charge movement (with the cutoff fre-
quency value set by the retardation effects due to charge
dynamics, see Eq.(16) below).

To link the power law found for Dik and the global re-
sponse we analyze a simple geometry: a strip 0 ≤ y ≤ w
infinite in the x direction, with current-collecting con-
tacts at the sides y = 0, w, as illustrated in Fig.1(a,b).
We can extend the above analysis to explicitly evaluate
the response induced by a localized source. As we will
see, the net current flowing through the contacts equals

I =
1

w

∫
d2r′jph,y(r′). (4)

This result displays essential nonlocality since I is inde-
pendent of jph position [see Fig.1(a)]. While the inde-
pendence of the x coordinate follows directly from trans-
lational invariance, the independence of the y coordinate
does not follow from any symmetry. It is counterintu-
itive and to a large degree comes as a surprise. Besides
the ‘global property’ (independence of jph position), our
result also displays the ‘directional property’ since the re-
sponse depends on the y component of jph only, reversing
sign upon jph reversal [see Fig.1(b)].

To derive Eq.(4), we note that the approach outlined
in Eqs.(2),(3) can be reformulated in terms of the Greens
function of Laplace’s equation with zero boundary con-
dition at y = 0, y = w,

Dik(r, r′) = −∇iG(r, r′)∇′k, ∇2G(r, r′) = δ(r− r′),
(5)

where ∇ and ∇′ are gradients with respect to r and
r′. Fourier-transforming with respect to x, we express
the result through a 1D Greens function, G(r, r′) =∑
q e

iq(x−x′)gq(y, y
′),

(∂2y − q2)gq(y, y
′) = δ(y − y′). (6)

Solving this equation in the interval [0, w] with zero
boundary conditions, we obtain

gq(y, y
′) = A sinh(qy<) sinh q(y> − w), (7)

where y< = min (y, y′), y> = max (y, y′), A = 1
q sinh(qw) .

Plugging this in Eqs.(5),(2) and setting y = 0, we find

normal current at the boundary, j
(d)
n (x) = jd,y(x)y=0.
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We obtain

j(d)n (x) = −
∫
d2r′

∑
q

eiq(x−x
′) sinh q(y′ − w)

sinh(qw)
∇′ · jph(r′).

(8)
By mirror symmetry, only the component of jph normal
to the strip contributes to the above expression. Integra-
tion by parts gives∫ w

0

dy′
sinh q(y′ − w)

sinh(qw)
∂y′jph,y(y′) = jph,y(y′ = 0)

−
∫ w

0

dy′
q cosh q(y′ − w)

sinh(qw)
jph,y(y′) (9)

The net current is evaluated as I =
∫
dx(jd,y(x) +

jph,y(x))y=0. Using the relation
∫
dxeiq(x−x

′) = 2πδ(q)
we arrive at the result, Eq.(4), which displays the ‘direc-
tional property’ and the ‘global property’.

It is instructive to note a relation between our cal-
culation above and an electrostatic problem of a point
dipole inserted in a parallel plate capacitor. The dipole
induces image charges on the capacitor plates, which
also display the directional property and the global prop-
erty. Namely, the net induced charge values are given by
∆q1,2 = ± 1

wp cos θ, where p and θ are the dipole magni-
tude and tilt angle, and w is the plate separation. The de-
pendence of ∆q1,2 on θ and their independence of dipole
position are identical to that for photoresponse, as il-
lustrated in Fig.1(a,b). The origin of this relation can
be traced to an isomorphism between the two problems,
with jd and jph playing the role of the electric field and
dipole density in the electrostatic problem. As we will
see in the next section, this result can be viewed as a
special case of the SR theorem.

III. MAPPING TO THE SHOCKLEY-RAMO
PROBLEM

The global property and the directional property bear
strong resemblance to the behavior in charge detectors
described by the SR approach7–9. Before working out the
connection between our problem and the SR approach,
we briefly summarize the key facts. Shockley and Ramo
were concerned with the currents induced in the elec-
trodes by charges moving in the free space inside a vac-
uum tube. The SR theorem provides a closed-form rela-
tion between the current induced by a moving charge e
in the electrode k and the charge velocity and position,
denoted by Ik, v(t) and R(t), respectively. The SR re-
sult, which is intrinsically nonlocal due to the long-range
character of electric fields in vacuum, reads

Ik = ev(t) ·Er=R(t), E(r) = ∇wk(r), (10)

The ‘weighting potentials’ wk(r) satisfy Laplace’s equa-
tion with suitable boundary conditions on the electrodes
(wk = 1 at electrode k, and wk = 0 at electrodes j 6= k).

The SR theorem is a foundation of ultra-fast charge sens-
ing, such as particle detection in high energy physics9,17

and plasma diagnostics.18 It can also be extended to
charges moving in insulators19.

In contrast, the relation between our problem and the
SR-type treatment of charge detectors can be described
as a mapping rather than merely an application of the SR
approach to yet another system. This relation is based on
an isomorphism between our problem and the SR prob-
lem, wherein the flow of ambient carriers and the pho-
tocurrent source play the role of electric field and moving
charge, respectively. The long-range character of the re-
sponse can be linked to charge continuity. The condition
∇·j = 0 can be interpreted as incompressibility of current
flow, with stream lines that do not terminate anywhere
within the system. In addition, because the current is
caused by a chemical potential gradient, the stream lines
cannot form loops. This results in a response not dimin-
ishing with the distance between contacts and local pho-
toexcitation, jph. As we show below, basically following
the SR strategy, the system response can be described as

I = A

∫
jph(r) · ∇ψ(r) d2r, (11)

where jph(r) is local photogalvanic current in the pho-
toexcitation region, ψ is a weighting field obtained by
solving a suitable Laplace problem, and A is a prefactor
which depends on device configuration (see Eq.(14)).

Spatial patterns predicted using Eq.(11) exhibit
photocurrent-active structures with contrast which is es-
sentially independent on their position within the sys-
tem (see Figs.1,2,3). Such “global” photoresponse is
known for one-dimensional systems, where Eq.(11) re-
duces to adding up the total potential drop across the
device20. However, the generalized framework presented
here yields photocurrent that can exhibit complex struc-
tures which are not anticipated in a one-dimensional ap-
proach.

We emphasize that the origin of nonlocality in our pho-
toresponse problem is quite different from that in the SR
problem, since the ambient carriers screen the long range
electric field created by photoexcited carriers. As noted
above, the nonlocality originates from long-range cur-
rents constrained by charge continuity relation. Further,
the SR theorem is typically applied to high-speed charge
detection, whereas we are concerned with the steady-
state photocurrent. Yet, despite these differences, our
approach yields a relation [Eq.(11)] which exhibits for-
mal similarity with the SR theorem.

The starting point of our analysis is the continuity
equation, Eq.(1). As discussed above, the two contri-
butions to current in Eq.(1) have very different spatial
dependence: the photogalvanic current jph is present in
the excitation region, whereas the diffusion current jd is
nonzero throughout the entire material. Below we fo-
cus on the simplest situation when transport can be de-
scribed by a position-dependent 2 × 2 conductivity ten-
sor σ(r). The diffusion current satisfies the usual re-
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lation jd = −σ(r)∇φ, where φ is the electrochemical
potential. The boundary conditions in this transport
problem are zero current through the sample boundary,
n · (jd + jph) = 0, and constant potential at the contacts,
n×∇φ = 0 (here n is the normal to the boundary).

To handle the non-local response, we introduce an aux-
iliary weighting field ψ(r) in the bulk of the material,
satisfying

∇ · j(ψ)(r) = 0, j(ψ) = −σT∇ψ, (12)

where σT is a 2×2 matrix transposed to σ. The field ψ(r)
satisfies appropriate boundary conditions at the bound-
ary and contacts, n · j(ψ)(r) = 0 and n × ∇ψ(r) = 0,
respectively (here n is a normal unit vector at the bound-
ary). Multiplying the continuity equation for the physical
current jd+jph by ψ(r), integrating over the sample area,
and using Gauss’ theorem, we obtain∫

∇ψ(r) · jph(r)d2r =
∑
k

ψkIk − φkI(ψ)k (13)

where k labels contacts. The quantities on the right hand
side are the net currents flowing in each of the contacts,
Ik =

∫
Ck

n · jkd`, and potentials on these contacts. We

emphasize that Eq.(13) holds on very general grounds re-
gardless of whether a particular contact is drawing cur-
rent (Ik 6= 0) or is floating (Ik = 0). The expression on
the left hand side depends on the microscopic distribu-
tion jph(r) inside the material, whereas the expression
on the right hand side is a function of currents and po-
tentials at the contacts, thereby providing a general re-
lation between position-dependent photoexcitation and
the measured photocurrent.

It is convenient to choose ψ(r) such that I
(ψ)
k = 0 for all

floating contacts. Then the contribution to Eq.(13) due
to floating contacts drops out entirely, yielding a relation
which only includes the contacts that actually draw cur-
rent. It is also straightforward to account for the effect
of an external circuit. We consider the current drawn
through a pair of contacts 1 and 2 (see Fig.1) and write

I
(ψ)
1(2) = ∓(ψ1 − ψ2)/R, I1(2) = ±(φ1 − φ2)/Rext, with R

and Rext the resistance of the sample and of the exter-
nal circuit, respectively. Setting ψ1 − ψ2 = 1, we obtain
Eq.(11) with the prefactor

A = R/(R+Rext). (14)

Despite its apparent simplicity, Eq.(11) accounts for all
the key effects that impact photoresponse, such as system
geometry, structure, inhomogeneity, etc. Similar to the
canonical SR relation, Eq.(10), the relation in Eq.(11)
is essentially nonlocal due to the long-range character of
currents in the system.

Here we briefly discuss the validity of our approach.
Our transport equations, Eq.(1), are written in a qua-
sistatic approximation. This is similar to the SR ap-
proach which treats the electric field induced by a moving
charge as instantaneous. The SR result is therefore valid

FIG. 2: Directional effect in photoresponse accounting fully
for the distortions of the weighting field. (a) Photocurrent
pattern due to three circular regions, modeled in the same
way as in Fig.3 (b). The conductivity inside each region is
taken to be 10 times larger than the background conductivity.
(b,c) Photoresponse and the field lines for ∇ψ near floating
contacts of two different shapes, a rectangle and a semicircle,
obtained using the conformal mapping approach, Eq.(17).

at frequencies below the cutoff set by the EM retardation
timescale, ω � ω0 = c/L, where L is system size. In our
case, the cutoff frequency is set by the characteristic time
for charge dynamics in the system. An estimate below
yields very short timescales, i.e. a very fast response.

A crude estimate of timescales can be obtained by rein-
stating the time dependent term in the continuity equa-
tion. For a spatially uniform system, the dynamics of the
Fourier harmonics of charge density is given by

∂tδnk(t) = −2π

κ
σ|k|δnk(t), (15)

where σ is the sheet conductivity per square area and κ
is the dielectric constant. For a simple estimate, taking
parameter values |k| ≈ π/L, L = 10µm, κ = 5, 1/σ =
1 kΩ, we obtain a sub-picosecond response time

τ = κL/(2π2σ) ≈ 0.3 ps, (16)

which is considerably shorter than typical cooling and re-
combination times in graphene. Fast response makes the
photocurrent a potentially useful probe for the dynamical
processes in the excitation region. It also makes gapless
materials viable for applications in high-speed optoelec-
tronics.

IV. GEOMETRY OF THE WEIGHTING FIELD

The general features of Eq.(11) can be illustrated for
a spatially uniform system of a rectangular shape. In
this case, the weighting field ψ(r) is a linear function,
∇ψ = ŷ/L, with L the system length. Constant ∇ψ
yields Eq.(4) derived in Sec.II by a direct calculation.
As discussed above, this describes a response which is
invariant upon spatial translation of jph(r) (the global
property). At the same time, the sign and the magnitude
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of the response depend on the angle between ∇ψ(r) and
jph(r) (the directional effect).

In order to test the robustness of this behavior, we now
proceed to analyze a more realistic situation where spa-
tial inhomogeneity in conductivity σ(r) is essential. To
analyze the inhomogeneous problem, we can use a nu-
merical procedure to obtain the exact profile ψ(r). Fig.2
(a) shows photocurrent patterns from three circular re-
gions with a mismatch between the inner and outer con-
ductivity, which causes significant distortions of the ∇ψ
field lines. Yet these distortions do not impact the over-
all trends discussed above, the global character of the
response and the directional effect.

In contrast, the weighting field distortions have a very
dramatic effect near contacts. Even if a contact does not
draw net current, it short-circuits the current flowing in
its vicinity, leading to a non-vanishing normal component
of ∇ψ near the surface of a contact (see Fig. 2). For jph
which is normal to the contact, this gives a nonzero, sign-
changing photoresponse, as in Fig.1 (c,d).

For ideal contacts, the field ψ can be found using the
conformal mapping approach, giving ψ(r) = A Imw(z).
Here w is a suitable analytic function of a complex vari-
able z = x+iy, which satisfies the equipotential condition
at the contact surface. We illustrate this for a flat contact
and for a semicircular contact (see Fig.2 (b,c)):

wb(z) =
√

(z − y1)(z − y2), wc(z) = z̃ − r2/z̃, (17)

z̃ = z − z0, where the flat contact is positioned at
y1 < y < y2, x = 0, and the semicircular contact is
of radius r and is positioned at z = z0. We assume that
the contacts are floating and are small compared to the
system size. At large z, ψ asymptotically approaches the
linear dependence ψ ∝ y found above. The photocurrent
at the contact is proportional to n · ∇ψ. For the flat
contact,

∂xψ(r)x=0 = A
y − 1

2 (y1 + y2)√
(y − y1)(y2 − y)

, y1 < y < y2. (18)

Since this quantity is an odd function of y− 1
2 (y1+y2), the

net current drawn in the contact vanishes, as appropriate
for a floating contact. Similar sign-changing behavior is
found for the semicircular contact, see Fig.2 (c). The
sign-changing pattern is oriented in such a way that the
parts showing high photoresponse are facing the contacts
through which the photocurrent is drawn. This behavior
is in agreement with the directional effect, see Fig.1(d).

Next, we discuss application of our approach for diag-
nostic of different types of photogalvanic response. The
value jph(r) depends on system properties in the pho-
toexcitation region. By symmetry, no photogalvanic ef-
fect can occur in a spatially uniform system (assuming
unpolarized light). In the presence of a density gradient
∇n(r), the local photogalvanic current can be described
as

jph(r) = [α∇n(r) + βẑ×∇n(r)] J(r), (19)

FIG. 3: Scanning photocurrent images for different mecha-
nisms of photoresponse. The photocurrent, drawn from con-
tacts 1 and 2, is modeled by Eqs.(11),(19). (a) Photocurrent
pattern in a chiral material, where σH = ±1 marks regions of
different chirality. Local photocurrent direction is governed
by edge states (white arrows). (b) Photocurrent pattern in a
non-chiral system with a step-like density inhomogeneity (see
text).

where α and β are material constants, and J(r) is the
absorbed optical power. In general, α is finite in all ma-
terials, whereas β is only non-zero in chiral systems where
edge-state transport allows jph to be directed along the
contours of n(r). This is the case in chiral materials such
as topological insulators due to coupling between orbital
motion and spin4,5,16, or in non-chiral materials in the
presence of a magnetic field14.

The effects of spatial inhomogeneity are illustrated in
Fig.3 for the chiral response (a) and the nonchiral re-
sponse (b). The patterns in Fig.3 (a),(b) were obtained
using a spatially uniform weighting field approximation,
∇ψ ≈ ŷ/L. For illustrative purposes, we use a step-like
density profile, with n taking one value in the middle re-
gion and another value in the top and bottom regions,
identical for (a) and (b). For (a) we use jph with α = 0
and finite β, for (b) it is the other way around. In both
cases, the photocurrent is zero in the regions of constant
n, and nonzero near the steps. The differences in the sign
and magnitude of the response reflect the fundamental
difference in physics in the cases (a) and (b).

Model (a) describes photoresponse in chiral systems
arising at the interfaces between domains of opposite chi-
rality. Physically, it may represent a quantum Hall sys-
tem near a plateau transition21, or a system in which
nonzero chirality results from spontaneous ordering22.
The different signs of chirality, labelled by σH = ±1
in Fig.3(a), can be associated with the clockwise and
counter-clockwise edge states, labelled by white arrows.
Notably, the sign and magnitude of photocurrent depend
on the direction of current flow in the edge states. The
photocurrent is also nonzero at system boundaries, indi-
cating the presence of current carrying edge states. This
can be used to identify the edge states and domains with
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different chirality in experiment.
Fig.3 (b) shows the non-chiral photocurrent response

for the same density profile as in Fig.3 (a). Physically,
(b) may describe systems such as graphene with spatial
inhomogeneity giving rise to p-n boundaries separating
regions with electron-like and hole-like polarity13. In this
case, jph is normal to the contours of n(r), making the
sign and magnitude of the response dependent on the
orientation of the interfaces viz. ŷ · jph. Also, since jph
is normal to boundaries whereas ∇ψ is tangential, the
photocurrent vanishes at the system edge.

A very different behavior is found near contacts, since
∇ψ is normal to the contact surface, see Fig.1 (c). In
this case, a nonzero response arises both near the con-
tacts through which current is drawn and near floating
contacts (see also Fig.2). Notably, the response depends
on the floating contact orientation but not on its position
within the system. This is in agreement with experimen-
tal observations of Ref.12, which are reproduced in Fig.
1 (d). All photocurrent patterns in Fig.1 and Fig.3, de-
spite their different physical origin, share two common
trends: strong directional sensitivity and global charac-
ter (positional independence). This behavior makes the

photocurrent patterns particularly useful in identifying
symmetry breaking and inhomogeneity in gapless mate-
rials.

V. CONCLUSIONS

In summary, our approach explains several puzzling
aspects of photocurrent response in gapless materials,
in particular the striking non-locality and the direc-
tional effect observed in Ref.12. By analyzing different
mechanisms of photoresponse, we demonstrate that it is
uniquely capable of revealing spatial patterns arising due
to symmetry breaking, chirality, or inhomogeneities. Fast
photoresponse makes gapless materials potentially useful
for a variety of high-speed electronics applications. Sub-
picosecond response times estimated for graphene make
photoresponse a useful probe of carrier dynamics in this
material.

We acknowledge useful discussions with M. Rudner
and X. Xu, and financial support from the NSS program,
Singapore (JS) and the Office of Naval Research Grant
No. N00014-09-1-0724 (LL).
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