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First-principles theory of nonradiative carrier capture via multiphonon emission

Audrius Alkauskas, Qimin Yan, and Chris G. Van de Walle
Materials Department, University of California, Santa Barbara, California 93106-5050, USA

We develop a practical first-principles methodology to determine nonradiative carrier capture
coefficients at defects in semiconductors. We consider transitions that occur via multiphonon emis-
sion. Parameters in the theory, including electron-phonon coupling matrix elements, are computed
consistently using state-of-the-art electronic structure techniques based on hybrid density functional
theory. These provide a significantly improved description of bulk band structures, as well as defect
geometries and wavefunctions. In order to properly describe carrier capture processes at charged
centers, we put forward an approach to treat the effect of long-range Coulomb interactions on
scattering states in the framework of supercell calculations. We also discuss the choice of initial
conditions for a perturbative treatment of carrier capture. As a benchmark, we apply our theory
to several hole-capturing centers in GaN and ZnO, materials of high technological importance in
which the role of defects is being actively investigated. Calculated hole capture coefficients are in
good agreement with experimental data. We discuss the insights gained into the physics of defects
in wide-band-gap semiconductors, such as the strength of electron-phonon coupling and the role of
different phonon modes.

PACS numbers: 71.55.-i, 71.15.Nc, 71.55.Eq 71.55.Gs, 71.38.-k

I. INTRODUCTION

Point defects drastically affect the performance of
semiconductor devices. In particular, they can act as
charge traps and/or recombination centers. In electronic
applications, such as in high-electron mobility transis-
tors, charge traps deteriorate the performance of the de-
vice and can lead to so-called device dispersion.1 In most
cases charge trapping, or capture, occurs nonradiatively,
i.e., without the emission of a photon. In optoelectronic
applications, such as in light-emitting diodes or photo-
voltaic cells, defects can act as recombination centers
for charge carriers. This so-called Shockley-Read-Hall
(SRH) recombination2 is detrimental, as it decreases the
efficiency of the device. SRH recombination can also af-
fect electronic devices that rely on minority carrier trans-
port, e.g., bipolar transistors. SRH recombination is a
sequence of two carrier capture processes: one carrier
is captured, and then the other carrier recombines with
it.2 For both charge traps and recombination centers, the
important question is: what are the carrier capture coef-
ficients (cross sections)?

For deep centers the nonradiative carrier capture oc-
curs via multiphonon emission (MPE).2–4 The main idea
behind MPE is that the transition between the delocal-
ized bulk state and the localized defect state can occur
within the first order of electron-phonon coupling because
of a large local lattice relaxation associated with the
change of the charge state of the defect.2–4 The phonon
selection rule ∆n = ±1 is relieved, and emission of more
than one phonon becomes possible. Many researchers
have contributed to the theoretical foundations of MPE
over the past six decades.4–15 These investigations have
revealed that the results of calculations are extremely
sensitive to (i) the adopted theoretical model and (ii)
the details of the electronic structure of the defect, with
different approaches yielding variations of capture coeffi-

cients over many orders of magnitude.16

Concerning aspect (i), earlier theoretical works4–15

have made it clear that there is no single theoretical
model that is valid in all cases. A number of fac-
tors have to be considered in choosing the appropri-
ate description,4–15 including the hierarchy of differ-
ent time scales (carrier capture times vs. phonon life-
times and periods of lattice vibrations), the strength of
electron-phonon coupling (linear vs. higher-order cou-
pling schemes), the choice of a good starting point
for perturbation theory (electron and phonon wavefunc-
tions), and the number of different phonon modes that
have to be considered. This choice of description has
to be considered for each type of defect individually, a
practice we will follow in the current paper as well.

Aspect (ii), i.e., incomplete knowledge of the atomic
and electronic structure of the defect, turned out to be
an equally important issue. If this structure is not known,
not only does it affect the result within a given theoretical
model, but it impedes the choice of the correct model it-
self. Aspect (ii) is thus closely linked to aspect (i). When
the objective was to understand general trends and inter-
pret experimental findings, calculations based on models
that did not take the specifics of the atomic and the elec-
tronic structure into account were often very successful.
An example of such work is the seminal paper of Henry
and Lang4 on nonradiative carrier capture in GaP and
GaAs, semiconductors with room-temperature band gaps
of 2.22 and 1.42 eV,17 respectively. The authors theoreti-
cally determined the temperature dependence of capture
cross sections and provided an estimate of the range of
high-temperature asymptotic values of these cross sec-
tions. Using a semi-classical description of carrier cap-
ture, they could explain the exponential dependence of
cross sections on temperature for many defects in both
GaAs and GaP, which proved that for these systems car-
rier capture was indeed due to multiphonon emission.
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However, their model was unable to offer specific predic-
tions for individual defects, and provided little insight
into exceptions to the general trends. In addition, these
as well as other early calculations required empirical in-
put as well as drastic simplifications regarding the lo-
cal electronic structure and the nature of relevant lattice
vibrations. This seriously limited the predictive power,
especially for applications to new materials.

With the advent of accurate electronic structure meth-
ods, mostly based on density functional theory (DFT)
and related techniques, the situation is very different
now.18,19 State-of-the-art approaches, such as hybrid
functionals, provide a very good description of both bulk
band gaps and localized defect states.20 The availability
of these methods, combined with the general knowledge
of MPE acquired over the past six decades, raises the
question whether nonradiative carrier capture rates can
now be determined completely from first principles, al-
lowing them to be used predictively, and whether such
calculations can expand our insights into the physics of
defects. This provides the motivation for our work.

Some progress has already been made in this
area. Schanovsky and co-workers studied nonra-
diative hole trapping at defects in SiO2 and ad-
dressed the vibrational part of the problem using
first-principles calculations,21,22 but actual values of
the electron-phonon matrix elements remained undeter-
mined. McKenna and Blumberger23 studied the re-
lated problem of electron transfer between defect states
within the Marcus theory,24 and determined the electron-
phonon coupling matrix element between two localized
defect states in MgO directly from electronic structure
calculations. Shi and Wang25 were the first to address
both the vibrational and the electron-phonon part of the
carrier-capture problem completely from electronic struc-
ture calculations. They presented an algorithm to cal-
culate electron-phonon matrix elements at defects, and
applied the methodology to study hole capture at the
ZnGa-VN complex in GaN. Despite some important con-
tributions, this study also had some limitations. First,
the theory was applied to a defect for which direct experi-
mental data is not available.26 Second, both ground-state
geometries of the defect and electron-phonon matrix el-
ements were determined using a semilocal functional
within the so-called generalized gradient approximation
(GGA). Such functionals underestimate bulk band gaps
and tend to over-delocalize defect wavefunctions. As dis-
cussed in Sec. III, more accurate approaches are available
that overcome these drawbacks. Third, as we analyze in
Sec. V, the theoretical approach used in Ref. 25, the so-
called adiabatic formulation within the Condon approx-
imation, can be questioned for describing nonradiative
capture at defects.10,12

Overall, it is clear that the current status of modeling
nonradiative capture at defects in solids is still unsatis-
factory, especially when contrasted with the impressive
advances in treating electron-phonon coupling in defect-
free crystals,27,28 or in describing nonradiative processes

in molecules.29

In this work we present calculations of carrier cap-
ture rates via MPE entirely from first principles. The
electronic structure, the vibrational properties, and the
electron-phonon coupling are determined from accurate
electronic structure techniques, in particular hybrid den-
sity functional theory. Specifically, we present a method
to calculate electron-phonon coupling matrix elements
at defects consistently within the hybrid functional ap-
proach. Our calculations yield absolute carrier cap-
ture rates without any fitting parameters. We apply
the methodology to a set of defects in GaN and ZnO,
wide-band-gap semiconductors with T=0 K band gaps
of 3.5030 and 3.44 eV,31 respectively. We first study CN

in GaN and LiZn in ZnO because optical signatures of
these two defects are well established32–38 and nonradia-
tive capture coefficients are available.35 We also apply our
methodology to the ZnGa-VN defect in GaN to compare
our results with those of Ref. 25.
This paper is organized as follows. The problem of

nonradiative carrier capture is described in Section II. In
Section III we outline the theoretical formulation of the
MPE, present technical details of our computational tool-
box, and discuss how various quantities are calculated.
In Section IV we present results for selected defects in
GaN and ZnO and compare with available experimental
data and other computational approaches. In Section V
we critically analyze our approach and discuss insights
gained into defect physics in GaN and ZnO. Section VI
concludes the paper.

II. DEFINITION OF THE PROBLEM

Without loss of generality, let us consider nonradia-
tive carrier capture of a hole by an acceptor defect.
The process is illustrated in Fig. 1 in two different rep-
resentations: (a) a band diagram, and (b) a configu-
ration coordinate (cc) diagram. In the latter, a one-
dimensional generalized coordinateQ is used to represent
atomic relaxations.16 The excited state of the system cor-
responds to the negatively charged acceptor and a hole
in the valence band (A−+h+), while the ground state
corresponds to the neutral state of the acceptor (A0).
The equilibrium geometries of the two charge states are
different. ∆E is the energy difference between the two
states.
Carrier capture consists of two elementary steps:

an energy-conserving transition between two electronic
states, process (1), and vibrational relaxation, process
(2), in Fig. 1(b). Vibrational relaxation occurs on a
timescale of a few picoseconds,39 while the electronic
transition is much slower.4 Thus, the electronic transi-
tion is the bottleneck for nonradiative capture, and in
this work we will only consider process (1).
Let p be the density of holes in the system. The total

concentration of defects is NA = N0
A + N−

A , where N−
A

is the density of negatively charged (ionized) acceptors,
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FIG. 1: (Color online) Nonradiative carrier capture at a deep
defect in two representations: (a) band diagram and (b) con-
figuration coordinate diagram. For illustration purposes, the
defect is a deep acceptor with a negative (doubly-occupied)
and a neutral (singly-occupied) charge state. ∆E is the ion-
ization energy of the acceptor, and Q is an appropriately cho-
sen configuration coordinate. In (b), process (1) is the change
of the electronic state due to electron-phonon coupling, pro-
cess (2) is vibrational relaxation due to phonon-phonon inter-
actions.

and N0
A is the density of neutral acceptors. The holes are

captured at a rate2

Rp = CpN
−
A p, (1)

where the units of Rp are cm−3s−1; Cp is the hole cap-
ture coefficient, with units [Cp]=cm3s−1. An analogous
equation applies to electron capture processes.
In principle carrier capture can occur both radiatively

and nonradiatively.5 The two processes are in general
competing and can occur simultaneously. The rate of
radiative transitions increases with the energy of a tran-
sition as a power law; for semiconductors typical cap-
ture coefficients are of the order C{n,p} ∼ 10−14 − 10−13

cm3s−1.16 The dependence of nonradiative capture rates
on the energy of the transition ∆E is usually nonmono-
tonic; capture coefficients can vary over a very wide range
C{n,p} ∼ 10−14 − 10−6 cm3s−1.4,16 When capture coef-

ficients are in the upper part of this range, nonradiative
transitions are dominant, and radiative transitions can
be neglected. This is the case for all capture processes
that we study in the present work.
The main goal of the theory is to determine nonra-

diative electron and hole capture coefficients Cn and Cp

from electronic structure calculations. In the literature,
carrier capture processes are often described in terms of
capture cross sections σ. The two quantities are related
via C = 〈v〉 σ, where 〈v〉 is a characteristic electron ve-
locity. For non-degenerate statistics this velocity is the
average thermal velocity. While Cn and Cp are more
fundamental quantities, capture cross sections are useful
because of their straightforward and intuitive interpreta-
tion. Experimental values for capture cross sections in a
wide variety of systems4,16 vary between 10−5 Å2 (weak
coupling) and ∼ 103 Å2 (very strong coupling).

III. THEORETICAL FORMULATION AND

COMPUTATIONAL METHODOLOGY

A. Computational toolbox

To describe the atomic and the electronic structure of
defects and bulk materials we use DFT with a hybrid
functional.40 Hybrid functionals add a fraction α of Fock
exchange to the exchange described by the generalized
gradient approximation, greatly improving the descrip-
tion of structural properties and band structures, includ-
ing band gaps. Both of these aspects are particularly im-
portant for defects.38,41–43 In addition, hybrid function-
als can correctly describe the polaronic nature of anion-
bound holes derived from N and O 2p states,38,41,44,45

which is crucial for the defects in the present study.
We use the functional of Heyd, Scuseria, and Ernzerhof

(HSE).40 In this functional the Fock exchange is screened
(screening parameter µ=0.2 Å−1), and the sum rule for
the exchange hole is fulfilled by suitably modifying the
semilocal part of the exchange. We adapt the functional
by tuning α to reproduce the experimental band gaps,
which has become a common procedure;38,42,43 the cor-
responding values are α=0.31 for GaN and α=0.38 for
ZnO. For α=0 and µ=0 the HSE functional does not con-
tain nonlocal exchange and is identical to the generalized
gradient approximation functional of Perdew, Burke, and
Ernzerhof (PBE).46

Our electronic structure calculations are based on
the projector-augmented wave (PAW) formalism,47 with
PAW potentials generated at the PBE level. We have
used the vasp code48 with the implementation of hybrid
functionals described in Ref. 49. A kinetic energy cut-
off of 29.4 Ry (400 eV) was used in all calculations. In
the case of Zn, 3d states were included in the valence.
The resulting lattice parameters are a=3.20 Å, c=5.19
Å, and u=0.377 for GaN (in excellent agreement with
the experimental50 values 3.19 Å, 5.20 Å, and 0.377, re-
spectively); and a=3.24 Å, c=5.21 Å, and u=0.379 for
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ZnO (experimental50 values 3.25 Å, 5.20 Å, and 0.382).
Defects were modeled using the supercell

methodology.18 The defect calculations used 96-
atom wurtzite supercells, with the lattice parameters
optimized at the HSE level. In the calculation of
formation energies of charged defects, as well as charge-
state transition levels (ionization potentials), finite-size
corrections as proposed in Ref. 51 were included. The
Brillouin zone was sampled at one special k-point.52

For test systems, these calculations produce results for
defect levels within 0.03 eV of those obtained with a
2×2×2 mesh.
While most of our calculations were performed using

the PAW methodology, it makes calculations of electron-
phonon coupling matrix elements quite cumbersome.
Such calculations are greatly facilitated within the plane-
wave pseudopotential (PW-PP) formalism,53 which we
adopted for this purpose. Norm-conserving Troullier-
Martins pseudopotentials (PPs)54 were generated at the
PBE level using the fhi98pp program.55 3d states were
included in the valence for both Zn and Ga. The energy
cutoff for plane-wave expansion of wavefunctions was set
to 80 Ry in GaN and 100 Ry in ZnO. We used the cpmd
code,56 with the implementation of hybrid functionals
discussed in Refs. 57, 58, and 59. Brillouin-zone sam-
pling in these calculations was performed using a single
Γ point. In order to reproduce experimental band gaps,
α values of 0.38 for GaN and 0.47 for ZnO had to be
used in these PP calculations, i.e., larger than in the
PAW calculations. We attribute this to the generation
of PPs at the PBE level, rather than consistently with
hybrid functionals (cf. Refs. 43,58–61). However, for pa-
rameters for which direct comparisons can be made, such
as total energy differences, equilibrium atomic configura-
tions, or vibrational frequencies, the PW-PP calculations
are in gratifyingly good agreement with the PAW results;
for instance, charge-state transition levels for the defects
considered here differ by 0.09 eV or less.

B. Derivation of the capture coefficient

Let us consider a hole capture process at a single ac-
ceptor, as in Fig. 1; the discussion can be easily adapted
to other cases. Let V be a large volume that contains P
holes, their density being p = P/V , and M−

A the total
number of hole-capturing defects in the appropriate neg-
ative charge state, with a density of N−

A=M−
A /V . The

total density of defects is NA = N0
A + N−

A . Under non-
equilibrium steady-state conditions, both electrons and
holes can be present in the system. Mobile carriers screen
the Coulomb potential of impurities, with a screening
length λ. (For neutral impurities, λ would be the ex-
tent of their short-range potential.) A few distances λ
away from each impurity the potential essentially van-
ishes. We will assume that λ3NA ≪ 1, implying that the
region where the potential is not negligible constitutes a
very small part of the solid. Since the hole density near

the impurity is obviously different from p, this assump-
tion means that the hole density in the space where the
potential of impurity atoms can be neglected is equal to
the average density, i.e., p. A similar condition λ3p ≪ 1
(i.e., λ ≪ p−1/3) allows us to assume that two holes do
not interact with the same impurity at the same time.
Computationally the most convenient quantity to cal-

culate is the capture rate of one hole at one defect in the
whole volume V . Let the capture rate for such process
be r ([r]=s−1). The capture rate of P holes at all iden-
tical M−

A defects (all in their negative charge states) in

volume V is then γp=rM
−
AP ([γ]=s−1). We can rewrite

this equation as (γp/V ) = rV × (M−
A /V ) × (P/V ) =

(rV )N−
A p. By comparing this equation with Eq. (1), and

noting that, by definition γp/V = Rp is the capture rate
per unit volume, we see that the hole capture coefficient
is given by:

Cp = V r. (2)

From now on consider only one hole being captured by
one defect.
The general idea behind nonradiative processes due to

multiphonon emission is closely related to the concept
of electron-phonon coupling in bulk solids.62 We briefly
review the main ideas, emphasizing the aspects specific
to defects. The many-body Hamiltonian of the entire
system of electrons and ions is

Ĥ = T̂I + T̂e + V̂II + V̂ee + V̂Ie, (3)

where T̂ represents kinetic energy, V̂ represents Coulomb
interaction, and the subscript “e” is for electrons and
“I ” for ions. For an isolated system at zero temperature
the solution of the Schrödinger equation ĤΨn = EnΨn

yields the energy spectrum En and many-body wave-
functions Φn ({Q}, {x}). {x} represents all electronic
degrees of freedom and {Q} represent all ionic coordi-
nates (which can be transformed to phonon coordinates
in the harmonic approximation). In most practical situ-
ations, however, it is more useful to describe the system
not via eigenstates of the full Hamiltonian Ĥ , but via
eigenstates of a simpler Hamiltonian Ĥ0 that encodes
the essential physics of the system.62 Eigenstates of Ĥ0

can be written as a product of the electronic and the
ionic part. The term ∆Ĥ = Ĥ − Ĥ0 is then the per-
turbation that causes transitions between eigenstates of
Ĥ0. These transitions should be rare in order to ensure
that the Hamiltonian Ĥ0 captures the essential physics
of the system.62 The part of ∆Ĥ that is due to the ions
and that induces transitions between different electronic
states, such as in the case of nonradiative carrier capture,
is the electron-phonon coupling ∆Ĥe−ph. The remaining
piece describes electron-electron and phonon-phonon in-
teractions that are not discussed further.
The time scale associated with carrier capture pro-

cesses in semiconductors is usually much larger than both
phonon lifetimes and periods of lattice vibrations (an as-
sumption that has to be verified a posteriori). As a re-
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sult, the most convenient starting point to describe a cou-
pled system of electrons and ions is the so-called static
approximation.9,12,15 In this approximation, which we
will adopt here, the total wavefunction of the system can
be written as Ψ ({Q0}, {x})χ({Q}), where Ψ ({Q0}, {x})
is the electronic wavefunction calculated for a chosen
ionic configuration {Q0}, and χ({Q}) is the ionic wave-
function. The choice of {Q0} will be discussed in Sec.
III F.
Let the many-body electronic wavefunction that de-

scribes a hole in the valence band (which is perturbed
by the presence of the defect) and a negatively charged
defect be Ψi ({Q0}, {x}). This is the excited (initial) elec-
tronic state. The electronic wavefunction that describes
a hole trapped on a defect (yielding a neutral charge state
of the center) is Ψf ({Q0}, {x}). This is the ground (fi-
nal) electronic state. The associated ionic wavefunctions
are χim ({Q}) and χfn ({Q}), where n and m are quan-
tum numbers for ionic states.
At finite temperatures T free holes occupy various elec-

tronic states according to the Fermi-Dirac or, in the non-
degenerate case, the Boltzmann distribution. As a result,
they cannot be described by a single initial state Ψi ({x}).
The carrier capture rate that is experimentally measured
is the weighted average over all initial electronic states.
We adopt an approximation that charge carriers can be
represented by a single initial electronic state; see Chap-
ter 14.3 of Ref. 16 for a more in-depth discussion. In the
case of the non-degenerate hole or electron gas, this spe-
cial state represents particles with a thermal velocity; in
the degenerate case the special state represents particles
at the Fermi surface.
In this work, we consider the interaction within the

first order of electron-phonon coupling. Under this as-
sumption, the capture rate r that enters into Eq. (2)
is given by Fermi’s golden rule (see, e.g., Sec. 14.2 of
Ref. 16):

r =
2π

~
g
∑

m

wm

∑

n

∣
∣
∣∆H

e−ph
im;fn

∣
∣
∣

2

δ(Eim − Efn). (4)

Here wm is the thermal occupation of the vibrational
state m of the excited electronic state, and Eim and Efn

are total energies of the initial and the final vibronic
state. g is the degeneracy factor of the final state; it
reflects the fact that there might exist a few equivalent
energy-degenerate (or nearly degenerate) atomic configu-
rations of the final state. For example, the neutral charge
state of LiZn in ZnO can correspond to four different lat-
tice relaxations in which the hole is localized on one of the
four surrounding oxygens,63–66 yielding g = 4. Similarly,
g = 4 for GaN:CN.

38 We do not distinguish between axial
and azimuthal configurations in the wurtzite structure.

In the equation above, ∆He−ph
im;fn is the electron-phonon

coupling matrix element. In the static approach,9,14

∆Ĥe−ph = Ĥ ({Q}, {x})− Ĥ ({Q0}, {x}).
To make the problem more tractable, subsequent ap-

proximations need to be employed. The first of those

is the linear-coupling approximation.16 In this approxi-
mation ∆Ĥe−ph is Taylor-expanded in {Q} around {Q0}
(see Sec. III F), and only the first-order terms are re-

tained. The matrix element ∆He−ph
im;fn is then given by:

∆He−ph
im;fn =

∑

k

〈

Ψi

∣
∣
∣∂Ĥ/∂Qk

∣
∣
∣Ψf

〉

︸ ︷︷ ︸

Wk
if

〈χim |Qk −Q0;k|χfn〉

(5)
The sum runs over all phonon modes Qk, and Q0;k is
the projection of the initial atomic configuration {Q0}
along each of the phonon coordinates. W k

if is the
electron-phonon coupling matrix element pertaining to
the phonon k. Equations (2), (4) and (5) form the start-
ing point for our computational determination of Cp.

C. Vibrational problem

The approximations introduced so far are fairly stan-
dard and have been employed in previous work.2,9,12,15

Here we introduce an additional approximation, relat-
ing to the phonon coordinates, which will turn out to be
essential for making the calculations of electron-phonon
matrix elements feasible. In particular, we will consider
only one special phonon mode that replaces the sum over
all vibrational degrees of freedom in Eq. (5). The choice
of the phonon mode is motivated by the following rea-
soning. We are dealing with deep levels, with ionization
energies ∆E that are usually many times larger than the
energy of the longitudinal optical phonon (which has the
largest energy of all phonon modes). This is the reason
why a single phonon process is not sufficient to couple
the two electronic states, and a MPE is necessary. The
phonons that contribute most to the the sum in Eq. (5)
are those that couple most strongly to the distortion of
the defect geometry during the carrier capture process.
This is ensured by the second factor in Eq. (5), since this
expression vanishes for those modes that do not couple
to this distortion.
This approach is supported by results that have been

obtained in the case of radiative transitions. In the
case of luminescence at defects with strong electron-
phonon interactions, as quantified by their Huang-Rhys
factors5 S ≫ 1, it is possible to show numerically that
replacing many participating phonon coordinates with
one carefully chosen effective phonon mode is an ex-
cellent approximation.67 This conclusion is in line with
an empirical finding that it is often possible to describe
the temperature dependence of broad defect lumines-
cence bands considering only one effective vibrational de-
gree of freedom.16,32 This special mode corresponds to
an effective vibration21,67 where the displacement of an
atom α along the direction t={x, y, z} is proportional to
∆Rαt=Ri;αt − Rf ;αt, where R{i,f};αt are atomic coordi-
nates in the equilibrium configuration of the excited (ini-
tial) and the ground (final) state. In this one-dimensional
model the generalized configuration coordinate Q for val-
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ues of atomic positions Rαt that correspond to this dis-
placement is

Q2 =
∑

α,t

mα (Rαt −Rf ;αt)
2
, (6)

where mα are atomic masses. The geometry of the
ground state (final state f) corresponds to Q=0, while
the geometry of the excited state (initial state i) corre-
sponds to Q=∆Q with

(∆Q)2 =
∑

α,t

mα∆R
2
αt, (7)

In this description the configuration coordinate of Eq.
(6) has units of amu1/2Å (amu - atomic mass unit). We
will give a brief description of changes of the defect ge-
ometry encoded in ∆Q when discussing specific systems
in Section IV. The plot that shows the total energies
in the ground and the excited states E{i,f} as a func-
tion of Q is called the configuration coordinate diagram
(cc diagram)16; we have shown a schematic example in
Fig. 1(b). The frequency of the effective vibration in the
ground and the excited state is given as

Ω2
{i,f} =

∂2E{i,f}

∂Q2
. (8)

An auxiliary quantity (∆R)
2
=
∑

α,t ∆R
2
αt, allows to de-

fine the modal mass of the vibration via ∆Q=M1/2∆R.21

The knowledge of M is useful for interpreting the value
of Ω for different defects.67 A very useful dimensionless
quantity is the Huang-Rhys factor, defined as5,67

S{i,f} =
1

2~
(∆Q)2Ω{i,f}. (9)

The case S ≫ 1 corresponds to large lattice relaxations
associated with the change of the charge state. We note
that the special mode Q is not an eigenstate of the vi-
brational Hamiltonian, but it serves as a very useful ap-
proximation and has a clear physical meaning. Possible
errors introduced by the use of the one-dimensional ap-
proximation are critically reviewed in Sec. VB.

D. Electron-phonon matrix elements

Thanks to the one-dimensional (1D) approximation de-
scribed in Sec. III C we have to determine only a single
electron-phonon coupling matrix element:

Wif =
〈

Ψi

∣
∣
∣ ∂Ĥ/∂Q

∣
∣
∣Ψf

〉

. (10)

At this stage, Ψ{i,f} are still many-electron wavefunc-

tions, and Ĥ is the many-body Hamiltonian of the sys-
tem. In an independent-particle picture corresponding
to the (generalized) Kohn-Sham approach of DFT, we

will assume that the many-body Hamiltonian and many-
electron wavefunctions in Eq. (10) can be replaced by

their single-particle counterparts ĥ and ψ{i,f}, i.e.:

Wif =
〈

ψi

∣
∣
∣ ∂ĥ/∂Q

∣
∣
∣ψf

〉

. (11)

Whereas wavefunctions Ψ{i,f} describe the entire elec-
tronic system, single-particle wavefunctions ψ{i,f} have
a different meaning: ψi corresponds to the hole in the
valence band perturbed by the presence of the defect,
and ψf is the localized defect state. Indeed, for pertur-
bation theory to be physically meaningful, both states
ψ{i,f} have to be eigenstates of the same Hamiltonian:
the initial state has to correspond to the perturbed hole
state rather than a hole state in an unperturbed bulk
material.
To calculate electron-phonon matrix elements we use

hybrid functionals within the PW-PP approach, as dis-

cussed in Sec. III A. Therefore, ĥ contains nonlocal Fock
exchange, as well as the nonlocal part of pseudopoten-
tials. These terms would have to be calculated explicitly
if Eq. (11) were used. To avoid such a cumbersome pro-
cedure, it is extremely convenient to use an alternative
expression that follows directly from perturbation theory
[e.g., Eq. (28) in Ref. 27]:

Wif =

〈

ψi

∣
∣
∣
∣
∣

∂ĥ

∂Q

∣
∣
∣
∣
∣
ψf

〉

= (εi − εf)

〈

ψi

∣
∣
∣
∣

∂ψf

∂Q

〉

(12)

In this expression the main effort in calculating the ma-
trix element boils down to the calculation of the deriva-
tive ∂ψf/∂Q. This is accomplished by evaluating the
derivative numerically via finite differences, as discussed
for specific defects in Sec. III F.

E. Bulk scattering states

The methodology outlined in Sec. III B above relies
on calculating the capture rate r for one hole, with a fi-
nite velocity, at one defect in the entire (large) volume
V . The role of all other carriers is to screen the long-
range Coulomb interaction between the hole and the de-
fect. The electron-phonon coupling matrix element for
one special phonon mode is determined via Eq. (12), and
the capture coefficient Cp is subsequently determined via
Eqs. (2), (4) and (5). Only one phonon coordinate is
retained in expression (5).
The problem with this formulation is the following.

Actual calculations are performed for a system with a
relatively small volume, the supercell with a volume Ṽ
that is constrained by computational limitations. While
there is plenty of evidence that the localized defect state
ψf is accurately represented in such supercell calcula-
tions, this is not necessarily the case for the initial per-
turbed bulk state ψi. In particular, if the capturing cen-
ter is charged, the screened Coulomb interaction between
the defect and the carrier significantly affects the capture
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processes. Such interactions are not well represented in
the supercell calculation. Let us picture, as an example,
a charge carrier with a vanishing kinetic energy being
captured at a repulsive center. As the size of the sys-
tem V grows, the particle is expelled further and further
away from the defect. In the limit of an infinite volume
V , and zero kinetic energy of the charge carrier, the cap-
ture rate would tend to zero. However, in the supercell
of volume Ṽ the carrier cannot be expelled to infinity,
and the capture rate remains finite, which is an incorrect
physical result. Similar considerations also apply to at-
tractive centers and emphasize the need for a correction
term, which we discuss here.

Let the electron-phonon coupling matrix element cal-
culated in the computational supercell be W̃if . It is cal-
culated via the equation, similar to Eq. (12):

W̃if =

〈

ψ̃i

∣
∣
∣
∣
∣

∂ĥ

∂Q

∣
∣
∣
∣
∣
ψf

〉

= (εi − εf )

〈

ψ̃i

∣
∣
∣
∣

∂ψf

∂Q

〉

(13)

Here, ψ̃i is the bulk wavefunction in the supercell of vol-
ume Ṽ , chosen to be at the Γ point of the supercell. Let
the corresponding carrier capture coefficient, determined
via equations analogous to Eqs. (2)-(5), whereby all the
parameters of the real system are substituted with cor-
responding values from the supercell calculation, be C̃p.
Similar to the procedure proposed in Refs. 68 and 69 we
express the actual capture coefficient as

Cp = f (n, p, T ) C̃p, (14)

where f (n, p, T ) is a dimensionless scaling factor that de-
pends on the reference calculation used to determine the
matrix element W̃if , the charge state of the defect, as well
as environmental parameters: electron density n, hole
density p, and temperature T . Bonch-Bruevich68 and
later Pässler69 provided analytic expressions of f(n, p, T )
for both repulsive and attractive centers. In the present
Section we derive an expression of f(n, p, T ) in the con-
text of our supercell approach. Our analysis follows that
of Pässler,69 but is adapted for use in conjunction with
supercell calculations of defects.

The function f(n, p, T ) can in principle be constructed
using a first-principles approach. However, such a cal-
culation would be very cumbersome and not particularly
useful at this point, keeping in mind that other, more lim-
iting approximations have already been made. Instead
we employ a model calculation to determine f(n, p, T ).

Let us assume that the perturbed bulk wavefunction ψi

in the real physical system can be described as a product
of the wavefunction that reflects the atomic-scale behav-
ior ξi and the envelope wavefunction φi that changes on
a scale larger than the unit cell: ψi = ξiφi. We chose the
normalization condition for φi to be the same as for ψi. ξi
is a fast-varying dimensionless function. Such a descrip-
tion is in the spirit of the effective-mass approximation.70

The electron-phonon coupling matrix element Wif can

then be expressed as

Wif ≈ φi(0)

〈

ξi

∣
∣
∣
∣
∣

∂ĥ

∂Q

∣
∣
∣
∣
∣
ψf

〉

= φi(0)wif , (15)

where φi(0) is the value of the envelope wavefunction
at the defect site, and a new matrix element wif was
introduced. According to the methodology described in
Secs. III B, III C, and IIID [Eqs. (2), (4), (5), (11), and
(15)] the capture coefficient is then proportional to

Cp ∼ V |φi(0)|2 |wif |2. (16)

Here, V is the large volume of the material introduced in
Sec. III B. In the region where the potential of impurities
is negligible |φi| = 1/

√
V . Because of the interaction with

the impurity, |φi(0)| can have a different value.
Let us assume that the perturbed bulk state in the

computational supercell can also be written in terms of
a similar product, i.e., ψ̃i = φ̃iξi. Because of its local-
ized nature, the defect wavefunction ψf is the same in

the supercell of volume Ṽ as in a large volume V . By
definition, the same holds for the “atomic” part of the
bulk wavefunction ξi. As a result,

W̃if =

〈

ψ̃i

∣
∣
∣
∣
∣

∂ĥ

∂Q

∣
∣
∣
∣
∣
ψf

〉

(17a)

≈ φ̃i(0)

〈

ξi

∣
∣
∣
∣
∣

∂ĥ

∂Q

∣
∣
∣
∣
∣
ψf

〉

= φ̃i(0)wif (17b)

Accordingly:

C̃p ∼ Ṽ |φ̃i(0)|2|wif |2. (18)

Therefore, from Eqs. (14), (16), and (18):

f (n, p, T ) =
V |φi(0)|2

Ṽ |φ̃i(0)|2
. (19)

In practice, we use the following procedure. The value
V [φi(0)]

2 is determined by considering a scattering prob-
lem for a particle with a finite momentum k,71 which
we take to be the thermal momentum kT for the non-
degenerate case. Far from the scattering center the wave-
function is normalized as required by the formulation of
our problem (V [φi(r)]

2 = 1 for r → ∞). Within the
s-wave approximation,71 the value of the wavefunction
at the origin is determined by a numerical integration
of the Schrödinger equation for the l=0 angular momen-
tum component of the scattering wavefunction with an
asymptotic form that corresponds to our normalization.
The scattering potential that we use is

V (r) =
Z

ε0r
erf(r/r0) exp(−r/λ). (20)

Here ε0 is the low-frequency dielectric constant of the
host material, r0 is the extent of the defect wavefunc-
tion, and λ is the screening length due to the presence
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of other charge carriers, as discussed at the beginning of
Sec. III B. In the case of a non-degenerate gas we use
the Debye-Hückel screening length that depends on T
and on the carrier densities n, p, explaining the overall
dependence of f on these parameters. At room temper-
ature, the hole gas is non-degenerate up to densities of
p ∼ 1019cm−3 in both GaN and ZnO.
The value of V [φi(0)]

2 is obtained by consideration of
the scattering problem with the potential in Eq. (20).
We determine r0 by comparing the behavior of the bulk
wavefunction in the presence of a charged defect in the ac-
tual supercell calculation with the wavefunction obtained
from a model supercell calculation within the effective-
mass approximation. r0 is chosen so that the behavior of
the envelope wavefunction in the model supercell calcu-
lation accurately represents the behavior of the envelope
function in a real calculation. This model supercell cal-
culation also yields the value of Ṽ |φ̃i(0)|2.
For an attractive Coulomb potential (Z < 0) the prob-

lem can be solved analytically.69,71 When k ≪ 1/a∗B,
where a∗B is the effective Bohr radius in the material,
f(k) ∼ 1/k [see Eq. (4.4) in Ref. 69]. For the potential
in Eq. (20), we find numerically that the behavior of car-
riers is also very accurately described by a form f = A/k,
in which k is the average thermal momentum of holes and
A is a constant. The results show that f depends very
weakly on λ, which in turn depends on carrier density;
therefore we can use a density-independent scaling func-
tion. For the non-degenerate hole gas ~k = (3kBmT )

1/2

(kB is the Boltzmann constant), and thus the scaling
function depends only on temperature:

f(T ) =
C

T 1/2
, (21)

where C is a constant determined numerically. For the
two attractive centers considered in the present study
(GaN:CN and ZnO:LiZn) we found C ≈ 150 K1/2 when

the electron-phonon matrix element W̃if is determined
for a neutral charge state for reasons discussed in Sec.
III F. In the scattering problem, we assumed effective
hole massesmh=1.0 for GaN,72,73 and 0.6 for ZnO.74 For
attractive centers and temperatures considered in this
work (T < 1000 K) f > 1.
This result is intuitive and can be explained as follows.

Close to the defect the wavefunction of the hole has a
larger amplitude with respect to its asymptotic value far
away from the defect; in the classical reasoning, the hole
spends more time near the defect due to Coulomb at-
traction. The function f reflects this enhancement. For
example, the factor f is about 10 at room temperature.
The third defect considered in our work, GaN:(ZnGa-

VN), captures holes in a neutral charge state (see Sec.
IVC), thus there are no long-range Coulomb interactions
between the defect and the hole. However, the electron-
phonon coupling matrix element is calculated in the pos-
itively charged state (96-atom supercell), as discussed in
Sec. III F. In this case we find f = 1.05. This implies
that in the supercell calculation the hole is repelled from

the defect more than in the actual situation.
In the case of repulsive centers f depends sensitively

both on temperature (f ∼ exp(−a/T 1/3),68 and on the
density of charge carriers. Repulsive centers are not con-
sidered in this work.

F. Initial state for perturbation theory

The actual quantity that is calculated is the capture co-
efficient C̃p that corresponds to our computational setup.
The expression can be derived from Eqs. (2), (4), and (5),
whereby all quantities correspond to the parameters in
the supercell calculation (rather than the actual system)
and only one phonon mode is retained in Eq. (5):

C̃p = Ṽ
2π

~
gW̃ 2

if

∑

m

wm

∑

n

|〈χim|Q−Q0|χfn〉|2

×δ(∆E +m~Ωi − n~Ωf ). (22)

W̃if is given via Eq. (13). For numerical evaluation, the
δ function is replaced by a smearing function of finite
width, a practice also employed in calculating lumines-
cence lineshapes.67 In this section we address the fol-
lowing questions: (i) which atomic configuration {Q0}
should we choose as a starting point for perturbation
theory and (ii) for which charge state should we calcu-

late the electron-phonon matrix element W̃if in Eqs. (13)
and (22)?
During a nonradiative process the carrier in a delocal-

ized state is captured to a localized defect state. Thus,
in the configuration {Q0} a single-particle defect level
should be well defined and be in the bulk band gap.
This is the single most important criterion for the choice
of {Q0}. Let us consider acceptor defects GaN:CN and
ZnO:LiZn as an example. As before, we study the capture
of a hole by a negatively charged acceptor [process (1) in
Fig. 1(b)]. Actual first-principles calculations show that
in the case of neutral acceptors in their equilibrium ge-
ometries there is indeed one clearly distinguishable empty
defect level in the band gap, representing a trapped hole.
In contrast, in the case of the negatively charged de-
fect in its equilibrium geometry the supercell calcula-
tion produces one or more diffuse single-particle defect
states that have moved down in energy and that couple
strongly with bulk states. However, when the calcula-
tion is performed for the same negatively charged accep-
tor but rather in the equilibrium geometry of the neutral
system, one doubly-occupied single-particle defect state
moves up in energy and into the band gap. A defect state
to which the hole is being captured can be clearly iden-
tified again. The bottom line is that, when {Q0} corre-
sponds to the equilibrium geometry of the neutral charge
state, a single-particle defect state can be clearly identi-
fied in both the neutral and the negative charge states.
This choice of {Q0} thus yields good single-particle wave-
functions for perturbation theory.
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For this particular choice of {Q0} the electron-phonon

coupling constant W̃if can be then calculated for either
the neutral or the negatively charged state. We find that
the W̃if values calculated for the two states differ by
about 5%. However, a different charge state for the cal-
culation of the electron-phonon coupling matrix element
yields a different scaling function f , as discussed in Sec.
III E [Eq. (19)]. In the end, the calculated capture rates
are within 1% of each other. This result is reassuring,
and also tells us something about the physics: the de-
fect wavefunction does not change much when the defect
state is filled with an electron.

If the band structure is such that the highest occupied
states correspond to several closely spaced valence bands
(which is the case for the most commonly used semicon-
ductors) attention needs to be devoted to the choice of
the valence band that represents the hole wave function.
For example, the highest occupied states at the zone cen-
ter of wurtzite-phase semiconductors, such as GaN and
ZnO, consist of the heavy-hole (HH), light-hole (LH), and
crystal-field split-off (CH) bands.75 The splitting between
LH and HH is mainly due to the spin-orbit interactions,
and is only a few meV for these two materials. Crystal-
field effects are larger, and the CH band is ∼20 meV
below the valence-band maximum (VBM) in GaN, and
∼60 meV in ZnO.76 Strain or effects of confinement in
quantum wells could modify the splitting and ordering of
these bands, and in an actual sample, the density of holes
in each band is determined by the thermal occupation.
For example, in bulk ZnO the CH band will be much
less populated with holes than the other two bands at
room temperature, and this can be relevant experimen-
tally (see Sec. IVB). Since we do not know a priori which
valence band(s) will play the most important role in spe-
cific experimental situations, we explicitly calculate the
electron-phonon coupling to all three valence bands in
the supercell.

The use of the supercell itself introduces an additional
complication, since the splitting between the bands and
their ordering can be significantly affected by the de-
fect. We find that the valence band that interacts most
strongly with the defect state is always pushed below the
other two bands. However, while the precise energetic
position of the bands may be affected, we find that the
character of the valence bands is generally retained in de-
fect supercells, allowing us to meaningfully calculate the
electron-phonon coupling matrix elements for the sepa-
rate valence bands. While these matrix elements could
in principle be explicitly employed in calculations that
reflect specific experimental conditions, for purposes of
reporting our results in the present paper the matrix ele-
ment of Eq. (10) that enters into the final calculations is
defined as the mean-square average of the three separate
matrix elements.

Here, we illustrate the calculation of W̃if for two spe-
cific defects, CN in GaN and LiZn in ZnO. The calculation
of the electron-phonon matrix element W̃if using Eq. (13)
is shown in Fig. 2. Panel (a) shows the single-particle
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FIG. 2: Calculation of the electron-phonon matrix element
W̃if using Eq. (13) for GaN:CN and ZnO:LiZn. (a) Eigenval-
ues of defect and bulk wavefunctions as a function of Q. (b)

The overlap
〈

ψ̃i(0)
∣

∣

∣ψf (Q)
〉

as a function of Q.

eigenvalues as a function of a generalized coordinate Q,
where Q0, corresponding to the geometry of the neutral
defect state, is set to 0. The eigenvalues are referenced to
the VBM. In the case of a defect immersed in infinite bulk
the eigenvalues of bulk states should not be dependent
on Q. This condition is fulfilled in our supercell calcu-
lations [Fig. 2(a)]. In contrast, the defect state shows a
pronounced linear dependence on Q. For the calculation
of W̃if the value of εf − εi at Q = 0 is taken.

In Fig. 2(b) the overlap integral
〈

ψ̃i(0)
∣
∣
∣ψf (Q)

〉

is

plotted as a function of Q for all three valence bands.

The derivative
〈

ψ̃i

∣
∣
∣ ∂ψf/∂Q

〉

used for the calculation

of the matrix element in Eq. (13) was determined from
a linear fit to this dependence. The coupling to one of
the three valence bands can be as much as two orders of
magnitude larger than for the other bands, as discussed
above.

G. Brief summary of the methodology

To recap, we determine the carrier capture rate that
is specific to our supercell geometry using Eq. (22). Ṽ
is the volume of the supercell; g is the degeneracy of
the final state; W̃if are electron-phonon coupling matrix
elements, given in Eq. (13) [cf. Fig. 2]; ∆E is the energy
difference between the ground and excited state, and is
given by the position of the charge-state transition level
above the VBM18; Q=Q0=0 is chosen to correspond to
the equilibrium atomic configuration of the ground state;
the equilibrium atomic configuration of the excited state
is offset by Q=∆Q [Eq. (7)]. All these quantities are
summarized in Table I. In addition, we provide Huang-
Rhys factors Sf [Eq. (9)]. δ-functions in the sum Eq. (22)
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are replaced by Gaussians with widths σ=0.8~Ωf .
67

Finally, the actual carrier capture coefficient Cp is ob-

tained via Cp = fC̃p [Eq. (14)] with the scaling function
f . As discussed in Sec. III E, the calculation of f may
require a simulation in its own right; for the case of hole
capture by a negatively charged defect, when the refer-
ence system is that of the neutral charge state, we use the
form Eq. (21) for f . This is the situation that occurs in
the examples of GaN:CN and ZnO:LiZn, to be discussed
in Secs. IVA and IVB. For the case of hole capture by
a neutral defect, which applies to GaN:(ZnGa-VN) to be
discussed in Sec. IVC, the reference system is that of
a positive charge state and f = 1.05 for our particular
supercell.

IV. RESULTS

To illustrate our methodology, we study two defects
in GaN, namely carbon on the nitrogen site (GaN:CN)
and a complex of zinc on a gallium site with a nitro-
gen vacancy (GaN:(ZnGa-VN)), as well as one defect in
ZnO, namely lithium on the zinc site (ZnO:LiZn). Exper-
imental identification of defects is often very difficult and
frequently controversial. In order to check our methodol-
ogy, we wanted to identify benchmark cases where the ex-
perimental situation is clear-cut. GaN:CN and ZnO:LiZn
serve this purpose.
Although the focus is on nonradiative transitions, lu-

minescence experiments are frequently used to analyze
rates of the various processes, radiative as well as non-
radiative. There is general consensus that GaN:CN gives
rise to a yellow luminescence band,36,78,79 and ZnO:LiZn
to an orange luminescence band.37,66 These two bands
arise due to the recombination of an electron in the con-
duction band and a hole bound to a defect. In both of
these cases the acceptor level is in the lower part of the
band gap.
Nonradiative hole capture rates for deep acceptors can

be determined from luminescence experiments in the fol-
lowing way.80 In n-type samples photo-generated holes
are captured by acceptors in a predominantly nonradia-
tive process (this conclusion stems from the fact that the
resulting capture rates are orders of magnitude higher
than possible radiative capture rates, as discussed in Sec.
II). Subsequently, these captured holes recombine with
electrons in the conduction band, a process believed to
be predominantly radiative, giving rise to the aforemen-
tioned luminescence bands.80

When the temperature is increased, the radiative tran-
sition is quenched because captured holes are re-emitted
back into the valence band. Therefore, the measurement
of the thermal quenching of a particular luminescence
band as a function of temperature provides information
about the hole emission coefficient Qp. The parame-
ters needed to determine Qp using this procedure are
the radiative lifetime τrad = 1/Cnn, measured separately
from time-dependent photoluminescence decay, and the

quantum efficiency of the band with respect to all other
recombination channels.80 The hole capture coefficient
Cp is determined from Qp using the detailed balance
equation.2,80 For acceptors in GaN and ZnO nonradia-
tive hole capture coefficients determined in this way are
summarized in Ref.35.
The GaN:(ZnGa-VN) defect, finally, has been included

in order to compare our approach to that of Ref. 25,
where nonradiative hole capture at this defect was stud-
ied.

A. CN in GaN

1. GaN:CN and yellow luminescence

Carbon is one of most abundant impurities in GaN,
especially if grown by metal organic chemical vapor de-
position, where organic precursors are used. A clear link
has been established36,78 between the concentration of
carbon and the intensity of a yellow luminescence (YL)
band that peaks at about 2.2 eV. Contrary to earlier
suggestions of carbon being a shallow acceptor, Lyons et
al. have shown, using hybrid density functional calcula-
tions, that carbon on the nitrogen site is in fact a deep
acceptor.79 Calculations77,79,81 yield a (0/−) charge-state
transition level ∆E=0.9-1.1 eV above the VBM. In con-
junction with a large lattice relaxation this corresponds
to a peak very close to 2.2 eV for the optical transi-
tion whereby a neutral defect captures an electron from
the conduction band. Recently we have employed first-
principles calculations to determine effective parameters
(average phonon frequencies and the Huang-Rhys fac-
tors, see Sec. III C and Table I) that describe the shape
and temperature dependence of luminescence bands. In
the case of CN excellent agreement with experimental
results35,36 was demonstrated.67

2. Configuration coordinate diagram

A 1D cc diagram relevant for the capture of holes at
GaN:CN is shown in Fig. 3. The excited state corre-
sponds to the defect in the negative charge state and
a hole in the valence band, and the ground state cor-
responds to a neutral charge state. The configuration
coordinate Q was described in Sec. III C, and is the same
as used in our calculations of luminescence lineshapes.67

In the case of GaN:CN,
79 the biggest contribution to ∆Q

comes from the relaxation of C and Ga atoms, which
results in the shortening of C-Ga bond lengths, by 8%
along one direction and 1% along the other directions, as
the charge state changes from neutral to −1. A smaller
contribution to ∆Q comes from the outward relaxation
of next-nearest N atoms. Potential energy surfaces in
the two charge states were mapped along this configura-
tion coordinate. The separation between the minima of
the two potential energy surfaces ∆E corresponds to the
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TABLE I: Key parameters for the three defects studied in this work: total mass-weighted distortions ∆Q [Eq. (7)], ionization
energies ∆E, energies of effective vibrations ~Ω{i,f} [Eq. (8)] (charge state is given in parentheses), Huang-Rhys factors for the

final state [Eq. (9)], degeneracy factor g of the final state [cf. Eq. (4)), electron-phonon coupling matrix elements W̃if [Eq. (13)
and Fig. 2; the charge state of the defect for which the matrix element is calculated is shown in parentheses], and volume of

the supercell Ṽ in first-principles calculations.

∆Q (amu1/2Å) ∆E (eV) ~Ωi (meV) ~Ωf (meV) Sf g W̃if (eV/amu1/2Å) Ṽ (Å3)
Defect theory expt.
GaN:CN 1.61 1.02 (this work) 0.85a 42 (−) 36 (0) 10 4 6.4× 10−2 (0) 1100
ZnO:LiZn 3.22 0.80b, 0.49c, 0.46d 0.53e 36 (−) 25 (0) 28 4 3.9× 10−2 (0) 1136
GaN:(ZnGa-VN) 3.33 0.90f, 0.88 (this work) − 26 (0) 22 (+) 30 1 1.0 × 10−2 (+) 1100

aRef.77
bRef.64
cRef.65
dRef.66
eRef.33
fRef.25
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FIG. 3: (Color online) Calculated 1D cc diagram for hole cap-
ture at the CN defect in GaN [process (1) in Fig. 1(b)]. Sym-
bols: calculated values; solid line: parabolic fit. The defect in
its negative charge state captures a hole, thus becoming neu-
tral. ∆E is the energy difference between the minima of the
two potential energy curves, ∆Erel is the relaxation energy in
the ground state, ∆Eb is the “classical” barrier for the nonra-
diative process, and ∆Q is the displacement between the two
potential energy curves [Eq. (7)].

energy of the (0/−) charge-state transition level with re-
spect to the VBM. Our calculated value for ∆E=1.02 eV
is slightly larger than the one reported in Ref. 79 due to
more stringent convergence criteria. The minima of the
two potential energy surfaces are offset horizontally by
∆Q=1.61 amu1/2Å [Eq. (7)]. An important parameter is
the relaxation energy in the ground state ∆Erel [Fig. 3].
For C0

N calculations yield ∆Erel=0.37 eV.

The two potential energy curves intersect at ∆Eb=0.73
eV above the minimum of the excited state. We might
thus expect that the nonradiative carrier capture is a
temperature-activated process, since the coupling be-
tween two potential energy surfaces is always most ef-

ficient close to the crossing point.3

3. Calculated hole capture coefficients

The real situation is not so straightforward because
of the occurrence of two competing factors. On the one
hand, when the temperature is raised, higher-lying vi-
brational levels χim of the excited electronic state [see
Eqs. (4) and (22)] become populated. Vibrational lev-
els that are closer in energy to the crossing point of the
two potential energy curves yield larger contributions to
the overall rate. Thus, if this was the only factor, the
nonradiative capture rate for GaN:CN would increase as
a function of temperature. On the other hand, however,
the scaling factor f(T ) decreases with temperature, as
per Eq. (21), because an increasingly faster hole has less
chance of being captured by a negative acceptor.
It is instructive to consider the first effect separately.

In Fig. 4 we show the calculated nonradiative hole cap-
ture rate if the second effect is completely neglected, i.e.,
for f = 1. This is the capture rate C̃p that is discussed
in Section III E. The process is indeed temperature-
activated. At high temperatures, the dependence is often
fitted to a function of the form

C̃p(T ) = C0 + C1exp(−∆E′
b/kT ) (23)

with a temperature-independent part and a temperature-
activated part. The use of such a form is at the core of
the famous Mott-Seitz formula for temperature quench-
ing of luminescence bands.3 The fit is shown in Fig. 4.
From the fit one can derive an effective barrier ∆E′

b=0.23
eV, which is significantly smaller than the “classical” bar-
rier ∆Eb=0.73 eV. This is a typical result and happens
because of the quantum-mechanical tunneling3 that is
considered in the quantum treatment but absent in a
classical description.
The actual hole capture coefficient, including the scal-

ing factor [Eq. (21)], is presented in Fig. 5 (solid black
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FIG. 4: “Nominal” nonradiative hole capture rate C̃p

[Eq. (22)] at the CN defect in GaN as a function of tem-
perature. Solid line: calculations; dotted line: a fit according
to Eq. (23).

line). At T=300 K, our calculated value is Cp = 3.1 ×
10−9 cm3s−1. To determine the sensitivity of the final
result on the parameters of our calculation, we have also
determined the capture coefficient for ∆E=1.02±0.05 eV
(Fig. 5). A change in ∆E by just 0.05 eV translates into
a change of Cp by a factor of ∼ 3− 4 (black dashed lines
in Fig. 5). Since ∆Erel < ∆E (cf. Fig. 3), larger values
of ∆E yield larger barriers ∆Eb and therefore smaller
capture coefficients Cp. The strong dependence of nonra-
diative transitions on ∆E is well documented,3 and was
recently emphasized again in Ref. 25. This sensitivity
stems from the temperature-activated behavior discussed
in the preceding paragraphs. We can consider the range
of capture coefficients Cp shown in Fig. 5 to represent
a theoretical “error bar” regarding the 0 K value of ∆E
that is used in the calculation.

4. Comparison with experiment

In Refs. 35 and 77 the hole capture coefficient Cp for
CN was determined in the temperature range 500-700 K,
at which quenching of the luminescence occurs. Cp was
assumed to be weakly dependent on temperature in this
range, and the values obtained for different samples were
Cp = 3× 10−7 and 6× 10−7 cm3s−1.35 These results are
shown by horizontal dotted lines and diamonds in Fig. 5.
At T=600 K, i.e., the midpoint of the 500-700 K temper-
ature range where the quenching occurs, our calculated
value for ∆E = 1.02 eV is Cp = 3.1 × 10−8 cm3s−1,
i.e., about an order of magnitude smaller than the exper-
imental result. The corresponding values for ∆E=0.97
eV and 1.07 eV are 8.0 × 10−8 and 1.0 × 10−8 cm3s−1

(cf. Fig. 5). Thus, variations of ∆E by 0.05 eV do not
remove the difference between theory and experiment.
The apparent discrepancy between experiment and

theory can be explained as follows. The calculated ∆E
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FIG. 5: (Color online) Black solid line: calculated nonra-
diative hole capture rate Cp at the CN defect in GaN, for
∆E=1.02 eV, as determined from our first-principles calcula-
tions. Black dashed lines: the same for ∆E=1.02±0.05 eV.
Red solid and dotted line: the same, but for ∆E=0.89 eV,
modeling the decrease of ∆E at high temperatures. Blue dot-
ted horizontal lines and diamonds: experimental data from
Ref. 35; the latter were determined for several different sam-
ples in the temperature range 500-700 K.

of 1.02 eV corresponds to the ionization potential of the
CN acceptor at T=0 K, while the comparison with ex-
periment is made for T≈600 K. At 600 K the bulk band
gap of GaN shrinks from its T=0 K value of 3.50 eV to
about 3.24 eV.30 This decrease of the band gap will affect
the ionization potential of the acceptor. We are not in
a position to address this fully from first principles, but
we can obtain a zero-order estimate of the effect of tem-
perature on ∆E by assuming that (i) the (0/−) charge-
state transition level remains the same on the absolute
energy scale when the band gap changes,43,81,82 and (ii)
the VBM and the conduction-band minimum are equally
affected, i.e., that as a function of temperature they move
symmetrically on the same absolute energy scale. Based
on these assumptions we estimate a decrease of the ion-
ization potential by about 0.13 eV in going from 0 K
to 600 K. In Fig. 5 we have included a curve for Cp as
a function of T for ∆E=0.89 eV (red solid and dashed
curve). This curve is physically meaningful only at tem-
peratures around 600 K, corresponding to a significantly
reduced value of ∆E. At T=600 K, the calculated value
Cp = 3.1 × 10−7 cm3s−1 is in excellent agreement with
the experimental data.35,77

We thus find that significant variations of the calcu-
lated Cp can result from the temperature dependence of
∆E. For comparison with experiments carried out at
elevated temperatures this can make a difference in Cp

of about an order of magnitude. This dependence has
not been studied in the past, neither theoretically nor
experimentally. Our findings indicate that this will be a
fruitful area of future work on nonradiative carrier cap-
ture. However, even in the absence of a rigorous analysis
of the temperature dependence, we can conclude that our
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calculated values of Cp are in very good agreement with
experimental data.

B. LiZn in ZnO

1. ZnO:LiZn and orange luminescence

LiZn in ZnO is one of the most studied defects in ZnO.
While it was initially hoped that LiZn might be a shal-
low acceptor leading to p-type doping, it is now clear
that this defect is a very deep acceptor. Meyer et al.

suggested that LiZn gives rise to a broad orange lumi-
nescence (OL) band peaking at about 2.1 eV.37 The ion-
ization energy was deduced to be at least 0.5 eV. The
analysis based on the thermal quenching of luminescence
lines confirms this and yields values for the ionization
potential ∆E = 0.46 − 0.55 eV;33,35 the different val-
ues are for different ZnO samples. Recent theoretical
work based on the application of the generalized Koop-
man’s theorem83 and on hybrid density functionals63–66

has confirmed that LiZn is indeed a deep acceptor with
a ionization energy >0.3 eV. The neutral charge state of
the defect corresponds to a small polaron bound to an
oxygen atom that is adjacent to Li.

2. Configuration coordinate diagram

The calculated 1D cc diagram relevant for hole capture
by a LiZn defect in ZnO is shown in Fig. 6. The calcula-
tions were consistently performed with the HSE hybrid
functional (mixing parameter α=0.38) and resulted in a
value ∆E=0.46 eV.66 In the negative charge state the de-
fect has C3v symmetry, with an axial Li-O bond length
of 2.00 Å, only slightly larger than the azimuthal Li-O
bond lenghts of 1.96 Å. In the neutral charge state the
Li atom undergoes a very large displacement of about
0.4 Å.63–66 This results in the increase of one of the Li-O
bond lengths to 2.61 Å, and the decrease of the remaining
three to about 1.87 Å. The hole is bound to the oxygen
atom involved in the long bond64–66; three Zn atoms clos-
est to this oxygen relax outwards by about 0.16 Å.
Note, that in contrast to GaN:CN, in the case of

ZnO:LiZn ∆Erel > ∆E. Therefore, the two potential
energy curves intersect for Q < ∆Q. Another differ-
ence with GaN:CN is that the potential energy curves for
ZnO:LiZn are very anharmonic. The solid curves in Fig.
6 present parabolic fits to the potential energy values,
while dashed lines are fits to a fourth-order polynomial.
We need to make an important point here: while we use
the harmonic approximation in the present work, there
is no requirement that the parabolic fit to the poten-
tial energy surface be performed for the entire range of
Q values. Indeed, in order to capture the most essen-
tial physics we should focus on those Q values that are
relevant for the transitions under investigation, i.e., the
range of Q values where the potential energy curves cross.
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FIG. 6: (Color online) Calculated 1D cc diagram for hole
capture at the LiZn defect in ZnO. Physical quantities as in
Fig. 3. Symbols: calculated values; solid lines: parabolic fit;
dashed lines: a fit to a fourth-order polynomial. Note that
for the neutral charge state the parabolic fit is performed only
for Q > 0.

Therefore, in Fig. 6, the potential energy curve for the
neutral charge state has been fitted to a parabolic curve
only for Q > 0. The effective phonon frequencies derived
from the parabolic fits are included in Table I.

3. Calculated hole capture coefficients and comparison with

experiment

The calculated hole capture coefficient Cp for LiZn
in ZnO is shown in Fig. 7 (black solid curve). Our
room-temperature value is Cp=1.3×10−6 cm3s−1. In
Ref. 35 the capture coefficient was determined from the
quenching of the OL. The quenching occurred in the
temperature range 225-300 K, and fitting yielded values
Cp ≈ 5× 10−6 cm3s−1, as indicated in Fig. 7 (diamonds
and horizontal dashed line). To determine the sensitivity
of the final result on the value of ∆E, we have calculated
Cp for ∆E=0.46±0.05 eV. As seen in Fig. 7, changes in
∆E by 0.05 eV result in changes in Cp by about a factor
of 2. However, in contrast to GaN:CN, smaller ∆E yield
larger Cp values. This can be understood by consider-
ing the 1D cc diagram in Fig. 6. Since ∆Erel < ∆E for
all three values of ∆E, larger ∆E yield smaller barriers
∆Eb, and thus larger capture coefficients Cp.
The temperature dependence of ∆E that was impor-

tant for GaN:CN at 600 K, is not substantial for ZnO:LiZn
at 300 K. At 300 K the band gap of ZnO is lower by
about 0.03 eV compared to its 0 K value. Considerations
similar to the one performed for GaN:CN would yield a
change in ∆E by 0.015 eV, translating into a change of
Cp by at most 10%.
Both theory and experiment thus confirm that the co-

efficient Cp for ZnO:LiZn is larger than that for GaN:CN
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FIG. 7: (Color online) Solid black line: calculated nonradia-
tive hole capture coefficient Cp at the LiZn defect in ZnO, for
∆E=0.46 eV, as determined from our first-principles calcula-
tions. Black dashed lines: the same, but for ∆E=0.46±0.05
eV. Blue dashed lines and diamonds: experimental data from
Ref. 33.

by about an order of magnitude. The main reason is the
fact that the potential energy curves for ZnO:LiZn inter-
sect close to the minimum of the excited state (Fig. 6),
rendering the nonradiative process more likely even at
low temperatures. In addition, we find that the tem-
perature dependence of Cp is significantly weaker for
ZnO:LiZn than in the case of GaN:CN. This is because
the “classical” barrier ∆Eb for the nonradiative transi-
tion is very small for ZnO:LiZn (Fig. 6).
Overall, we can again conclude that first-principles cal-

culations of hole capture coefficients at ZnO:LiZn agree
very favorably with experimental data.

C. ZnGa-VN in GaN

1. Defect properties and configuration coordinate diagram

To compare our methodology with the approach used
in Ref. 25, we have also studied hole capture by a neutral
ZnGa-VN complex in GaN, the example that was stud-
ied in that work. In contrast to GaN:CN and ZnO:LiZn,
GaN:(ZnGa-VN) is a deep donor with (+2/+) and (+/0)
charge-state transition levels in the lower part of the band
gap. Its defect wavefunction is derived mostly from Ga
states. To the best of our knowledge, no direct experi-
mental data is available for this defect.
The approach of Shi and Wang is based on the adi-

abatic approach to nonradiative transitions, employing
the formula derived by Freed and Jortner.8 This should
be contrasted to the static approach used in the current
work. The distinction between the two approaches will
be discussed in Section VC. The calculation of Ref. 25
includes the coupling to all phonon modes.
A 1D cc diagram for ZnGa-VN, relevant for hole cap-
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FIG. 8: (Color online) 1D configuration coordinate diagram
for hole capture at the ZnGa-VN defect in GaN. Physical quan-
tities as in Fig. 3. Symbols: calculated values; solid lines:
parabolic fit.

ture by a neutral center, is shown in Fig. 8. The val-
ues are again calculated with a hybrid functional with
α = 0.31. Referenced to the atomic positions in the neu-
tral charge state, the four cation atoms surrounding the
vacancy experience an outward relaxation in the positive
charge state: the Ga atoms move by about 0.20 Å, while
the Zn atom moves by about 0.12 Å.
Our calculated value of ∆E=0.88 eV, corresponding

to the (0/+) charge-state transition level, was used in
Fig. 8. Our calculated ∆E value is close to the value
∆E=0.90 eV of Shi and Wang,25 but this agreement is to
some extent accidental, since the details of the calcula-
tions differ: Shi and Wang’s value was determined based
on a supercell of 300 atoms, without any finite-size cor-
rection, using HSE calculations with α = 0.25 but based
on atomic geometries determined at the PBE level. We
estimate that their value after inclusion of finite-size cor-
rections would be 0.82 eV. As a check we performed the
calculations using the hybrid functional with α = 0.25.
Using the geometry obtained at the HSE level we obtain
a value of 0.67 eV for the (0/+) charge-state transition
level. If instead the geometry is obtained at the PBE
level, the value is 0.64 eV.

2. Hole capture coefficients

In Fig. 9 we compare the results of Shi and Wang25

with our present results. Shi and Wang’s values of Cp

are presented as a function of T for two different values
of ∆E, namely 0.6 and 1.0 eV, that encompass the theo-
retical values quoted above. The two sets of calculations
agree quite well with each other if we focus on the tem-
perature dependence of Cp and the trends as a function of
∆E. However, our calculated room-temperature values
for Cp, namely 2.4 × 10−9-2.9 × 10−8 cm3s−1 are con-
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FIG. 9: (Color online) Nonradiative hole capture rate at the
ZnGa-VN defect in GaN for different values of ∆E. Solid line
and dashed lines: this work; symbols: results from Ref. 25.

sistently about an order of magnitude larger than those
of Shi and Wang, Cp=2.6×10−10-2.9 × 10−9 cm3s−1 for
values of ∆E that range between 0.6 and 1.0 eV. Also,
our first-principles value for the room-temperature cap-
ture coefficient for this defect, obtained for ∆E = 0.88
eV (black solid line in Fig. 9), Cp = 1.0 × 10−8 cm3s−1,
is about 16 times larger than the corresponding value of
Shi and Wang.25

It is important to try and identify the origin of these
discrepancies, in order to assess whether they are due to
differences in the computational approach and/or differ-
ences in the methodology. This type of analysis helps
in establishing the validity and reliability of the over-
all approach and provides important insights. One of
the differences between the two calculations is the treat-
ment of the electronic structure of the defect. In our
approach all the parameters have been determined con-
sistently using the hybrid functional with α=0.31. In
Ref. 25 most of the results, such as the ground-state ge-
ometries, phonon spectra, and electron-phonon coupling
matrix elements, were determined using the semilocal
PBE functional. The two sets of calculations yield, in
particular, very different relaxation energies ∆Erel for the
ground state. In our approach, this relaxation energy is
0.67 eV, while the value of 0.43 eV was used in Ref. 25.
Unfortunately, we were not able to reproduce this result.
Still, to gain insight into the sensitivity to the underlying
electronic structure we repeated our calculations using a
hybrid functional with a fraction α = 0.25 instead of
α = 0.31. This yielded ∆Erel = 0.62 eV. The calculated
values of Cp decrease by up to a factor of 2, bringing our
results in better agreement with Ref. 25.

Another difference between our approach and that of
Shi and Wang25 is the inclusion of the scaling factor f ,
discussed in Sec. III E. In the case of the ZnGa-VN com-
plex in GaN, the coupling between the hole state at the
Γ point and the defect state is evaluated for a positively

charged supercell. If we consider a particle with zero ki-
netic energy interacting with a repulsive potential, the
particle would be repelled to infinity. Therefore the ma-
trix element W̃if as well as the product W̃ 2

if Ṽ will tend

to zero as a function of increasing supercell size [cf. Eqs.
(17a), (17b), and (18)]. As a result, performing the calcu-
lation of electron-phonon coupling for increasingly larger
supercells will not lead to converged results, but rather
result in a decreasing value of the coefficient Cp. It is to
combat such effects that the scaling factor f [Eq. (19)]
has been introduced in the first place.68,69 This effect was
not considered in Ref. 25 and hence their values obtained
for a 300-atom supercell are underestimated. Using the
information provided in Ref. 25, we estimate that the val-
ues of Cp in Ref.25 are probably too small by a factor of
about 1.5. Proper inclusion of the scaling factor f would
bring the values of Shi and Wang25 closer to ours.
The two sources of discrepancies considered so far still

do not account for the fact that our results are more
than one order of magnitude larger than those of Shi
and Wang.25 One might argue that the consideration of
all phonon degrees of freedom in Ref. 25 is in principle
more accurate than the reduction of the problem to a
single effective phonon frequency, as we do in the present
work. However, the analysis we will present in Sec. VB
indicates that one should expect the 1D model to un-

derestimate the true result. This consideration there-
fore does not resolve the discrepancy either. More care-
ful scrutiny traces the difference between the two ap-
proaches to the core assumptions of the method employed
in Ref. 25, which was originally proposed by Freed and
Jortner.8 The formula of Freed and Jortner is derived
from the so-called adiabatic approach within the Con-
don approximation.10,12 This approach has been recog-
nized to underestimate nonradiative capture rates,10,12

an issue to be addressed in Sec. VC.

V. DISCUSSION

In this Section we critically analyze our theoretical
approach and compare calculated capture coefficients to
those in other materials.

A. The strength of electron-phonon coupling

In this section we discuss the strength of electron-
phonon coupling at defects considered in this work, as
expressed by the matrix elements W̃if (Table I). It is in-
formative to estimate the maximum possible value of this
matrix element, for typical values of ∆E and ∆Q. Ac-
cording to Eq. (13), we have to find the maximum value of
〈

ψ̃i

∣
∣
∣ ∂ψf/∂Q

〉

, where ψ̃i is the perturbed valence band

and ψf is the defect state. Let us assume that for Q=∆Q
(Q=0 corresponds to the equilibrium configuration of the
ground state) the defect state acquires completely the
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character of the perturbed valence band, albeit still lo-
calized on Md atoms, with the total number of atoms in
the supercell being Mb. We can then use our knowledge
about the degree of localization of ψ̃i and ψf , along with
the normalization of the wavefunctions, to estimate the
matrix element. Replacing the derivative by its finite-
difference expression, we see that the maximum value of
〈

ψ̃i

∣
∣
∣ ∂ψf/∂Q

〉

is ∼
√

Md/Mb/∆Q. Therefore a large

W̃if would correspond to W̃if ≈ ∆E
√

Md/Mb/∆Q as
per Eq. (13).
Taking typical values for ∆E and ∆Q from Table

I, assuming that Md∼4, Mb=96, and also that cou-
pling to only one valence band is present, we obtain
W̃if ∼ 1− 7× 10−2 eV/(amu1/2Å). As shown in Table I,
the actual values for the defects considered here are all
within this range. Our estimate of the maximum value of
W̃if yields important insight: for the defects considered,
electron-phonon coupling pertaining to the special mode
Q from Eq. (6) is, in fact, very strong. In the case of hole
capture studied in this work, the coupling is very effec-
tive for the acceptor defects with electronic states derived
from anion 2p orbitals (GaN:CN and ZnO:LiZn), but is
also quite significant for the donor defect [GaN:(ZnGa-
VN)] with electronic states derived mainly from the cation
(Ga) 3s states.

B. 1D vs. multi-dimensional treatment

The nonradiative capture processes studied in this
work have been analyzed employing 1D configuration co-
ordinate diagrams. Here, we critically review the range
of applicability of this approach.
It is known that different phonons have different func-

tions during a nonradiative transition.8,84 Vibrational
modes that couple the two electronic states very effi-
ciently, i.e., those that yield large electron-phonon matrix
elements, are called the “promoting” modes, whereas the
modes that couple strongest to the distortion of the ge-
ometry during the transition are called the “accepting”
modes.84 A particular mode can, of course, be both “ac-
cepting” and “promoting”.
The 1D treatment of Sec. III C essentially considers

only the “accepting” modes, reducing the treatment to
one effective mode that has the strongest possible “ac-
cepting” character, being completely parallel to the dis-
tortion of the defect geometry during the transition [Eq.
(6)]. For the nonradiative transition to be effective this
mode must also have a lot of “promoting” character, i.e.,
it must couple the two electronic states by producing
a sizable electron-phonon matrix element Wif (or W̃if ).
One therefore expects the calculated transition rate in
the 1D treatment to be somewhat smaller than the real
one; i.e., the 1D approximation should provide a lower
bound.
As we have shown in Sec. VA, for all the defects stud-

ied in this work the “accepting” mode is characterized

by a large electron-phonon matrix element, and there-
fore has a lot of “promoting” character. This justifies the
use of the 1D approach for such defects. Still, it should
be acknowledged that our calculated capture coefficients
might be slightly underestimated. In order to include
all phonon modes in a rigorous theoretical treatment, an
efficient algorithm to calculate electron-phonon coupling
matrix elements for hybrid functionals is urgently needed.
While the method used in the present work [cf. Eq. (13)
and Fig. 2] is one algorithm to determine those elements,
it is computationally too demanding if all phonons need
to be included.

C. Static and adiabatic formulation of nonradiative

transitions

The first-principles methodology presented in this
work is based on the static-coupling approach.9,14,15 In
Sec. III B we stated that this approach is applicable when
carrier capture rates are much smaller than phonon life-
times and periods of lattice vibrations.9 Now we are in a
position to verify this assumption. Note that as per Eq.
(1), carrier capture rate can mean two separate things.
For a given hole its capture time by any acceptor of the
type A is τp = 1/(CpN

−
A ) (measured in s). However, for

a given acceptor in its negative charge state the time it
takes to capture a hole is τA = 1/(Cpp). It is the lat-
ter quantity that is of importance when determining the
range of validity of the static approach.
For GaN:CN and ZnO:LiZn we compared calculated

values to experimental results summarized in Ref. 35. In
these experiments typical hole densities were p ≈ 1013

cm−3.32 Using the calculated values for Cp (cf. Figs. 5,
7, 9), we estimate hole capture times τA ≈ 10−4 − 10−7

s. These values are much larger than typical periods of
lattice vibrations 2π/Ω ≈ 10−13 s (0.1 ps), or phonon
lifetimes, which are at most a few ps.39 Thus, the tran-
sition between the two electronic states [process (1) in
Fig. 1 (b)] is indeed the time-limiting step in carrier cap-
ture. This transition is a rare event; once it happens,
the emission of phonons due to phonon-phonon interac-
tion [process (2) in Fig. 1] occurs almost instantaneously.
The range of validity of the static approach can be judged
for different defects separately. For example, in the case
of hole capture by GaN:CN at room temperature, we es-
timate that the static approach is valid for hole densities
up to p ∼ 1019 − 1020 cm−3.
In parallel with the static approach, which we advo-

cate and justified above, a lot of theoretical work on
nonradiative carrier capture employed the so-called adi-
abatic coupling scheme.5,8 In this approach one chooses
Born-Oppenheimer wavefunctions Ψ({Q}, {x})χ{Q} as a
starting point for perturbation theory. This choice should
be contrasted to the choice made in the static approach,
namely Ψ({Q0}, {x})χ{Q}, where {Q0} is a specific fixed
atomic configuration (see Sec. III B). Many early formu-
lations based on the adiabatic approach also assumed
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that electron-phonon matrix elements were independent
of {Q},5,8 which is the Condon approximation for nonra-
diative transitions. However, already in the 1970s it was
noticed that the adiabatic approach within the Condon
approximation yielded capture rates significantly smaller
than the static approach applied to the same system.9

This result was very surprising at the time; indeed, it
was expected that far from the intersection of potential
energy surfaces the two descriptions should yield very
similar physics.

The issue was resolved in the early 1980s by Huang,10

Gutsche and co-workers,11,12 and Burt.13 The discrep-
ancy was found to originate in an inconsistent applica-
tion of the adiabatic approach. These authors demon-
strated that within the leading order the adiabatic ap-
proach does give the same answer as the static approach,
provided the adiabatic approach is applied consistently.
This can be achieved in one of two ways: (i) by go-
ing beyond the Condon approximation in the adiabatic
treatment10; or (ii) by considering all non-diagonal terms
in the Hamiltonian.12 In particular, erroneous omission
of non-diagonal terms can lead to significantly smaller
values of capture rates in the adiabatic approach.12 This
was exactly the problem of prior theoretical treatments
that were based on the adiabatic approach together with
the Condon approximation.5,8

The discussion up to this point applies to the case
where nonradiative transitions occur far from the inter-
section of two potential energy surfaces. However, when
transitions close to the crossing point are important (as
is the case for ZnO:LiZn and GaN:CN, cf. Figs. 6 and
8) the adiabatic approach within the Condon approxi-
mation fails altogether. In the adiabatic approach, an
avoided crossing occurs between the two potential en-
ergy surfaces, leading to a strong variation of electronic
wavefunctions and making potential energy surfaces very
anharmonic. In such a situation, adiabatic wavefunctions
are probably not a good starting point for perturbation
theory.9 The static coupling scheme, on the other hand,
is still applicable in the regime close to the intersection
of the potential energy surfaces.9,14

In our opinion, the application of the adiabatic cou-
pling scheme in Ref. 25, versus the static scheme em-
ployed in the present work, is the major reason for the
differences between our results and those of Ref. 25 (Fig.
9). The results of Ref. 25 were obtained based on the
formula of Freed and Jortner,8 which uses the adiabatic
coupling scheme within the Condon approximation and
will thus tend to underestimate the values for capture
coefficients.10–13

The theoretical foundations of nonradiative capture
due to multi-phonon emission were laid in Refs. 4–
15. References 10–13, in particular, contain impor-
tant lessons about the proper application of various ap-
proaches. Unfortunately, activity in this field stagnated,
partly due to the difficulty of obtaining sufficiently accu-
rate results with the computational methods that were
available at the time. The current power of accurate elec-

tronic structure methods creates a fertile environment in
which to achieve the goal of a quantitative determination
of carrier capture rates completely from first principles.
The analysis presented here finds its roots in similar

discussions in the papers from the 1970s and 1980s cited
above. It relates to the underlying theory for describing
nonradiative capture and does not in any way dimin-
ish the achievements of Ref. 25. Importantly, Shi and
Wang25 proposed an efficient new algorithm to calculate
electron-phonon coupling constants. The algorithm con-
siders all phonon degrees of freedom and can in principle
also be used in conjunction with the static approach used
in the present work. An extension of the algorithm to hy-
brid functionals would be highly desirable.

D. Comparison with other materials

It is instructive to compare our results of capture coef-
ficients to those in other materials. However, one should
keep in mind that for any given defect the resulting cap-
ture rate depends on many parameters, including: (i)
details of the cc diagram, for example “classical” barri-
ers for nonradiative capture ∆Eb (cf. Figs. 3, 6, 8); (ii)
the strength of electron-phonon coupling [Eqs. (4) and
(22)]; (iii) the charge state of the defect [cf. Eqs. (14) and
(21)]; (iv) temperature. Furthermore, many experimen-
tal papers report capture cross sections σ rather than
capture coefficients C. As discussed in Sec. II, the two
are related via C = 〈v〉σ, where 〈v〉 is a characteristic
carrier velocity. In the case of non-degenerate carrier
statistics the characteristic velocity is the average ther-
mal velocity 〈v〉 ∼

√
T , which introduces an additional

temperature-dependent prefactor in the expression for σ.
These considerations indicate that the comparison of car-
rier capture characteristics of different defects in different
materials should be approached with caution. However,
some conclusions can still be drawn.
Let us consider a specific material, and look at carrier

capture cross sections for a wide range of defects. Those
cross sections will depend on the specific defect, as well
as on temperature. However, one could argue that the
maximum value of capture cross section across all defects
and across all temperature ranges (say, for temperatures
where non-degenerate carrier statistics apply), would be
indicative of the strength of electron-phonon coupling in
the host material.
In their seminal paper, Henry and Lang studied cap-

ture cross sections at defects in GaP and GaAs.4 The
measurements were performed by deep-level transient
spectroscopy over the temperature range 100-600 K, com-
parable to the temperature range discussed in the present
work. Both electron and hole capture was studied. Cap-
ture cross sections at various defects ranged from 10−5

to about 100 Å2 for these temperatures. One could cau-
tiously conclude that ∼100 Å2 is the maximum capture
cross section for any defect system in GaP and GaAs.
For the three defects studied in the present work, cal-
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culated hole capture cross sections vary from 0.1 to 200
Å2 in GaN (Figs. 5 and 9), and from 1000 to 2000 Å2

in ZnO (Fig. 7) for a similar temperature range. In par-
ticular, we find σ = 180 Å2 in GaN:CN at T=600 K, and
σ = 1000 Å2 for ZnO:LiZn at T = 225 K. As discussed in
Sec. IV, these results are in agreement with the exper-
imental data of Ref. 35. While our data set is limited,
it is clear that carrier capture cross sections in ZnO and
GaN tend to be larger than those in GaP and GaAs. We
attribute this to the larger strength of electron-phonon
interactions in wide-band-gap materials such as GaN and
ZnO, compared to GaP and GaAs. This strength directly
affects the matrix elements, as discussed in Sec. VA.
These trends for nonradiative capture at defects are

in accord with the knowledge of electron-phonon inter-
actions in bulk solids. Let us take the interaction of free
carriers with longitudinal optical (LO) phonons as an ex-
ample. The strength of this interaction can be charac-
terized by a dimensionless factor, the Fröhlich parameter
αF = e2/~

√

m/(2~ωLO)(1/ε∞ − 1/ε0) (in SI units).85

For holes, αF ≈ 0.15 in GaAs and αF ≈ 0.2 in GaP,
while αF is about 1.0 in GaN and 1.5 in ZnO, indeed
indicative of stronger interaction.

VI. CONCLUSIONS

In conclusion, we have developed a first-principles
methodology to study nonradiative carrier capture by
means of multiphonon emission at defects in semiconduc-
tors. All the parameters, including the electron-phonon
coupling, have been determined consistently using hybrid
density functional calculations, which yield accurate bulk
band structures as well as defect properties. Significant
simplifications occur due to the implementation of a 1D
model, for which we provided extensive justification, and
which also yields useful insights into the defect physics.
We applied our methodology to several hole-capturing

centers in GaN and ZnO. The resulting capture coef-
ficients are large, and in agreement with experimental
data. We conclude that state-of-the-art electronic struc-
ture techniques, when combined with reliable method-
ological approaches, are capable of accurately describing
carrier capture processes. The methodology thus allows
generating reliable information for defects for which ex-
perimental information is incomplete—which seems to
be the case for the majority of defects that are poten-
tially relevant for charge trapping or SRH recombination
in semiconductor devices. The combination of a first-
principles approach with experiment can also be a pow-
erful aid in the identification of defects. Finally, our first-
principles approach allows making predictions for new
materials for which no experimental data is as yet avail-
able.
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47 P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
48 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996); G. Kresse and D. Joubert, Phys. Rev. B 59, 1758
(1999).

49 J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Ger-
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