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The redistribution of electrons in an ultrafast pump-probe experiment causes significant changes
to the spectral distribution of the retarded interaction between electrons and bosonic modes. We
study the influence of these changes on pump-probe photoemission spectroscopy for a model electron-
phonon coupled system using the nonequilibrium Keldysh formalism. We show that spectral re-
arrangement due to the driving field preserves an overall sum rule for the electronic self-energy,
but modifies the effective electron-phonon scattering as a function of energy. Experimentally, this
pump-modified scattering can be tracked by analyzing the fluence or excitation energy dependence
of population decay rates and transient changes in dispersion kinks.

I. INTRODUCTION

Imaging electron dynamics on femtosecond time scales,
on which many-body effects occur, has become a re-
ality given technical advances of a number of pump-
probe techniques. The aim of pump-probe studies is
to learn about systems with coupled electronic, lattice,
charge, and spin degrees of freedom by driving them
out of their equilibrium state and studying their relax-
ation dynamics. This has been applied to a large variety
of materials with a variety of probes, including quan-
tum dots1, correlated oxides2–5 topological materials6–8

charge- and spin-density wave materials9–11, and uncon-
ventional superconductors12–15.

The pump is a strong electric field that causes a num-
ber of changes in the system. On a basic level, it can
excite states through either dipole absorption or by driv-
ing electrons within their respective bands, redistribut-
ing the charge density. In more complex systems, it can
lead to changes in the orbital/spin character of the un-
derlying quasiparticles, or break pairs in systems with
emergent order such as density waves and superconduc-
tivity. With sufficiently strong fields, even new states of
matter can be induced that do not exist in equilibrium
in certain systems such as graphene and topological insu-
lating materials.8,16 The pump will clearly modifies the
interactions between the constituents.

In this work, we consider the effects of pumping a
simple system of electrons coupled to lattice vibrations
(phonons) to answer the question of how their mutual
interaction is changed by the pump. We show that the
pump-induced redistribution of electrons leads to appar-
ent modifications of the electron-boson coupling even
though a sum rule guarantees that the total interaction
strength is preserved for all times. A common method
for analyzing time-resolved phenomena is to refer back to
equilibrium models with modified or time-dependent pa-
rameters; this approach can be appropriate at the latest

stages of thermalization20. The modification of electron-
boson coupling found here cannot be captured in such
a picture for all times, and needs a more careful treat-
ment, which should provide a framework for analysis in
experiments.

Here, we focus on changes induced by driving-field
modification of the electronic distribution. As the elec-
tron phonon interaction is in part determined by the
distribution of electrons, any rearrangement of spectral
weight will lead to a modified effective interaction. These
effects are illustrated by simulating tr-ARPES spectra
and analyzing the many-body self-energy and signatures
of the electron-phonon interaction in the extracted band
dispersion and quasiparticle widths or lifetimes. The
weakening of spectral kinks has been observed experi-
mentally in a cuprate material, where it was attributed
to light-induced changes in the interactions.15

We find at short times that while the interactions are
modified, the system possesses a sum rule for the en-
ergy integrated self-energy which characterizes the over-
all electron-phonon coupling in the system. Although the
shift leads to a weakening of some features associated
with the coupling in equilibrium (i.e. bosonic “kinks”
and line widths), the electrons do not decouple from the
phonons. Rather, the interaction is modified by redis-
tributed spectral weight, and the apparent loss of in-
teraction strength at low frequency is compensated for
elsewhere.

II. MODEL AND METHODS

We solve the time-dependent equations of motion for
the Holstein model17

H =
∑
k

ε(k)c†kck + Ω
∑
i

b†i bi − g
∑
i

c†i ci

(
bi + b†i

)
where the individual terms represent the kinetic energy
of electrons with a dispersion ε(k), the energy of phonons
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with a frequency Ω, and a coupling between them whose
strength is given by g. Here, c†α(cα) are the standard cre-
ation (annihilation) operators for an electron in state α;
similarly, b†α(bα) creates (annihilates) a boson in state α.
We use a square lattice dispersion with nearest neighbor
hopping (Vnn),

ε(k) =− 2Vnn [cos(kx) + cos(ky)]− µ (1)

where µ is the chemical potential. We have used the
convention that ~ = c = e = 1.

The interactions are treated within the self-consistent
Born approximation, and the equations of motion (de-
tailed in Appendix A) are solved using the non-
equilibrium Keldysh formalism18. The driving field is
included through the Peierls’ substitution19 k(t) = k −
A(t), where A(t) is the vector potential assumed to be
spatially uniform. We work in the Hamiltonian gauge
with no scalar potential Φ, so the electric field is obtained
via E(t) = −∂tA(t), and model the propagating pump
pulse using a single central frequency and a Gaussian en-
velope. The pump and probe field profiles are taken to be
relevant to current experiments, with achievable frequen-
cies and durations. A further rule of thumb is that the
units for electric field (here in eV) are related to the true
electric field by electron charge e and the lattice constant
a0 : E→ E/(ea0) (since A is in units of a−1

0 ).
The equilibrium coupling strength is characterized by

the dimensionless parameter λ ≡ −∂ReΣR(ω)/∂ω|ω→0

which depends on the bare interaction vertex g, elec-
tronic density of states, and temperature. The system
parameters are chosen to represent a generic electron-
phonon system, where the coupling is sufficiently weak
that the system can be described at the Migdal level; the
dispersionless phonon frequency Ω is small compared to
the bandwidth W (Ω�W ).

The parameter choices are motivated by a combination
of physical relevance and computational feasibility. To
clearly separate the energy scale of the phonon kink from
the Fermi level, the phonon frequency used is Ω = 0.2 eV,
where the coupling strength is chosen sufficiently low to
remain within the Migdal limit (λ . 1). In materials,
phonon frequencies tend to be lower —the results demon-
strated below occur for lower frequencies as well. We fur-
ther consider a half-filled system (µ = 0 eV) with a hop-
ping strength Vnn = 0.25 eV. Below, we will use two sets
of parameters for the coupling strength and pump, cho-
sen to emphasize certain aspects. In the first case, where
we focus on the kink dynamics, we excite roughly 10%
of the electrons in the band to above the Fermi level. In
the second case, where we study the fluence dependence
of the decay rates, a maximum of 5% of the electrons in
the band are excited (for the largest fluence).

The first effect is the considerable reduction in the
electron-phonon kink strength. To emphasize the kink
and the changes upon pumping, we have used a system
with moderate coupling strength, where set g =

√
0.12

eV and T ≈ 83K (λ ≈ 0.7), and a strong driving field.
The driving field used here was Amax = 0.612/a0 at

a frequency ω = 0.1 eV, corresponding to a maximum
electric field of 61.2 mV/a0 (where a0 is the lattice con-
stant). The pump duration was 32.9 fs. The second
effect is the modification of the decay rates due to the
pump. Here, the coupling strength above is too large to
reliably extract exponential decay rates since the system
rapidly decays at large energies. Due to the low tempera-
ture, the decay rate is conversely too low at low energies.
Thus, we decreased the effective high-energy decay rates
by changing the coupling to g =

√
0.016 eV and increased

the effective low-energy rates by increasing the system
temperature to T = 290K (λ ≈ 0.1). Additionally, due
to computational constraints on the contour length, the
pulse was compressed by increasing the driving frequency
to ω = 0.5 eV, and the width to 6.58 fs.

III. RESULTS

We begin by studying a strongly coupled system at
low temperatures, excited by a strong driving field. Fig-
ures 1(a) and (b) show the tr-ARPES spectra I(k, ω, t0)
at two time delays, prior to and during the pump pulse,
respectively. Overlaid on the spectra are red dots in-
dicating peaks in Lorentzian fits to various momentum
distribution curves (MDCs) of the data taken at con-
stant binding energy. The peak in the fit is an in-
dication of the interacting dispersion. In equilibrium
(t0 → −∞), the tr-ARPES spectrum shows the char-
acteristics of a strongly coupled Holstein phonon — well-
defined spectral peaks at energies within the “phonon
window” (W = ω ∈ [−Ω,Ω]) where the linewidth is
small, and a strong kink at Ω. At zero time delay (t0 = 0
fs), when there is maximum overlap between the pump
and probe, the kink that occurs at the phonon frequency
flattens out, indicating an apparent change in the effec-
tive electron-phonon interaction due to the pump.

With the decrease of the kink, it would appear that
the underlying electron-phonon interactions have weak-
ened. To investigate whether this is the case, we calculate
the retarded self-energy ΣR(t, t′) and perform a relative-
time Fourier transform (or Wigner transform) to obtain
the Wigner self-energy ΣR(ω, tave) (see Appendix A for
details). Fig. 1(c) shows Im ΣR(ω, tave) in equilibrium
and at tave = 0 (Re ΣR(ω, tave) will be discussed later).
In equilibrium, Im ΣR(ω) has a region where it is rela-
tively small due to kinematic constraints, i.e. the phonon
window. This phonon window was shown to be respon-
sible for slow decay within some range of the Fermi level
in tr-ARPES experiments20. During the pump, elec-
tronic spectral weight is redistributed leading to changes
in Im ΣR(ω, tave). Fig. 1(d) illustrates these changes as
differences between the result at tave = 0 and in equilib-
rium. These changes are positive insideW, as well as be-
yond the band edges, and negative elsewhere. However,
the total interaction strength is unchanged, which can be
seen from Fig. 1(e), where we plot the integrated changes
both inside and outsideW versus time delay. The result-
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FIG. 1. tr-ARPES spectra along the kx = ky direction (a) in equilibrium and (b) at 0 time delay. Red points indicate peaks in
the MDC curves as determined from Lorentzian fits, and the black dashed line indicates the phonon window W. (c) Imaginary
part of the Wigner self-energy ΣR(ω, tave) corresponding to panels (a) and (b). (d) Spectral weight change in Im ΣR(ω, tave) at
tave = 0. (e) Time evolution of the shift in spectral weight of Im ΣR(ω, tave) within (green) and outside (blue) W. The red line
indicates the total change in spectral weight, which is zero due to the sum rule. The grey area shows the region where pump
effects are present (see text).

ing curves show exactly canceling increases and decreases
inside and outside the phonon window, indicating that
the total interaction strength remains constant during
(and after) the pump. The oscillations are due to the
field profile and the region shown in gray indicates times
where the Wigner transform tave is within one standard
deviation of the peak field, i.e. the field is “on”.

The constant integrated interaction strength is due to
a sum rule for the self-energy, which can be obtained
analytically. We evaluate the zeroth moment of the self-
energy, which is the equal-time self-energy ΣR(t, t)

ΣR(t, t′ = t) = −ig2
[
2nB(Ω/T ) + 1

]
, (2)

where nB(x) is the Bose function [the derivation is shown
Appendix B]. Hence the self-energy, and by extension the
total transient effective interaction, obeys a sum rule.21

This can be viewed as an alternative measure of the
electron-phonon coupling strength, which is relevant for
non-equilibrium physics.

It is important to note that the changes in the tr-
ARPES spectra are not caused by changing the electron-
phonon coupling itself, known as a quantum “quench”
where one of the parameters of the system is changed ad

hoc. Instead, our self-consistent evaluation of the equa-
tions of motion captures the redistribution of spectral
weight by the pump and its effects on the transient effec-
tive electron-phonon interactions. As the spectral weight
rearrangement is controlled to a large degree by the pump
strength, the signatures of the interaction in the time do-
main —the kink and decay rates —depend strongly on
the pump fluence or excitation density. As the pump
fluence increases, spectral weight redistribution increases
concomitantly and a time- and fluence-dependent effec-
tive electron-phonon interaction emerges.

We can understand changes in the effective electron-
phonon interactions by considering the scattering pro-
cesses in equilibrium and after excitation. The self-
energy in equilibrium is related to the scattering rate
via Im ΣR(ω) = [2τ(ω)]

−1
; out of equilibrium both sides

of the equation acquire a non-trivial time dependence
and the equation becomes a proportionality due to com-
plications of the Wigner transform (see Appendix A for
details).

Fig. 2 illustrates the scattering processes that occur
in phonon emission for both cases. In equilibrium, the
scattering rate of a single excited particle is principally
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FIG. 2. Illustration of the effects on the scattering rate due
to spectral weight redistribution. The thickness of the yellow
lines indicates the electronic occupation of the band. In equi-
librium and at low temperatures, scattering from inside the
phonon window W is suppressed due to a lack of phase space
for the final state given the high occupation below the Fermi
level, with the opposite behavior for scattering outside the
window W. After excitation and spectral weight rearrange-
ment, these phase space considerations are modified with an
increase (decrease) of the scattering rate inside (outside) W.

determined by the amount of phase space available for
scattering. A particle that is excited within W of the
Fermi level cannot emit a phonon to scatter because the
final states are fully occupied; similarly, a particle that
is excited above W scatters more easily. It was shown
previously that these scattering rates can be quantita-
tively connected to the equilibrium self-energy in the
limit of weak fluence or excitation density.20 However,
when the fluence is increased a particle within W has
available phase space to scatter into, leading to an in-
creased scattering rate compared to equilibrium based
solely on this redistribution of electronic spectral weight.
On the other hand, particles outside W now have a de-
creased scattering rate due to the accessible final states
being partially occupied. These changes in the scatter-
ing phase space and rates are reflected in Fig. 1(c) and
(d), where Im ΣR(ω, tave) increases inside the phonon
window, and decreases outside. In addition to scattering
via phonon emission, there will be processes that scat-
ter particles into states at higher energy, i.e. phonon
absorption. However, for low excitation densities these
processes will not qualitatively affect the simple picture
discussed here.22

The changes in the scattering phase space due to the
rearrangement of spectral weight by the pump (as shown
in Fig. 2) imply that the measured decay rates depend on
the pump fluence. Thus, we now explicitly consider the
dependence of the effective electron-phonon interactions
on the pump fluence or excitation density. In particular,
the analysis of Ref.20 is repeated, and the decay rates are
extracted from tr-ARPES spectra integrated over a cut
along the (11) momentum direction [as in Figs. 1(a) and
(b)] for various pump fluences. To be able to extract the
decay rates from the spectra, sufficient signal is needed
for an exponential fit. At the strong coupling considered
above, the signal decays too rapidly, which is remedied
by decreasing the coupling strength, and increasing both

the driving frequency and temperature. Fig. 3 shows
the decay rates obtained just after the pump pulse, to-
gether with the equilibrium result. The decay rates di-
rectly reflect the changes discussed in Fig. 2; compared
to equilibrium, the scattering rates increase inside W
and decrease outside W. As the fluence increases, the
rates deviate further from their values in equilibrium.
Around the phonon frequency, there is a nearly isosbestic
crossover point where the modifications in the scattering
rate change sign, which is shown in the inset of Fig. 3.

Finally, we return to the weakening of the kink in the
tr-ARPES spectra. The dispersion is determined from
Fig. 1 by fitting the MDCs with a Lorentzian (as dis-
cussed above) and extracting the peak position. Fig-
ure 4(a) shows the dispersion in equilibrium (t0 → −∞)
and at t0 = 0. Clearly, the kink is much more pronounced
in equilibrium then during the pump. To get a measure
of the kink as a function of time, the Fermi velocity is
extracted by fitting the dispersion near the Fermi level
to a line. The inset of Fig. 4(a) shows the inverse of
the velocity at the Fermi level (1/vF (t0)), normalized to
the equilibrium value (1/vF,eq). The kink is suppressed
strongly at zero time delay, when the field amplitude is
largest. To explain the changes in the kink, we calculate
the real part of the Wigner self-energy (defined above),
which is plotted in Fig. 4(b). The strength of the kink is
related to the peaks in ΣR(ω, tave), which clearly decrease
due to the pump.

IV. DISCUSSION

Our previous studies20,23 have linked the decay rates
and oscillation frequencies to the equilibrium self-energy
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FIG. 4. a) MDC peak positions from Fig. 1, together with the
bare dispersion (solid line). The inset shows the inverse Fermi
velocity normalized by the equilibrium value (see text). b)
Real part of the Wigner self-energy ΣR(ω, tave) in equilibrium
(tave → −∞) and at 0 time delay showing a decrease in peak
height which leads to a straightening of the band in panel (a).
Dashed black lines indicate the phonon window W.

in the limit of weak excitation, which is achieved either
by going to long times or low pump fluences. At larger
fluences, it is tempting to continue to discuss the pump-
induced changes in the effective electron-phonon interac-
tion in terms of equilibrium physics. In particular, the
changes in the kink are strikingly similar to a situation
where either the electron-phonon coupling strength is de-
creased, or the temperature is elevated. One could speak
in the first case about the decoupling of electrons from
the phonons, in the second case about an elevated elec-
tron temperature. As we have shown, neither situation
is correct in discussing the pump-induced changes.

A similar decrease in the kink strength can be expected
from an increase in the sample temperature; however,

there are key differences in such a scenario. An increase
in temperature would lead to a change in the sum rule,
which depends on temperature through the Bose func-
tion. As shown in Ref. 20, the photoemission spectra
on the unoccupied side of the Fermi level do not reflect
a heated Fermi-Dirac distribution. Nevertheless, we ex-
tract the maximum temperature by fitting Ī(ω, t0) to a
Fermi function close to the Fermi level, yielding a maxi-
mum observed temperature of 1500 K. Figure 5 shows
the obtained high-temperature spectra, as well as the
pumped spectrum from the main text at zero time delay.
At high temperatures, the self-energy is smeared out sig-
nificantly, leading to the rather broad spectra [Fig. 5(a)].
On the other hand, the pumped spectra [Fig. 5(b)] show
features reminiscent of the equilibrium strong coupling
result —smaller line widths, as well as a remnant kink
at the phonon frequency. Figure 5(c) shows the MDC
maxima extracted from the panels (a) and (b) of Fig. 1,
illustrating that the effective interaction is still quite dif-
ferent from a simple elevated temperature scenario, even
at the level of the dispersion.

We can further eliminate the quantum quench scenario
because there is a frequency-dependent reorganization of
the effective interactions. Instead of an overall decrease
of the scattering rate, as one would expect if the electrons
were decoupled from the phonons, we observe an increase
within the phonon window W. If none of the physical
parameters were changed, the sum rule would display a
time dependence, which is absent in our calculations.

The results presented here provide context for the anal-
ysis of other effects which are not included in the model.
In the single band case, the interactions are determined
by the spectral weight distribution in the Green’s func-
tion. When multiple bands are present, the scattering be-
tween them must be taken into account in the description
of the interactions. While the multiple bands can enter
the interaction in non-trivial ways, the same framework
used in the analysis for a single band applies.

In equilibrium, the decrease of interactions at low en-
ergies would lead to a weakening or disappearance of the
emergent phenomena which depend on the interactions at
those scales. In non-equilibrium, this is not yet known.
We have shown that the pump can cause a non-trivial
redistribution of the effective interactions to different en-
ergies. This behavior can not be captured by an elevated
temperature or quantum quench picture. Instead, the
spectral weight redistribution is critical to understand-
ing the non-equilibrium response, and will have similar
relevance in pumping systems with emergent states. It
is again tempting to describe the effective interactions
within an equilibrium picture with modified parameters;
however, to capture the full physical description, the
non-equilibrium process should be considered within the
framework presented here.
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Appendix A: Details of the approach

In our calculations, the electron Green’s functions are
determined fully self-consistently at each time step. We
use the approximation of an infinite phonon bath whose
properties are equal to the equilibrium noninteracting
bath. Mathematically, this means that the phonon prop-
agator is the bare one, and is not updated in the cal-
culation. The renormalization of the phonon propagator
is normally weak; additionally, changes in the electronic
spectral weight distribution only couple to the phonon
propagator in second order, and will not cause large
changes.

To solve the equations of motion, we utilize an expand-
ing contour method described in Ref. 24. The equations
of motion separate on the Keldysh contour into a set
of equations for the various components of the Green’s
function, depending on the relative locations of the two
times. The contour-ordered Green’s function is

GCk(t, t′) = −i〈TC ck(t)c†k(t′)〉 (A1)

where t and t′ lie on the Keldysh contour, TC is the con-
tour time-ordering function. For completeness, the equa-
tions of motion are (letting the contour start at tmin),

[
− ∂τ − ε(k(tmin))

]
GMk (τ) =δ(τ) +

∫ β

0

dτ̄ ΣM (τ − τ̄)GMk (τ̄), (A2a)

[
i∂t − ε(k(t))

]
G
e
k(t,−iτ) =

∫ t

tmin

dt̄ ΣR(t, t̄)G
e
k(t̄,−iτ) +

∫ β

0

dτ̄ Σe(t,−iτ̄)GMk (τ̄ − τ), (A2b)

[
i∂t − ε(k(t))

]
G

≷
k (t, t′) =

∫ t

tmin

dt̄ ΣR(t, t̄)G
≷
k (t̄, t′) +

∫ t′

tmin

dt̄ Σ≷(t, t̄)GAk (t̄, t′)− i
∫ β

0

dτ̄ Σe(t,−iτ̄)G
d
k(−iτ̄ , t′).

(A2c)

The superscripts M, e, d, R,A ≷ indicate the Matsubara,
mixed real-imaginary, mixed imaginary-real, retarded,
advanced, and greater/lesser components, respectively.
Similar equations are obtained by using t′ instead of t.
The various components can be transformed or combined
into others by the usual relations25.

Once the Green’s functions are obtained, time-resolved
ARPES (tr-ARPES) spectra can be computed. For a
probe pulse of width σp, the tr-ARPES intensity at time
t0 is26

I(k, ω, t0) = Im

∫
dt dt′ p(t, t′, t0)eiω(t−t′)G<

k̃
(t, t′)

(A3)

where p(t, t′, t0) is a two-dimensional normalized Gaus-
sian with a width σp centered at (t, t′) = (t0, t0). The
field-induced shift in k has to be corrected via a gauge
shift in the momentum argument of G<k with27,28

k̃ = k +
1

t− t′
∫ t

t′
dt̄A(t̄). (A4)
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150 100 50 0 50 100 150

Time delay [fs]

0.5

0.0

0.5

1.0

Pump pulse

Probe pulse (scaled)

FIG. 6. Pump and probe fields used in the calculation of the
tr-ARPES spectra.

To determine the tr-ARPES spectral weight, we utilize a
probe with a Gaussian envelope whose width σp = 16.45

fs.

From Eq. A2c we can identify the components con-
tributing to the return to equilibrium of the tr-ARPES
spectra. Drawing an analogy to a simple first order differ-
ential equation, we observe that the retarded self-energy
plays the role of a time constant, and the remaining inte-
grals appear as driving terms. Thus, while the retarded
self-energy governs a substantial portion of the temporal
dynamics, it is not the full story and the other pieces
must be taken into account. This implies that the decay
rate is not 100% determined by the retarded self-energy
outside of the weak excitation limit.

The Wigner self-energy, which is used above, is defined
as follows. First, a transformation is made from (t, t′)
coordinates to (trel, tave) coordinates via tave = [t+ t′]/2
and trel = t − t′. A Fourier transform F on trel gives
Σ(ω, tave) = F [Σ(trel, tave)].

Appendix B: Sum rule for the self-energy

DC
0 (t, t

′)

GC(t, t′)g g

FIG. 7. Feynman diagram for the contour self-energy.

For the Holstein model with an unrenormalized phonon, the contour self-energy (see Fig. 7) is given by

ΣC(t, t′) =
ig2

Nk

∑
k

GCk(t, t′)DC0 (t, t′), (B1)
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where Nk is the number of momenta. The zeroth frequency moment for the self-energy (in frequency) is related to
the diagonal part of ΣR(t, t′). We use the bare contour phonon propagator25

DC0 (t, t′) =− i
[
nB(Ω/T ) + 1− θC(t, t′)

]
eiΩ(t−t′)

− i
[
nB(Ω/T ) + θC(t, t

′)
]
e−iΩ(t−t′), (B2)

where nB(x) is the Bose function nB(x) = [ex − 1]
−1

, and θC(t, t
′) is the contour Heaviside function. Using Eq. B1,

we extract the retarded part of ΣC29 and set t′ = t,

ΣR(t, t) =
ig2

Nk

∑
k

[
GRk (t, t)D>

0 (t, t) +G<k (t, t)DR
0 (t, t)

]
, (B3)

=
ig2

Nk

∑
k

[
(−i) · [−i(2nB(Ω/T ) + 1)] +G<k (t, t) · 0

]
, (B4)

= −ig2
[
2nB(Ω/T ) + 1

]
. (B5)

Thus, as long as the phonon occupation and the bare
vertex are unchanged, the sum rule for the self-energy
is preserved. In our simulations, this sum rule is found
to hold numerically, indicating that the total electron-
phonon coupling strength remains fixed.

ACKNOWLEDGMENTS

We would like to thank P. Kirchmann, J. Sobota and
S. Yang for helpful discussions. This work was supported
by the Department of Energy, Office of Basic Energy
Sciences, Division of Materials Sciences and Engineer-
ing (DMSE) under Contract Nos. DE-AC02-76SF00515
(Stanford/SIMES), DE-FG02-08ER46542 (Georgetown),
and DE-SC0007091 (for the collaboration). Computa-
tional resources were provided by the National Energy
Research Scientific Computing Center supported by the
Department of Energy, Office of Science, under Contract
No. DE- AC02-05CH11231. J.K.F. was supported by the
McDevitt bequest at Georgetown.

∗ afkemper@lbl.gov
1 P. S. Kirchmann, L. Rettig, X. Zubizarreta, V. M. Silkin,

E. V. Chulkov, and U. Bovensiepen, Nature Physics 6,
782 (2010).
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