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We report the finding of a series of symmetry distinct spin liquid (SL) states and a rich phase
diagram in a half-filled honeycomb lattice Hubbard model with spin-dependent hopping amplitude
t′. We first study the magnetic instability of the system and find two antiferromagnetic (AF) orders
beyond a critical Hubbard U which increases with the ratio t′/t . For t′ approaching to t, the
semimetal (SM) transforms to a U(1) SL and then to the Kitaev Z2 SL as U increases. In a wide
middle range of t′/t, the latter is replaced by a U(1) SL to SU(2) SL transition. The physical
properties of the stable SL phases are discussed.

I. INTRODUCTION

Searching for the spin liquid (SL) states1,2 in strongly
correlated systems has been one of the most intriguing
and important fields3. Experimentally, possible SL states
have been observed recently in quantum frustrated spin
systems4–9. Theoretically, ample numerical evidence of
SL ground state has been found in models of frustrated
spin systems10–14 and various exactly solvable models
have been constructed to support the existence of the
SL ground state15–20.

While most of the studies focused on quantum spin
systems, possible SL states in the Hubbard model near
the metal-insulator transition have attracted great inter-
ests recently. Quantum Monte Carlo studies have pro-
duced controversial results21–23 amid an active debate
over other investigations24–31. Whether a SL ground
state exists remains inconclusive due to the intricate in-
terplay of charge and spin dynamics in the quantum crit-
ical region of the metal insulator transition and the in-
cipient antiferromagnetic (AF) order.

We here study the ground state and the phase dia-
gram of a generalized t − t′ − U Hubbard model where
t′ describes nearest neighbor spin-dependent hopping on
the half-filled honeycomb lattice. This model, which we
call a Kitaev-Hubbard model, was introduced by Duan
et al, and can be realized in cold atom systems32–34,
has been studied numerically at quarter filling35 and
half filling36,37. Our motivation is that as a function of
t′/t, this model interpolates between the usual Hubbard
model at t′/t = 0 and 1 where the Kitaev Z2 SL17,38

becomes the known ground state in the large on-site U
limit32,36,39. With the latter severing as a reference SL
state, we obtain a rich phase diagram on the U/t − t′/t
plane that reveals the phase structure of several symme-
try distinct SL states on the honeycomb lattice as well
as their competition with several forms of AF order.

A SL is a Mott insulator without spin order that has
exotic charge-neutral excitations called spinons which are
coupled by emerging gauge fields40. Most commonly
studied SLs are U(1), SU(2), and Z2 SL - named af-

ter the symmetry of the gauge fields, respectively. In
this work, we show that these SL states emerge on the
phase diagram of the Kitaev-Hubbard model at half fill-
ing and have yet to be explored by numerical studies36.
Specifically, we apply the SU(2) slave rotor theory41,42 to
the Kitaev-Hubbard model, which recovers the semimetal
(SM) phase with stable Dirac points at weak interac-
tions, and search for all possible SL phases with gapless
fermionic spinon excitations coupled to the correspond-
ing gauge groups. We also calculate the spin suscepti-
bility using the random phase approximation (RPA) and
determine the stability of the SLs against magnetic order-
ing on the honeycomb lattice. The physical characters of
the different SLs that are experimentally distinguishable
will be discussed.

The present paper is organized as follows. In section II
we describe the model and its symmetries. We study the
magnetic instabilities using RPA in section III. In section
IV, we use SU(2) slave rotor theory to study the SL
phases. Then we describe how to combine the results of
RPA and slave rotor to obtain the global phase diagram
in section V. Finally, we discuss how to measure the
different phases in cold atom experiments in section VI.

II. THE MODEL AND ITS SYMMETRIES

The Hamiltonian for the Kitaev-Hubbard model on a
honeycomb lattice32 is given by

H = −t
∑

〈ij〉
c†icj − t′

∑

〈ij〉a

c†iσ
acj + U

∑

i

ni↑ni↓, (1)

where ci = [ci↑, ci↓]T and ciσ (c†iσ) annihilates (creates)
an electron with spin σ = (↑, ↓) on site i. The t-term
is the conventional hopping integral, while the t′-term
describes link-and-spin-dependent hopping, and U is the
on-site repulsion. σa (a = x, y, z) are the Pauli matrices.
〈ij〉a denotes the nearest neighbor pairs in the a-link di-
rection(see Fig.1).
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FIG. 1: Honeycomb lattice. a1 and a2 are primitive trans-
lation vectors. Nearest-neighbor links are divided into three
types, called x-links, y-links and z-links.

We group the electron operators into 2× 2 matrices43

ΨA =

[

cA↑ c†A↓
cA↓ −c†A↑

]

, ΨB =

[

cB↑ −c†B↓
cB↓ c†B↑,

]

(2)

where A and B label sites on the two sub-lattices, and
define spin and pseudo-spin operators as

Sa =
1

4
Tr(Ψ†σaΨ), T a =

1

4
Tr(ΨσaΨ†)

Sa acts on the subspace with odd electron number while
T a acts on the subspace with even electron number so
they are commutative with one another.
To reveal the symmetry it’s convenient to rewrite the

Hamiltonian in terms of ΨA and ΨB:

H = −t
∑

〈A,B〉
Tr(Ψ†

AΨB)− t′
∑

〈A,B〉a

Tr(σzΨ†
Aσ

aΨB)

+
2U

3

∑

i

T2
i . (3)

The t-term clearly preserves spin and pseudo-spin rota-
tional symmetries while the t′-term also preserves spin
and pseudo-spin rotational symmetries if we perform
suitable local rotation of Ψs. (See Appendix A.) How-
ever, when both t and t′ are non-zero, both SU(2)
symmetries are broken since the symmetry operations
of t-term and t′-term are not compatible with each
other. There is an important discrete chiral symme-
try associated with the operator: S = P · T where
P = eiπT

y

is particle-hole and T = eiπS
y

K the time-
reversal operation(K is complex conjugation). Because
of this symmetry, TRS is enforced at half-filling in the
large U limit36 as seen in the phase diagram in Fig.5. In

contrast to the usual lattice translation Tx and Ty and the
inversion R symmetries that are preserved, the six-fold
rotational symmetry is broken due to the t′-term. How-
ever, the system is invariant under combined π/3 lattice
rotation and a spin rotation,

ΨA,B → e−iπ
4
σx

e−iπ
4
σy

ΨA,B

In the noninteracting limit (U = 0)34, the electron
dispersion ε(k) is given by

ε2(k) = t2|f |2 + 3t′2 ± [(t2|f |2 + 3t′2)2

− |t′2(g+g− + 1)− t2f2|2]1/2, (4)

where g± = eik1 ± ieik2 and f(k) = 1 + eik1 + eik2 .

k1 = k · a1 = kx/2 +
√
3ky

2 , k2 = k · a2 = −kx/2 +
√
3ky

2 ,
which maintains the original Dirac points on the honey-
comb lattice at (kx, ky) = (±4π/3, 0) where g+g− = −1
and f = 0. When t′ = 0, the dispersion near the Dirac
point is ε(k) = ±

√
3tk/2. When t′ 6= 0, the low energy

physics is controlled by t′ and the dispersion near the
Dirac points becomes ε(k) = ±t′k/2. Simple dimension
counting shows that the Hubbard term is perturbatively
irrelevant in the weak coupling limit.

III. MAGNETIC INSTABILITIES AND AF
ORDER

In this section we determine the magnetic phase
boundaries by calculating the static spin susceptibility
χ(q) by RPA. This kind of calculation is standard44 so
we only present the main results here and the details can
be found in Appendix B.

We find that when t′/t < 0.57, the peak in χ(q) is
located at the Γ point which means the magnetic phase
is dominated by Néel order. For t′/t > 0.57, the peak
splits into two, indicative of the tendency toward incom-
mensurate AF order. Fig.2 (a) shows an example of the
double-peak structure around the Γ in the susceptibility
in the incommensurate Néel (i-Néel) regime. The mag-
netic phase diagram is shown in Fig.2 (b) where the SM
and the magnetic phase boundary marks the onset of the
divergence in the magnetic susceptibility χ(q)45. The
appearance of the i-Néel AF regime has the same origin
as that of the Kitaev SL phase due to the competition
between the Néel order and the rotated Néel order39.
Microscopically, this competition arises from the t- and
t′-terms and pushes the magnetic phase boundary dra-
matically toward large U , enabling the possible stable
SL phases in the enlarged nonmagnetic regime in Fig.2
when t′/t > 0.57. In the following, we will focus on the
t′/t > 0.57 regime and use the SU(2) slave rotor theory
to study the emergent SL phases.
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FIG. 2: (color online) Upper: An example of the double peaks
of χ(q) in i-Néel regime. Lower: i-Néel refers to incommen-
surate AF order and there is no magnetic order in the blank
area.

IV. SU(2) SLAVE ROTOR THEORY

A. A brief review of SU(2) slave rotor theory

Here we give a brief review of the SU(2) slave ro-
tor theory; more details can be found in41,42. We start
from Eq.3 and decouple the Hubbard interaction by a
Hubbard-Stratonovich (HS) transformation

i

4

∑

i∈A,B

Tr(Ψiφ
a
i σ

aΨ†
i ) +

3

16U

∑

i∈A,B

Tr(φa
i σ

a)2

where φa is a three-component HS field. To reveal the
SU(2) structure of the theory, we rotate the order pa-
rameters in the pseudo-spin space:

φa
i σ

a → Z†
i φ

a
i σ

aZi

where Zi is a time-dependent SU(2) matrix and can be
parametrized as:

Zi =

[

zi,1 zi,2
−z∗i,2 z∗i,1

]

under the constraint |zi,1|2 + |zi,2|2 = 1. Such a rotation

transforms the electron operator Ψi to Fi = ΨiZ
†
i but

doesn’t affect the spin operator S. We thus call Fi the
spinon carrying the spin degrees of freedom and Zi the
SU(2) rotor tracking the pseudo-spin(charge) degrees of
freedom. With a change of variable

φa
i σ

a → φa
i σ

a + 2iZi∂τZ
†
i

the SU(2) action reads

S = St +

∫ β

0

dτ

{

1

2

∑

i∈A,B

Tr(Fi(∂τ +
i

2
φa
i σ

a)F †
i )

+
1

2U ′

∑

i

Tr(
1

2
φa
i σ

a + iZi∂τZ
†
i )

2 (5)

+
∑

i

iλi[
1

2
Tr(Z†

iZi)− 1]

}

,

with

St =

∫ β

0

dτ

{

−t
∑

〈A,B〉
Tr(ZBZ

†
AF

†
AFB)

− t′
∑

〈A,B〉a

Tr(ZBσ
zZ†

AF
†
Aσ

aFB)

}

(6)

where U ′ = 2U/3 and λi is a local Lagrange multiplier
imposing the Z ∈ SU(2) constraint46.
Eq.(5) describes a strongly coupled SU(2) gauge the-

ory, where Z and F are matter fields and φ are the tem-
poral components of gauge fields. The gauge transforma-
tions are:

Fi → FiWi, Zi → W †
i Zi, φa

i σ
a → φa

i σ
a − 2iWi∂τW

†
i

The quartic matter fields in the hopping terms in Eq.(6)
can be further decoupled using the HS transformation,
giving the spatial components of gauge fields. Following
Lee and Lee47 we decouple the hopping terms:

St =

∫ β

0

dτ

{

t
∑

〈A,B〉
Tr(ηABη

†
AB)− t

∑

〈A,B〉
Tr(ηABZBZ

†
A)

− t
∑

〈A,B〉
Tr(η†ABF

†
AFB) + t′

∑

〈A,B〉a

Tr(η′ABη
′†
AB) (7)

− t′
∑

〈A,B〉a

[Tr(η′ABZBσ
zZ†

A) + Tr(η′†ABF
†
Aσ

aFB)]

}

We can write42 ηAB = |η|eiθABei(c
a
AB−ida

AB)σa

and η′AB =

i|η′|eiθ′

ABei(c
′a
AB−id

′a
AB)σa

. The action becomes complex
for fluctuations of θAB, dAB, φi and λi. To get sad-
dle point solutions with real free energy we perform
analytic continuations, θAB → iθ̃AB, dAB → id̃AB,
iφi → φ̃i and iλi → λ̃i, where quantities with tildes are

real. We can obtain ηAB = |ηZ |ei(c
a
AB+d̃a

AB)σa

, η†AB =

|ηF |e−i(caAB−d̃a
AB)σa

, η′AB = i|η′Z |ei(c
′a
AB+d̃

′a
AB)σa

and
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η
′†
AB = −i|η′F |e−i(c

′a
AB−d̃

′a
AB)σa

. η/η′ is a real/imaginary
number times an SU(2) matrix.
Since we are interested in the half filling case, we will

take φ̃a
i = 0 ansätz for the temporal components of the

gauge fields and relax the constraint by setting λi = λ,
as is always done in slave particle theories. Despite the
large gauge fluctuations, it is possible to obtain decon-
fined phases by different mean field ansätz48.

B. Z2 and SU(2) SL phases

The generic ansätz,

η†AB = aFσ
0, η′†AB,a = a′Fσ

a, ηAB = aZσ
0, η′AB,a = a′Zσ

a,

breaks the SU(2) gauge symmetry to Z2, where the sub-
script a = x, y, z denotes the bond type. It preserves
TRS and is not thus valid in the weak coupling. De-
noting t↑ = −taFf − t′a′F , t↓ = −taFf + t′a′F , ∆↑ =
−t′a′F (e

ik1 + eik2), and ∆↓ = −t′a′F (e
ik1 − eik2), the dis-

persion of the spinon is given by

εF = ±1

2
|tσ ±∆σ|, (8)

which is the same as that obtained in49,50. The spinon
band structure in the Z2 phase is depicted in Fig. 3
(Upper panel). mean field equations are derived in Ap-
pendix C. There are two critical lines in the mean field
solutions. For U < Uc1, the solution gives an improper
p-wave superfluid phase that does not recover the SM
when U → 0. When U > Uc1, rotors are gapped and
the Z2 SL arises. Remarkably, a second critical line Uc2

exists for t′/t . 0.91, such that when U > Uc2, a
′
F and

a′Z vanish, i.e., the spin dependent hopping renormalizes
to zero. The SU(2) gauge symmetry is thus restored and
the system enters an SU(2) SL phase.

It is instructive to study the Z2 ansätz for large-U more
carefully and compare to exact results at t′/t = 1. The
effective chemical potential of rotors is now λ = U ′ =
2U/3 and the Z2 mean field equations are given by

aZ =
1

6tN

∑

k

∂εF,σ±
∂aF

, a′Z =
1

6t′N

∑

k

∂εF,σ±
∂a′F

(9)

aF =
1

24U ′tN

∑

k

∂ε2Z,±
∂aZ

, a′F =
1

24U ′t′N

∑

k

∂ε2Z,±
∂a′Z

,

where εFσ± and εZ,± are the spinon and the rotor dis-
persions respectively. εFσ± gives Majorana fermion ex-
citations at the Dirac point and six gapped flat bands.
Note that εZ,± ∼ t and then aF , a

′
F ∼ t/U , as expected

for the charge and spin excitations in this limit. When
t = t′, the velocity of the linear spinon dispersion in the
Kitaev model, i.e., in the large U limit, is determined by

J = 8t2

U . In order to be consistent with this velocity, the
parameter aF in the mean field spinon dispersion needs
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FIG. 3: (color online) Upper: Spinon band structure in Z2

SL phase. U = 4t and t′ = t. Lower: Spinon band structure
in U(1) SL phase. U = 3.67t and t′ = 0.9t. Bands shown in
blue solid line are occupied, in red dash line are unoccupied.
Spinon dispersion in SU(2) phase looks like the one in Z2

phase with no (nearly) flat band.

to be rescaled to aF = J
16t , which amounts to rescale the

Hubbard U by a factor α ≈ 0.572 at t′/t = 1 (see Ap-
pendix C). Note that it is well-known that the Hubbard
U needs to be rescaled in the mean field approximation
of the slave rotor theory46. We would like to point out
that the rescale of U only affects the results quantita-
tively. We will demonstrate below that α is essentially
independent of t′/t in the regime where the slave rotor
theory can be considered reliable. We solve the mean
field equations self-consistently with the rescaled U .

C. U(1) SL phases

To recover the semi-metal phase in small U regime, we
consider the following ansätz,

η†AB = a0Fσ
0, η′†AB,a = azFσ

z , ηAB = a0Zσ
0, η′AB,a = azZσ

z,

which breaks the SU(2) gauge symmetry to U(1) in gen-
eral. The dispersion of the spinon is thus given by

ε2F = t2a02F |f |2 + 3t
′2az2F ±

[

(t2a02F |f |2 + 3t′2az2F )2

− |t′2az2F (g+g− + 1)− t2a02F f2|2
]1/2

, (10)
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which has the same form as Eq. (4) with renormalized
hoppings t → ta0F and t′ → t′azF . The spinon band struc-
ture in the U(1) phase is depicted in Fig. 3 (Lower panel).
Hence Hence, we expect it to be favored near the weak
coupling where the TRS is broken. At the Dirac points,
the linear dispersion εF = ±t′|azF |k/2. We again obtain

two critical lines Ũc1 and Ũc2 > Ũc1. When U < Ũc1, the
rotors condense and the system is in the weak coupling
SM phase. For U > Ũc1, the rotors are gapped and the
U(1) SL phase emerges. For U > Ũc2, both azF and azZ
vanish and the system enters the SU(2) SL phase.
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FIG. 4: (color online) Phase diagram of the SL states in the
absence of magnetic order. Here we take α = 0.572.

At a given point in the U/t - t′/t plane, which SL state
is favored can be determined by comparing the mean field
ground state energies among the U(1), Z2 and SU(2)
ansätz. The obtained slave-rotor phase diagram is shown
in Fig.4.
Before ending this section, we discuss the stability of

the SL states. To determine whether the SLs are stable
one have to go beyond the mean field theory and con-
sider the gauge fluctuations. We briefly discuss this issue
here. The Z2 spin liquid is stable because the gauge fluc-
tuations are gapped. The SU(2) spin liquid is the one
study by Hermele42, in this phase the low energy effec-
tive theory is gapless Dirac fermion coupled to compact
SU(2) gauge fields. Large N expansion shows that when
the number of fermion flavors is large enough, this spin
liquid phase is stable42. The effective theory of U(1) spin
liquid is gapless Dirac fermions coupled to compact U(1)
gauge field, this phase may also be stable against instan-
ton effect42,51,52.

V. DETERMINATION OF THE GLOBAL
PHASE DIAGRAM

For the Kitaev-Hubbard model, in particular, a numer-
ical calculation based on a variational cluster approxima-
tion and cluster perturbation theory showed that the SL
phase is unstable against the SM and AF states when
t′/t is smaller than a certain value36. We now explain
how to combine the SL phase diagram in Fig.4 and the
magnetic phase diagram in Fig. 2 to arrive at the global

phase diagram shown in Fig.5. First, it is known when
t′/t ∼ 1 the slave rotor theory is reliable, while the RPA
theory provides the leading magnetic instability for all
t′/t. The numerical work in Ref.36 showed that there is
a tricritical point for the SL, SM and AF phases. This
tricritical point in our result corresponds to the discon-
tinuity point in the slope of the phase boundary in Fig.
2(b). Remarkably, we find that the lower bound of the SL
phase touches the singular point of the magnetic phase
boundary, forming the tricritical point observed by nu-
merical simulations36. We stress that the tricritical point
emerges in our theory without the need to change the
rescaling factor α determined by the exact solution of the
Kitaev model at t′/t = 1 and lends further support for
an essentially t′/t-independent α in the SL regime. We
emphasize that the topology of the SL phase diagram is
not affected by varying α (see Appendix C 3). However,
the tricritical point exists only if α ≈ 0.572. With in-
creasing U , the SU(2) SL becomes unstable to the AF
i-Néel phase. However, the AF phase terminates when it
meets the Z2 SL because the Kitaev SL has lower energy.
Finally, we would like to remark that although the gen-
eral phase structure of our theory captures that of the
numerical results with unprecedented symmetry distinct
SL phases, the phase boundaries between the SM, AF
and SL phases as well as the tricritical point only quali-
tatively agree with the numerical results in Refs.21,22,36.
The exact determination of the phase boundaries is be-
yond the scope of the current work.

It’s time to describe our main results shown in the
phase diagram shown in Fig.5. Generally speaking, we
found three types of phases: The SM phase for weak cou-
pling, the AF phase for strong coupling t′/t < 0.91, and
several SL states in-between. There are crucial differ-
ences between these new findings and the previous ana-
lytical and numerical results32,36,39. (i) The presence of
three types of symmetry distinct gapless U(1), SU(2),
and Z2 SL phases that are experimentally distinguish-
able. While the Z2 SL encloses the exact solvable Ki-
taev spin model17 at t′/t = 1 and t/U ≪ 1 and preserves
the time-reversal symmetry (TRS), we discovered a TRS-
breaking U(1) SL that separates the Z2 SL from the SM
for t′/t > 0.91. The spinon dispersion in the U(1) SL
has the same form as that of the quasiparticle in the SM
phase but with renormalized hoppings. For t′/t < 0.91,
the U(1) SL transforms with increasing U into the SU(2)
SL where a free Dirac fermion spinon dispersion arises
with t′ renormalized to zero and the TRS restored. (ii)
Our RPA results captures qualitatively several different
AF ordered phases in different parameter regions. The
presence of the link-spin dependent hopping t′ introduces
a competition between conventional Néel order and a new
type of AF order accompanied by a local spin rotation39.
The latter pushes the magnetic phase boundary toward
larger-U dramatically when t′/t > 0.57, realizing the var-
ious symmetry distinct SLs as stable phases of the elec-
tronic matter.
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Néel

U(1) SL

SU(2) SL

FIG. 5: (color online) Phase diagram. The magnetism part
comes from Fig. 2(b) and the SL part from Fig. 4. We use
the red dash-dot lines to separate the SL and AF phases as
well as i-Neel and Neel because the RPA calculation in the
strong coupling is not as good as that in the weak coupling.

VI. EXPERIMENTAL IMPLICATIONS

To sum up, we studied a Kitaev-Hubbard model using
RPA and slave rotor theory. We obtained a fruitful phase
diagram, including semi-metal phase, commensurate and
incommensurate AFM ordered phases and three symme-
try distinct SL states. We now discuss how to measure
these phases in cold atom experiments.

If the SLs proposed are stable, they may be recognized
in cold atom experiments. For example, Bragg spec-
troscopy can be used to measure the full band structure
(see Fig.3) in cold atoms system53. There are some quali-
tative difference of the spinon dispersions in the Z2, U(1)
and SU(2) SL phases. The Z2 SL differs apparently from
the other two because there are Majorana fermion exci-
tations and non-abelian anyonic Majorana bound states
in an external magnetic field17. The U(1) spinon is of
a linear dispersion proportional to t′|azF | at the Dirac
points and does not have a conserved Sz, the dispersion
of the SU(2) spinon is the same as that of the free Dirac
fermion with a conserved Sz and a renormalized hopping
ta0F .

Bragg spectroscopy can also be used to deter-
mine the dynamical spin structure S+−(ω,q), which
is the Fourier transformation of spin-spin correlation
〈S+(r, t)S−(r′, t′)〉 and proportional to the cross section
of Bragg scattering54 . In the U(1) SL phase, because of
the spin flip terms in the effective spinon Hamiltonian,
S+−(ω,q = 0) 6= 0. In the small ω limit the cross section
is proportional to the density of states near the Fermi
surface (Dirac points), so S+−(ω,q = 0) ∝ ω for small
ω (see Fig.6 Upper panel). In the Z2 spin liquid phase,
S+−(ω,q = 0) = 0 if ω is smaller than the gap of the
(nearly) flat band and a sharp peak appears when the en-
ergy transfer is twice the gap (see Fig.6 Lower panel). In
contrast, S+−(ω,q = 0) = 0 in SU(2) SL phase. These
properties can be used to distinguish the SLs.

The anti-ferromagnet order can also be measured via

Bragg scattering55.
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FIG. 6: (color online) Upper: Dynamical spin structure factor
in U(1) spin liquid phase. U = 3.67t and t′ = 0.9t. Lower:
Dynamical spin structure factor in Z2 spin liquid phase. U =
4t and t′ = t
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Appendix A: Symmetries of t′-term

If ΨA is redefined as

ΨA =

[

cA↑ −c†A↓
cA↓ c†A↑

]

then the t′-term can be written as

−t′
∑

〈A,B〉a

Tr(Ψ†
Aσ

aΨB)

which is pseudo-spin rotational invariant.
To reveal the spin-rotational symmetry of t′-term, one

can enlarge the unit cell and perform local spin rota-
tions of Ψs (see Fig.7): for circle , Ψ → Ψ, for square,
Ψ → σzΨ, for diamond, Ψ → σyΨ, for triangle, Ψ →
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σxΨ. After this rotation, t′-term can can be written in
spin-rotational invariant way. However, even after this
rotation, t′-term can’t be written as the same form as t-
term. Because for t′-term, electron acquire π phase when
hopping around a hexagon and this phase can not be re-
moved by spin rotations.
Note that the symmetry operations of t-term and t′-

term are not compatible, that’s to say, t-term is invariant
under some operations while t′-term is invariant under
others, so both symmetries are broken when t and t′ are
nonzero.

FIG. 7: (color online) t′-term can be written in a spin rota-
tional invariant manner if the unit cell is enlarged.

Appendix B: Calculation of spin susceptibility

The partition function is Z =
∫

Df †Dfe−
∫

β

0
Ldτ ,

where

L =
∑

f †
iσ(∂τ δijδσσ′ − tσσ

′

ij )fjσ′ + U
∑

ni↑ni↓

After performing a Hubbard-Stratonovich transforma-
tion in spin channel, we get: Z =

∫

Df †DfDφe−S and

S =

∫ β

0

dτ
∑

i

f †
i ∂τfi − t

∑

〈ij〉a

f †
i (I + σa)fj +

U

4

∑

i

φ2
i +

U

2

∑

i

φif
†
i σ

zfi

Integrating out fermions we get the effective action

Seff =
U

4

∫ β

0

dτ
∑

φi(τ)
2 − Trln[∂τ − tσσ

′

i,j +
U

2
σφi]

Setting φA = −φB = φ, then up to second order and in

static limit: Seff =
∑

q
U
4 [1 − Uχ(q)]φ(q)φ(−q) where

χ(q) = − 1
2βN

∑

k,ωn
TrG0(iωn,k)σ

z ⊗ τzG0(iωn,k +

q)σz ⊗ τz and G0(iωn,k) = 1
iωn−H(k) is bare Green’s

function. If H is diagonalized by a matrix V , i.e.,
V †(k)H(k)V (k) = diag(Ehk,−Ehk, Elk,−Elk), then

χ(q) =
1

2N

∑

k

W12k,qW21k,−q

Ehk−q/2 + Ehk+q/2
+

W14k,qW41k,−q

Ehk−q/2 + Elk+q/2
+

W21k,qW12k,−q

Ehk+q/2 + Ehk−q/2
+

W23k,qW32k,−q

Elk+q/q + Ehk−q/2

+
1

2N

∑

k

W32k,qW23k,−q

Elk−q/2 + Ehk+q/2
+

W34k,qW43k,−q

Elk−q/2 + Elk+q/2
+

W41k,qW14k,−q

Elk−q/2 + Ehk+q/2
+

W43k,qW34k,−q

Elk+q/2 + Elk−q/2
(B1)

where W (k,q) = V †(k− q/2)σz ⊗ τzV (k+ q/2).
W (k,q) = W †(k,−q). Because of the inversion sym-
metry, we have V (−k) = σx ⊗ τ0V (k), then W (k,q) =
−W (−k,−q). Using this relation, Eq.(B1) can be sim-
plified:

χ(q) =
1

N

∑

k

[

W12k,qW21k,−q

Ehk−q/2 + Ehk+q/2

+
2W14k,qW41k,−q

Ehk−q/2 + Elk+q/2
+

W34k,−qW43k,q

Elk−q/2 + Elk+q/2

]

Note that both anti-ferromagnetic order and ferromag-
netic order preserve translational symmetry on honey-
comb lattice. Peak at Γ point indicts anti-ferromagnetic
order because we have set φA = −φB = φ.
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Appendix C: Mean field theory of SU(2) slave rotor
theory

1. Z2 ansätz

The ansätz η†AB = aFσ
0, η′†AB,a = a′Fσ

a, ηAB =

aZσ
0, η′AB,a = a′Zσ

a breaks the SU(2) gauge symmetry
to Z2. As this ansätz preserves time reversal symmetry,
it works for large U . In this case, the effective Lagrangian
reads:

L =
∑

i∈A,B

(f †
iσ∂τfiσ) +

3

2Uα

∑

i∈A,B

(∂τz
∗
α∂τzα)

−λ
∑

i∈A,B

(z∗αzα − 1) + 6tNa0Fa
0
Z + 6t′Na

′

Fa
′

Z

−t
∑

〈A,B〉
aF f

†
AσfBσ − t′

∑

〈A,B〉x

a
′

Fσf
†
Aσf

†
Bσ

−t′
∑

〈A,B〉y

a
′

F f
†
Aσf

†
Bσ − t′

∑

〈A,B〉z

a
′

Fσf
†
AσfBσ

−t
∑

〈A,B〉
aZz

†
AαzBα + t′

∑

〈A,B〉x

a
′

Zz
†
Aαz

†
Bβ

−t′
∑

〈A,B〉y

ia
′

Zz
†
Aαz

†
Bβ − t′

∑

〈A,B〉z

a
′

Zαz
†
AαzBα

Let t↑ = −taFf − t′a′F , t↓ = −taF f + t′a′F ,
∆↑ = −t′a′F (e

ik1 + eik2) and ∆↓ = −t′a′F (e
ik1 − eik2),

then eigenvalues of spinons are εF = ± 1
2 |tσ ± ∆σ|,

of rotors are (εZ − λ)2 = t2a2Zff
∗ + 3t

′2a
′2
Z ±

√

(t2a2Zff
∗ + 3t′2a

′2
Z )

2 − |t′2a′2
Z (g+g− + 1)− t2a2Zf

2|2.
If a′Zt

′ < 2.8taZ, the minimal of rotor eigenvalues is
at Γ point. In the following we assume a′Zt

′ < 2.8taZ
and we find this condition is satisfied. The rotor
condensed part is: −3taZN(z∗A1zB1 + z∗A2zB2) +
t′a′Z(1 + i)(zA1zB2 + zA2zB1)− t′a′Z(z

∗
A1zB1 − z∗A2zB2) +

λNz∗A/BαzA/Bα/2 + h.c. and λmin = 3taZ +
√
3t′a′Z .

Let
∑

i∈A,B z∗iαziα = 2z2, then zA2=zB2=2z/
√

6 + 2
√
3,

zB1=zA1=(i− 1)(1 +
√
3)z/

√

6 + 2
√
3, so the rotor con-

densed part becomes: −6taZNz2−2
√
3t′a′ZNz2+2λNz2.

The free energy is(U ′ = 2αU/3):

F = −T
∑

k,i

ln (1 + e−βεF,i)

+T
∑

ωn

∑

k,i

ln (
3ω2

n

2U
+ εZ,i) + const

= −T
∑

k,i

ln (1 + e−βεF,i) +
∑

k,i

√

U ′εZ,i

+2T
∑

k,i

ln (1− e−β
√

U ′εZ,i) + const (C1)

where the constant term is −2Nλ + 6tNaFaZ +
6t′Na′Fa

′
Z − 6taZNz2 − 2

√
3t′a′ZNz2 + 2λNz2 and the

second term in the last line is zero point energies of rel-
ativistic rotors. Taking derivatives with respect to the
parameters we get the following self-consistent equations:

∂F

∂aF
=

∑

k,i

nf (εF,i)
∂εF,i

∂aF
+ 6tNaZ = 0

∂F

∂azF
=

∑

k,i

nf (εF,i)
∂εF,i

∂a
′

F

+ 6t′Na
′

Z = 0

∂F

∂aZ
=

∑

k,i

√
U ′

2
√
εZ,i

coth (
β
√

U ′εZ,i

2
)
∂εZ,i

∂aZ

+6tN(aF − z2) = 0 (C2)

∂F

∂a
′

Z

=
∑

k,i

√
U ′

2
√
εZ,i

coth (
β
√

U ′εZ,i

2
)
∂εZ,i

∂a
′

Z

+6t′N(a
′

F − z2/
√
3) = 0

∂F

∂λ
=

∑

k,i

√
U ′

2
√
εZ,i

coth (
β
√

U ′εZ,i

2
)− 2N + 2Nz2 = 0

Solving them numerically, we also find two critical
lines. When the interaction is smaller than Uc1 we predict
a p−wave super-conducting phase which is not reliable.
When U > Uc1 we get spin liquid phase, in both cases
the spinons are gapless.

In the spin liquid regime, when t′/t . 0.91 and U >
Uc2, we get an SU(2) spin liquid with a′F = a′Z = 0.
Otherwise it’s a Z2 spin liquid (See, e.g., Fig.8(a)).

We study the large U limit of Z2 ansätz at t′ =
t = 1 carefully. From Eq.(C2), we know that in the
large U limit the effective chemical potential of rotors
is λ = U ′. Writing εFσ± = 1

2 |tσ ± ∆σ|, and ε± =
[

t2a2Zff
∗+3t

′2a
′2
Z ±

(

(t2a2Zff
∗+3t

′2a
′2
Z )2−|t′2a′2

Z (g+g−+

1)− t2a2Zf
2|2

)1/2]1/2
, then in the large U limit Eq.(C2)

becomes:

aZ =
1

6tN

∑

k

∂εF,σ±
∂aF

, a′Z =
1

6t′N

∑

k

∂εF,σ±
∂a′F

(C3)

aF =
1

24U ′tN

∑

k

∂ε2Z,±
∂aZ

, a′F =
1

24U ′t′N

∑

k

∂ε2Z,±
∂a′Z

,

If t′ = t and U is large enough, a′F = aF (See, Fig.8(a)).
Then the spinon dispersion becomes: εF↑+ = taF |f | and
εF↑− = εF↓± = taF . We find two gapless dispersing
bands and six gapped flat bands, which matches the
exact solution of Kitaev model. In order to be consis-
tent with this velocity, the mean field parameter aF in
the mean field spinon dispersion needs to be rescaled to
aF = J

16t
17,49. Solving Eq.C3 we find aFU

′ = 0.1906t,
which gives α = 0.572. For t′ 6= t, aF 6= a′F , the gapped
flat bands acquire a weak dispersion50.
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FIG. 8: (color online) Upper: aF and a′

F for Z2 ansätz. at
t = t′ = 1. a′

F /aF → 1 when U increases. Lower: a0

F and az

F

for U(1) ansätz at t = t′ = 1. There are two phase transitions
at Uc1 ≈ 3.9t and Uc2 ≈ 5.8t.

2. U(1) ansätz

The ansätz η†AB = a0Fσ
0, η′†AB,a = azFσ

z , ηAB =

a0Zσ
0, η′AB,a = azZσ

z breaks the SU(2) gauge symmetry

to U(1). The spinon Hamiltonian has the same form as
the noninteracting electron Hamiltonian with normalized
hopping in this ansätz. We expect it is applicable to a
small U . The symmetry of this ansätz is the same as the
original model, e.g., time reversal symmetry is broken.
As time reversal symmetry restores in the large U limit,
this ansätz does not work. The effective Lagrangian is:

L =
∑

i∈A,B

f †
iσ∂τfiσ +

3

2Uα

∑

i∈A,B

(∂τz
∗
iα∂τziα)

+λ
∑

i∈A,B

(z∗iαziα − 1) + 6tNa0Fa
0
Z + 6t′NazFa

z
Z

−ta0F
∑

〈A,B〉
f †
AσfBσ − t′azF

∑

〈A,B〉a

f †
Aσσ

a
σσ′fBσ′

−ta0Z
∑

〈A,B〉
z†AαzBα − t′azZ

∑

〈A,B〉
z†Aασ

z
αβzBβ

Dispersion of spinons are ε2F = t2a02F ff∗ + 3t
′2az2F ±

[

(t2a02F ff∗+3t
′2az2F )2−|t′2az2F (g+g−+1)−t2a02F f2|2

]1/2
.

At Dirac points, the linear dispersion is proportional

to t′ and is not degenerate if SU(2) symmetry is not
restored. When, azF = 0, the SU(2) gauge symme-
try is restored, the dispersion becomes two-fold degen-
erate ε = ±t|a0F ||f |, which is the same as the free
Dirac fermion on the honeycomb lattice with the renor-
malized hopping t|a0F |. The dispersion of rotors are
εZ = λ±|(ta0Z±t′azZ)f |. Rotors may condense at Γ point,
and we can write the condensed part explicitly(zA = zB):
−6Nta0Z(z

2
1 + z22) − 6Nt′azZ(z

2
1 − z22) + 2Nλ(z21 + z22).

The free energy is the same form as Eq.C1 with the con-
stant term replaced by −2Nλ+6tNa0Fa

0
Z +6t′NazFa

z
Z −

6Nta0Z(z
2
1 + z22)− 6Nt′azZ(z

2
1 − z22)+2Nλ(z21 + z22). Since

a0Z , a
z
Z > 0, we have z2 = 0 and λmin = 3(ta0Z + t′azZ).

Taking derivatives with respect to the parameters we get
the following self-consistent equations:

∂F

∂a0F
=

∑

k,i

nf (εF,i)
∂εF,i

∂a0F
+ 6tNa0Z = 0

∂F

∂azF
=

∑

k,i

nf (εF,i)
∂εF,i

∂azF
+ 6t′NazZ = 0

∂F

∂a0Z
=

∑

k,i

√
U ′

2
√
εZ,i

coth (
β
√

U ′εZ,i

2
)
∂εZ,i

∂a0Z

+6tN(a0F − z21) = 0 (C4)

∂F

∂azZ
=

∑

k,i

√
U ′

2
√
εZ,i

coth (
β
√

U ′εZ,i

2
)
∂εZ,i

∂azZ

+6t′N(azF − z21) = 0

∂F

∂λ
=

∑

k,i

√
U ′

2
√
εZ,i

coth (
β
√

U ′εZ,i

2
)− 2N + 2Nz21 = 0

Solving these self-consistent equations numerically we
find two critical lines: when the interaction is smaller
than Ũc1 we get a semi-metal phase, otherwise the rotors
are gapped and we get a spin liquid phase. We find that
azF and azZ are strongly suppressed when increasing U

and they vanish if U > Ũc2. In this case we actually
get an SU(2) spin liquid, see Fig.8(b) . This can be
understood in the following way: in the large U limit
there is an emergent time reversal symmetry, and there
are two ways to recover this symmetry, that’s, azF = azZ =
0 or a0F = a0Z = 0, because we are considering the t′ < t
case, we get azF = azZ = 0. This indicates that the U(1)
ansätz is not reliable in the large U limit.

3. α dependence of spin liquid phase diagram

In the main text we choose α = 0.572 and get the
spin liquid phase diagram Fig.4. We have explained why
we choose the rescale parameter α as t′/t-independent.
However, one may wonder56 what the phase diagram
looks like if α is dependent on t′/t. The answer is t′/t-
dependence of α doesn’t change the topology of the spin
liquid phase digram because α is only a rescale of the
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FIG. 9: (color online) α(t′/t = 1) = 0.572 and varies linearly
with t′/t. Upper: α(t′/t = 0.575) = 0.5. Lower: α(t′/t =
1) = 0.572, α(t′/t = 0.575) = 0.65.

interaction. To show this we plot the phase diagram for
different dependence of α on t′/t (Fig.9).
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