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We develop a systematic variational coherent state expansion for the many-body ground state of
the spin-boson model, in which a quantum two-level system is coupled to a continuum of harmonic
oscillators. Energetic constraints at the heart of this technique are rationalized in terms of polarons
(displacements of the bath states in agreement with classical expectations) and antipolarons (counter-
displacements due to quantum tunneling effects). We present a comprehensive study of the ground
state two-level system population and coherence as a function of tunneling amplitude, dissipation
strength, and bias (akin to asymmetry of the double well potential defining the two-state system). The
entanglement among the different environmental modes is investigated by looking at spectroscopic
signatures of the bipartite entanglement entropy between a given environmental mode and all the
other modes. We observe a drastic change in behavior of this entropy for increasing dissipation,
indicative of the entangled nature of the environmental states. In addition, the entropy spreads over a
large energy range at strong dissipation, a testimony to the wide entanglement window characterizing
the underlying Kondo state. Finally, comparisons to accurate numerical renormalization group
calculations and to the exact Bethe Ansatz solution of the model demonstrate the rapid convergence
of our variationally-optimized multi-polaron expansion, suggesting that it should also be a useful
tool for dissipative models of greater complexity, as relevant for numerous systems of interest in
quantum physics and chemistry.

I. INTRODUCTION

The study of open quantum systems constitutes an
important and active frontier of research, with several
difficult challenges to overcome.1–4 First, one faces the
quantum complexity that comes from the combination
of a quantum sub-system with a macroscopic reservoir
of environmental states. The former may range from a
two-state system (for instance, an atom or a supercon-
ducting qubit) to a very large object (e.g. a molecule),
while the latter can describe a variety of complex ex-
citations (phonons, spin baths, mobile solvent species,
electromagnetic fluctuations, etc.). A second difficulty
is the emergence of strong correlation physics when the
coupling to the bath becomes sufficiently large, leading
to substantially renormalized physical properties for the
quantum sub-system as compared to its behavior “in
vacuum”. This effect is typically accompanied by the
emergence of a complex entanglement structure within
the environment itself, involving modes that can span
several decades in energy.5 This kind of complex behavior
can, for instance, be captured by sophisticated numerical
techniques, such as the numerical renormalization group
(NRG),6–8 or the density matrix renormalization group
and its variational matrix-product states extension.9–11

Third, much of the interesting physics in this context, such
as decoherence and relaxation to a steady state, arises in
an out-of-equilibrium dynamical situation. This pushes

numerical methods even further toward their limits,12–20

and many studies have hitherto focused on simpler ana-
lytical approaches2,3 (master equations, for instance) that
may fail at large dissipation and low temperatures.

The purpose of this paper is to develop an alternative
to time-consuming numerically-exact techniques, which
benefits from the simplicity of a variational treatment,
yet has the potential to be scaled up to the exact solution
of the problem. The basis of the method, presented in a
recent publication,5 is an expansion of the complete wave-
function of the bath into a set of coherent states, which
has the freedom to capture the correlations that typically
build up in open quantum systems in an economical way.
We shall focus on the problem of the many-body ground
state in open quantum systems within the challenging
regime of strong coupling to the bath, while the question
of time-dependent dynamics will be considered elsewhere.
It has been recognized since the work of Silbey et al. and
Emery et al.21–25 that the use of a single multi-mode
coherent state describes the main classical structure of
the environment, and amounts to polaron formation. We
showed recently that quantum mechanics imposes a finer
structure on the states of the bath,5 whereby classically
forbidden displacements gradually emerge for low energy
environmental modes. This leads to a rich entanglement
structure that can be captured already by including a sec-
ond multi-mode coherent state, dubbed the antipolaron.
Adding an increasing number of antipolarons allows rapid
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convergence of several ground state observables. The
physical role of these antipolarons is crucial in determin-
ing the magnitude of the coherence in the system, which
somewhat counter-intuitively is enhanced with respect
to the purely classical (single polaron) description of the
bath.

Here, we shall further develop and explore the multi-
polaron expansion. First, we shall examine the structure
of the displacements at large dissipation, showing that
for the additional polarons they always snake between
polaron and antipolaron values, leading to a complex
nodal structure in their energy dependence. We shall also
show that the proliferation of antipolarons at increasing
dissipation is associated to emerging structures in the
entanglement entropy obtained by tracing out the whole
bath apart from a single mode. A second aspect of our
study will be to generalize the dissipative two-state model
to a finite bias (i.e. the parameter controlling the asymme-
try in the double-well potential underlying the two-level
system). While the structure of the system-plus-bath
wavefunction becomes more complicated in this case due
to the presence of symmetry breaking terms, we shall
show that it is again primarily controlled by energetics.
These considerations are not only important for a good
understanding of the physics at play, but also crucial in
order to efficiently determine the optimal displacements
that define the best set of variational states. All of our
results will be compared to accurate NRG calculations (in
the unbiased case), and to the exact Bethe Ansatz solu-
tion (with bias),26,27 demonstrating the fast convergence
of our multi-polaron expansion. This is also confirmed by
establishing that the energy variance of our variational
state rapidly vanishes as a function of the number of co-
herent states used, showing that our trial state quickly
becomes an exact eigenstate of the model. These precise
checks put the coherent state expansion on a firm math-
ematical ground and should make it a practical tool for
more advanced applications, for instance to sub-Ohmic
environments, multiple baths and qubits, or generalized
multi-state systems.

The paper is organized into two major parts. We begin
in Section II by reviewing the single-polaron Silbey-Harris
(SH) theory, and show that a simple two-polaron ansatz
cures the pathologies associated to the SH state. In partic-
ular, we elucidate how environmental correlations originat-
ing from antipolaronic effects preserve the spin coherence
〈σx〉 in the ground state. We further generalize the varia-
tional technique to account for a complete multi-polaron
expansion of the ground state of the unbiased spin-boson
model, demonstrating excellent agreement with NRG cal-
culations. New kinds of displaced states emerge, involving
two (and possibly more) nodes in their momentum de-
pendence. Incorporating many polaron states into the
trial wavefunction allows us to account for the progressive
build up of entanglement within the bath at increasing
dissipation, and we propose an entropy measure to char-
acterize precisely this property. Finally, we check that the
energy variance of the multi-polaron ground state drops

rapidly to zero on increasing the number of polarons.
Subsequently, in Section III, we study the ground state

of the biased spin-boson model. Here, we extend the
multi-polaron ansatz to incorporate the asymmetry be-
tween different oscillator displacements due to finite bias.
We show that the multi-polaron displacements for the
biased model possess very similar features to the unbiased
case, such as the formation of low-energy antipolarons
and the stabilization of spin coherence in comparison to
the classical (purely polaronic) response. Rapid conver-
gence to the exact Bethe Ansatz solution, valid in the
scaling limit of small tunneling amplitude, is also verified.
We conclude the manuscript with a brief discussion of
possible further extensions of the multi-polaron technique
to several more challenging open problems.

II. UNBIASED SPIN-BOSON MODEL

A. Hamiltonian

The unbiased spin-boson (SB) Hamiltonian3 (setting
~ = 1),

H =
∆

2
σx −

σz
2

∑
k>0

gk(bk + b†k) +
∑
k>0

ωkb
†
kbk, (1)

describes a two-level system with tunneling energy ∆
coupled to a bath of harmonic oscillators with modes of

energy ωk. Here b†k (bk) are the standard creation (anni-
hilation) operators for bosonic modes with momentum k,
and the Pauli matrices are introduced to describe the two
states of the sub-system, in complete analogy to a spin
1/2 (σz = | ↑〉〈↑ | − | ↓〉〈↓ |). The effect of the interaction
gk between the spin and the modes is encapsulated by
the bath spectral density:

J(ω) =
∑
k>0

πg2
kδ(ω − ωk) = 2παωθ(ωc − ω), (2)

where α is a dimensionless measure of the interaction
strength between the two-level system and the environ-
ment, and ωc is a high frequency cutoff for the spectrum,
which is assumed to be Ohmic (linear in frequency) in all
that follows. In the continuum limit, the k-sum appear-
ing in the above equations is understood as a continuous
integral, a nomenclature that we shall use throughout the
paper.

B. Review of Silbey-Harris variational theory:
Single-polaron ansatz

The motivation for the polaronic variational treat-
ment can be understood easily by first considering the
zero-tunneling limit, ∆ = 0. In this case, the model
[Eq. (1)] reduces to a system of harmonic oscillators
with finite displacements fk = gk/(2ωk) and energy



3

E(∆ = 0) =
∑
k>0 g

2
k/(4ωk) in the ground state. This

ground state is two-fold degenerate, as the two-level sys-
tem may freely point up or down. Conversely, when the
two-level system is fully decoupled from the bath (gk = 0),

the spin admits a single ground state (| ↑〉−| ↓〉)/
√

2 with
energy E(α = 0) = −∆, and is thus delocalised over
the two minima of the underlying double-well potential.
For finite tunneling and dissipation, the system exhibits
an inherent competition between localization, induced
by the interaction with the environmental bosons, and
delocalization intrinsic to the spin tunneling process.

Several authors have proposed and studied an approxi-
mate multi-mode coherent state ansatz21–24 for the un-
biased spin-boson model, that can capture both limiting
cases. We shall refer to this as the SH (Silbey-Harris)
ansatz; it takes the form

|ΨSH〉 =
1√
2

[
| ↑〉 ⊗ |+ fSH〉 − | ↓〉 ⊗ | − fSH〉

]
, (3)

where |fSH〉 = e
∑
k>0 f

SH
k (b†k−bk)|0〉 is a multi-mode coher-

ent state. Here, |0〉 represents the full vacuum state with
all oscillators in their undisplaced configuration. The
oscillator displacements fSH

k are determined from the
variational principle, based on minimizing the energy re-
sulting from the ansatz when applied to the spin-boson
Hamiltonian [Eq. (1)]:

ESH = −∆

2
e−2

∑
k>0(fSH

k )2

+
∑
k>0

ωk(fSH
k )2 −

∑
k>0

gkf
SH
k .

(4)
The first term in Eq. (4) is the renormalized spin tun-
neling energy, and the last two terms represent a shifted
parabolic potential for the oscillators. The variational en-
ergy is minimized according to ∂ESH/∂f

SH
k = 0, leading

to optimal displacements,

fSH
k =

gk/2

∆R + ωk
, (5)

for the bosonic modes, where

∆R = ∆〈+fSH| − fSH〉 = ∆e−2
∑
k>0(fSH

k )2

(6)

is the renormalized tunneling energy, which is thus deter-
mined self consistently. The SH displacement naturally
interpolates between the zero tunneling case (∆R = 0)
and the zero dissipation limit (gk = 0).

Previous studies have shown that the SH state works
relatively well for the ground state at small coupling
strength, α . 0.3, and in the scaling limit of ∆/ωc � 1,
but presents dramatic deficiencies otherwise.25,28–31 Its rel-
ative success comes from the prediction of polaronic states,
which minimize the classical response of the environment.
However, the modes entering each spin-projected com-
ponent in Eq. (3) are fully uncorrelated, and this misses
a crucial aspect of the physics at play.5 One example
of the failure of the SH state is the vanishing of spin
coherence at strong coupling, 〈ΨSH|σx|ΨSH〉 = ∆R/∆ =

(∆e/ωc)
α/(1−α) → 0 for α → 1, while the exact Bethe

Ansatz solution predicts a finite value 〈σx〉 = ∆/ωc in the
scaling limit.27

The nature of the missing correlations in the SH state
was elucidated in our recent publication5 where we showed
the importance of antipolaronic displacements at low en-
ergy, by which we mean displacements fk of opposite
value to fSH

k that are stabilized by quantum tunneling ef-
fects. In the following subsections, we present the details
of this extension — the multi-polaron theory of the dissi-
pative two-state system — that corrects all pathologies
associated with SH theory.

C. Building the multi-polaron ansatz: Two-polaron
ground state

We begin by explaining the physics at the heart of
antipolaron formation, which is rooted in the competition
between tunneling (driven by ∆) and dissipation (due
to the coupling to the bath). For high frequency modes
of the bath, ωk � ∆, the elastic energy dominates (i.e.
the energy associated to the displacement of the oscilla-
tors) and the displacement is given by the bare polaronic
value fk = gk/(2ωk) for mode k. Thus, the renormalized
spin tunneling energy is reduced by a factor roughly of

order ∆R/∆ = e
− 1

2

∑
ωk>∆(gk/ωk)2

� 1. Consequently,
the spin-projected wavefunctions overlap poorly and the
spin coherence is destroyed (see Fig. 1). To overcome
the resulting loss of tunneling energy, SH theory tends
to adjust to smaller displacements for low energy modes,
but will still predict an incorrect suppression of spin co-
herence at strong dissipation. A possible way to maintain
optimal tunneling energy, without sacrificing too much
elastic energy, is to allow quantum superposition of the
classical polaronic component of the wavefunction with
coherent states that have negative displacements, which
we have dubbed antipolarons,5 as sketched in Fig. 1.

As an initial step towards building up the full multi-
polaron ansatz, these qualitative ideas can be illustrated
quite explicitly using a two-polaron variational ground
state ansatz:

|Ψ2pol〉 = |↑〉
[
C1

∣∣∣+f (1)
〉

+ C2

∣∣∣+f (2)
〉]

− |↓〉
[
C1

∣∣∣−f (1)
〉

+ C2

∣∣∣−f (2)
〉]
, (7)

where the bosonic part of the wavefunction again involves
coherent states of the form

|±f〉 = e±
∑
k>0 fk(b†k−bk) |0〉 , (8)

defined as products of displaced states, where |0〉 rep-
resents all oscillators being in the vacuum state. The
presence of a Z2 symmetry, namely invariance under
(| ↑

〉
→ | ↓

〉
, | ↓

〉
→ | ↑

〉
, bk → −bk), and the

need for minimizing the spin tunneling energy, enforces
the chosen relative sign between the up and down compo-
nents of the ground state wavefunction in Eq. (7). Both
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X (A. U.)

polaron + antipolaron

FIG. 1. Intuitive physical picture behind polaron and antipo-
laron formation. Here, the wavefunction for a single oscillator
mode is shown (blue and gold curves correspond to the ↑ and
↓ projections, respectively). The main weight of the wavefunc-
tion is carried by the polaronic components (the two large
lower lobes), but their overlap is exponentially small, propor-
tional to ∆R as defined in Eq. (6) (horizontal green arrow). An
enhanced tunneling energy is achieved through the emergence
of reduced weight antipolarons (the two small upper lobes),
with an energy gain proportional to the bare scale ∆ (vertical
green arrow).

functions f
(1)
k and f

(2)
k are taken as free parameters, and

will be varied to minimize the total ground state energy
E2pol = 〈Ψ2pol|H |Ψ2pol〉. In contrast to the usual SH
state (for which C2 = 0),23–25,28 this more flexible ansatz
allows for the possibility of a superposition of variationally
determined displaced oscillator states to be associated
with each spin projection. Normalization of |Ψ2pol〉 im-
plies the condition

1 = 2C2
1 + 2C2

2 + 4C1C2

〈
f (1)|f (2)

〉
, (9)

with the usual form for the overlap of two coherent states,〈
f (1)|f (2)

〉
= e−

1
2

∑
k>0(f

(1)
k −f

(2)
k )2

. The two-polaron vari-
ational ground state energy is then given by

E2pol = 〈Ψ2pol|H |Ψ2pol〉

= −∆
[
C2

1

〈
f (1)| −f (1)

〉
+ C2

2

〈
f (2)| −f (2)

〉
+2C1C2

〈
f (1)|− f (2)

〉]
+2
∑
k>0

ωk

[
C2

1 (f
(1)
k )2 + C2

2 (f
(2)
k )2

+2C1C2f
(1)
k f

(2)
k

〈
f (1)|f (2)

〉]
−2
∑
k>0

gk

[
C2

1f
(1)
k + C2

2f
(2)
k

+C1C2(f
(1)
k + f

(2)
k )
〈
f (1)|f (2)

〉]
.(10)

In the limit that C2 → 0 (and so C1 → 1/
√

2) we recover
the SH ground state energy (4).

Returning to the two-polaron state of Eq. (7), we find

that the ground state coherence is given by

〈σx〉 = −2
(
C2

1e
−2

∑
k>0(f

(1)
k )2

+ C2
2e
−2

∑
k>0(f

(2)
k )2

+2C1C2e
− 1

2

∑
k>0(f

(1)
k +f

(2)
k )2

)
, (11)

while the magnetization 〈σz〉 = 0 by symmetry in the
absence of a magnetic field along σz (unless one enters the
polarized phase at α > 1 in the Ohmic spin-boson model).

The two sets of displacements f
(1)
k and f

(2)
k are variation-

ally determined from the total energy E2pol of Eq. (10)

according to ∂E2pol/∂f
(1)
k = 0 and ∂E2pol/∂f

(2)
k = 0,

which gives the closed forms

f
(1)
k =

gk
2

[
A1(C2

2ωk+∆2)−A2[C1C2

〈
f(1)|f(2)

〉
+∆12]

]
(C2

1ωk+∆1)(C2
2ωk+∆2)−[C1C2

〈
f(1)|f(2)

〉
+∆12]2

,

(12)
and

f
(2)
k =

gk
2

[
A2(C2

1ωk+∆1)−A1[C1C2

〈
f(1)|f(2)

〉
+∆12]

]
(C2

1ωk+∆1)(C2
2ωk+∆2)−[C1C2

〈
f(1)|f(2)

〉
+∆12]2

,

(13)
expressions which are valid for an arbitrary number of
oscillator modes. Hence, the generic k-dependence of
the displacement is fully constrained by the variational
principle, which leaves a small set of effective parameters
to be determined self-consistently according to

∆1 = ∆C2
1

〈
− f (1)|f (1)

〉
+

∆

2
C1C2

〈
− f (1)|f (2)

〉
+C1C2(−ω̃ + g̃)

〈
f (1)|f (2)

〉
, (14)

∆2 = ∆C2
2

〈
− f (2)|f (2)

〉
+

∆

2
C1C2

〈
− f (1)|f (2)

〉
+C1C2(−ω̃ + g̃)

〈
f (1)|f (2)

〉
, (15)

∆12 =
∆

2
C1C2

〈
− f (1)|f (2)

〉
+ C1C2(ω̃ − g̃)

〈
f (1)|f (2)

〉
,

(16)

A1 = C2
1 + 2C1C2

〈
f (1)|f (2)

〉
, (17)

A2 = C2
2 + 2C1C2

〈
f (1)|f (2)

〉
, (18)

ω̃ =
∑
k

ωkf
(1)
k f

(2)
k , (19)

g̃ =
∑
k

gk[f
(1)
k + f

(2)
k ]. (20)

The one-polaron SH displacement fSH
k = 0.5gk/

[
ωk +

∆
〈
− f (1)|f (1)

〉]
is trivially recovered from Eq. (12) by

letting C2 = 0. One can also check that f
(2)
k ' f

(1)
k for

ωk → ∞, while f
(2)
k ' −f (1)

k for ωk → 0 in the limit of
strong dissipation. Thus, the antipolaron displacement
satisfies the expected adiabatic to non-adiabatic crossover
as a function of energy ωk, and this physical picture is
naturally incorporated into the variational theory.

In Fig. 2 we show how the addition of a second polaron
dramatically improves the ground state spin coherence at
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−
〈 σ x〉

∆/ωc =0.01

NRG
1-pol
2-pol

FIG. 2. Ground state spin coherence in the Ohmic spin boson
model, 〈σx〉, as a function of dissipation strength α for tunnel-
ing energy ∆/ωc = 0.01. The results of NRG calculations are
shown as a solid line and the dots denote predictions from the
single-polaron SH state (1-pol) and the two-polaron ansatz
(2-pol). The SH state clearly fails to capture the correct spin
coherence at large α. The black dashed line on the right de-
notes the expected Bethe-Ansatz value at the transition point
α = 1.

strong dissipation in the two-polaron ansatz. In partic-
ular, by incorporating polaron-antipolaron overlap, the
two-polaron ansatz correctly predicts an enhancement
of the spin coherence at large α in comparison to the
one-polaron SH state, which instead incorrectly predicts
a strong suppression given by the vanishing scale ∆R/∆
defined in Eq. (6). We see that the spin coherence derived
from the two-polaron ansatz is already in very good qual-
itative agreement with converged NRG results, though
there are some quantitative differences, such as an underes-
timation of |〈σx〉| as α→ 1. This motivates the inclusion
of additional polarons into the ground state ansatz, which
should act to further enhance polaron-antipolaron overlap,
and thus bring the coherence into full agreement with the
NRG results.

D. Multi-polaron ground state expansion

The considerations of the previous subsection lead us to
propose a generalized multi-polaron ground state ansatz
that captures the complete structure of the entanglement
built into the bath:

|ΨGS〉 =

Npols∑
n=1

Cn

[
|+ f (n)〉⊗ | ↑〉− |− f (n)〉⊗ | ↓〉

]
, (21)

where | ± f (n)〉 once more denote multi-mode coherent

states, | ± f (n)〉 = e±
∑
k>0 f

(n)
k (b†k−bk)|0〉, with f

(n)
k now

the displacement of mode k for the nth variational co-
herent state. Here, Cn characterizes the weight of the
different coherent state components within the ground
state wavefunction and N = 〈ΨGS|ΨGS〉 denotes the norm.
In the limit Npols →∞ the above ground state wavefunc-
tion allows an arbitrary superposition of polaron and

antipolaron states, which in turn should capture all the
environmental correlations that are missing in SH varia-
tional theory. In the opposite limit, i.e. Npols = 1, Eq. (21)
reduces to standard single-polaron SH theory.

It is important to stress here that the set of coherent
states required to achieve convergence is not necessar-
ily very large, as we shall see later on. Because of the
energetic requirements of the problem, the allowed dis-
placements are strongly constrained, which consequently
reduces the total number of coherent states needed in
the expansion of Eq. (21). For instance, the high energy
oscillator modes ωk � ∆ typically fall onto the bare dis-

placement value f
(n)
k ' gk/(2ωk). Also, spin tunneling

energy can be gained whenever the displacements become
opposite in sign to this classical value, which forces the
coherent states to cross over from positive to negative
displacements, and thus alternate between polaronic and
antipolaronic branches. Finally, in the low energy limit,
ωk → 0, all displacements tend to vanish in order to pre-
serve spin coherence. We shall see below that all of these
constraints are well obeyed by the numerical solution of
the multi-polaron equations.

E. Solving the multi-polaron equations

We now present details of the procedure used to de-

termine the displacements f
(n)
k and weights Cn enter-

ing the multi-polaron ansatz (21). First, we need to
compute the energy of this variational ground state
EGS = 〈ΨGS|H|ΨGS〉/〈ΨGS|ΨGS〉 within the spin-boson
model [Eq. (1)]:

EGS = −∆

N

Npols∑
n,m

CnCm〈f (n)| − f (m)〉 (22)

+
2

N

Npols∑
n,m

CnCm〈f (n)|f (m)〉
∑
k>0

ωkf
(n)
k f

(m)
k

− 1

N

Npols∑
n,m

CnCm〈f (n)|f (m)〉
∑
k>0

gk(f
(n)
k + f

(m)
k ),

with the norm N = 2
∑Npols

n,m CnCm〈f (n)|f (m)〉. The over-

laps of different coherent states are given by 〈f (n)| ±
f (m)〉 = e−

1
2

∑
k>0(f

(n)
k ∓f

(m)
k )2

. The first term in EGS de-
scribes the spin tunneling contribution, while the last two
terms contain the displacement energy of the oscillators.
Eq. (22) clearly reduces to the SH energy, Eq. (4), in
the limit Npols = 1. All observables are determined once

the variational parameters f
(n)
k and Cn are known. For

instance, the spin coherence reads simply:

〈σx〉 = −
∑Npols

n,m CnCme
− 1

2

∑
k>0(f

(n)
k +f

(m)
k )2

2
∑Npols

n,m CnCme
− 1

2

∑
k>0(f

(n)
k −f

(m)
k )2

. (23)

From the above expression for the spin coherence, it
is possible to understand the failure of the SH ansatz.
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The spin coherence in SH theory is given by the ex-

pression 〈σx〉 = e−2
∑
k>0(fpol.

k )2

= ∆R/∆, and is thus
determined solely by the renormalized tunneling ampli-
tude. While a vanishing (Kondo) energy scale is in-
deed expected for α → 1, the spin coherence should
remain finite. In contrast, the multi-polaron ansatz con-
tains additional contributions to the spin coherence, with

pre-factors e−
1
2

∑
k>0(f

(n)
k +f

(m)
k )2

. Antipolarons, namely

f
(n)
k ' −gk/(2ωk), will tend to cancel the polaronic dis-

placement f
(m)
k ' gk/(2ωk), thus helping to stabilize

the spin coherence even at large dissipation. In other
words, the correlations captured by the multi-polaron
ansatz [Eq. (21)] strongly enhance the spin coherence by
introducing entanglement within the bath.

We have devised an algorithm to solve for the displace-
ments efficiently. After truncation of the spectral density
to a number Nmodes of modes (which could be on either a
linear or logarithmic grid depending on the regime consid-
ered), we face the determination of Npols × (Nmodes + 1)
unknown displacements and weights, that should solve the

set of coupled non-linear equations ∂EGS/∂f
(n)
k = 0 and

∂EGS/∂Cn = 0. With increasing numbers of polarons
and modes this method becomes impractical because of
the large number of self-consistent parameters, and nu-
merical instabilities typically associated with root-finding
routines. Instead, we use a direct minimization of the full
energy functional, but even so, finding the global minima
of EGS is no small task. However, dramatic computational
gains can be achieved by exploiting the energetic require-

ments on the displacements f
(n)
k discussed in Sec. II D.

We thus use a two step minimization procedure, where
the first step consists of a global minimization routine
using displacements that are parametrized by a small set

of unknown energy scales {Ω(n)
i }:

f
(n)
k =

−gk/2
ωk + ∆R

I(n)∏
i=1

ωk − Ω
(n)
i

ωk + Ω
(n)
i

. (24)

The rationale behind this expression is that it per-
mits each displacement to cross-over from polaronic to
anti-polaronic branches whenever the mode frequency

ωk crosses a node of the displacement f
(n)
k at energy

ωk = Ω
(n)
i . For a given multi-mode coherent state |f (n)〉

we allow an arbitrary number I(n) of nodes in the routine,
but typically the energy minimization will favour states
with one node over states with two nodes (and so on).

Using the restricted form of f
(n)
k given in Eq. (24) we

perform a global stochastic optimization of the energy
using standard simulated annealing techniques,32,33 which

allows us to fix the parameters ∆R, Ω
(n)
i and Cn, and

already gives an excellent variational approximation to
the exact ground state. The convergence can be further
improved in a second minimization step, by implementing
a full variational determination of the Npols×(Nmodes +1)
unknown displacements and weights. This is performed
using the final result of the global parametrized solution

0.0 0.2 0.4 0.6 0.8 1.0
α

10-5

10-4

10-3

10-2

10-1

100

−
〈 σ x〉

NRG  SH  Mpols  ∆/ωc 
0.01

0.001

0.0001

FIG. 3. Spin coherence in the Ohmic spin boson model, 〈σx〉,
as a function of dissipation strength α for three different values
of the tunneling energy, ∆/ωc = 0.0001, 0.001, 0.01 (bottom
to top). The solid lines show results of NRG calculations,
and the dots (labeled “Mpols”) mark the converged results
from our multi-polaron ansatz with Npols = 6 polaronic states.
Again, we see that the SH results (dashed lines) clearly fail to
capture the spin coherence at large α.

as an input, which is fed into either to an efficient conju-
gate gradient program34–37 or to a limited memory BFGS
method routine38,39 depending on the parameters range.
Here, all displacements and weights are varied simulta-
neously using a standard limited-memory quasi-Newton
optimization routine. In order to facilitate comparison
to NRG results (see Appendix A for details on the NRG
simulations) and to limit the number of modes in the
strong dissipation regime, the optimization is performed
on a logarithmic discretization of the bath. We shall now
present and discuss the results obtained by using this
algorithm.

F. Results and Discussion

1. Spin coherence

In Fig. 3 we show the ground state spin coher-
ence 〈σx〉 as a function of spin-bath coupling (dissipa-
tion) strength α for three different values of ∆/ωc =
{0.01, 0.001, 0.0001}, calculated using the multi-polaron
ansatz in Eq. (21) with only Npols = 6 coherent states.
For comparison, the SH results (dashed lines) are also
shown along with results from the NRG calculations (solid
lines). As mentioned previously, SH theory completely
fails to capture the spin coherence for any value of ∆/ωc

at large coupling (α & 0.3), and incorrectly predicts an
exponentially small renormalized spin tunneling energy
〈σx〉 = ∆R/∆ = (∆e/ωc)

α/(1−α). In contrast, the extra
environmental correlations coming from different antipo-

laron overlaps e−
1
2

∑
k>0(f

(n)
k +f

(m)
k )2

(for n 6= m) in the
multi-polaron ansatz preserve the spin coherence, as seen
by the excellent agreement with the NRG simulations.
Finally, close to the quantum critical point α ≈ 1, the
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FIG. 4. Variationally determined displacements f
(n)
k (top panels) and weights Cn (bottom panels) for three different values of

dissipation α = 0.2, 0.5, 0.8 (left to right panels), calculated from the multi-polaron variational ansatz [Eq. (21)] using Npols = 8
coherent states. These calculations are performed for ∆/ωc = 0.01 and on a logarithmic grid with Λ = 2 (see Appendix A). All
displacements tend to cluster to the same positive values at high frequencies (polarons), and cross over to negative values in a

complicated fashion (antipolarons). We note the presence of one state with no node f (1) (the fully polaronic state given by the

solid red line), five states with one node f (2) . . . f (6) (other solid lines), and two states with two nodes f (7) and f (8) (dashed
lines). The lower three panels show the weights Cn/C1, normalized to the weight of the fully polaronic state, corresponding to
the above oscillator displacements (using the same color code).
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FIG. 5. Polaronic (zero-node) displacement f
(1)
k computed for

an increasing number of coherent states, Npols = 1, 2, 4, 6, 8
(full curves, from right to left) in Eq. (21). Parameters:
∆/ωc = 0.01 and α = 0.5. The multi-node displacements
for Npols = 8 are shown as dotted curves.

saturation of spin coherence to the exact Bethe Ansatz
value ∼ ∆/ωc is also captured properly by our proposed
multi-polaron wavefunction. It is also worth stressing the
rapid convergence of the multi-polaron ansatz with only
a small number of coherent states for all values of ∆/ωc

and α shown here. For the spin coherence, this is shown
explicitly in Fig. 2 of our previous publication5 and is
discussed below for other quantities.

2. Displacements.

In analyzing the displacements we shall start by con-
sidering the role of dissipation on the entanglement struc-
ture of the ground state wavefunction of the spin-boson
model. Fig. 4 shows a set of ground state bosonic displace-

ments f
(n)
k for three different values of the dissipation

strength α calculated using the multi-polaron ansatz of
Eq. (21). Here we present the solution obtained with
Npols = 8 coherent states, to show the presence of dis-
placements with up to two nodes. The zero node dis-

placement, noted f
(1)
k , is completely analogous to the SH

polaronic displacement and encodes the main classical
response of the bath. The one node displacements, de-

noted f
(2)
k . . . f

(6)
k in Fig. 4, nicely illustrate the crossover

from polaron behavior for high energy modes to antipo-
laronic behavior for lower energy modes. We observe in

Fig. 5 that the main displacement f
(1)
k in the multipo-

laron case differs from the single polaron results quantita-
tively, and typically we find that the exact renormalized
scale ∆exact

R is significantly smaller than the SH value

∆R = ∆(∆e/ωc)
α/(1−α) defined in Eq. (6). Here ∆exact

R
corresponds physically to the scale where all displace-
ments vanish in the converged multipolaron ground state
(see Fig. 5), which can be formally defined as follow. One
can compute the average ground state displacement for
the spin-up component of the full ground state wavefunc-

tion: fground
k = 〈ΨGS|(ak + a†k)(1 + σz)/2|ΨGS〉. The

overlap between positively and negatively shifted effective

polarons with displacements fground
k provides then a pre-

cise estimate of the true renormalized tunneling energy:

∆exact
R = ∆e−2

∑
k(fground

k )2

. In fact, this strong renormal-
ization from ∆R to ∆exact

R comes from the proliferation of
antipolarons in the energy range [∆R, ωc], which pushes
the scale ∆R downwards, as shown in Fig. 5.

More surprising is the emergence of states with two

nodes in the displacements f
(7)
k and f

(8)
k , as allowed in our

starting guess [Eq. (24)]. Such states are thus polaronic
at high energy, antipolaronic at intermediate energy, and
become polaronic again at low energy. The appearance
of these states can be understood as follows: because
coherent states are not orthogonal to each other, it is not
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FIG. 6. Displacements f
(n)
k and weights Cn as in Fig. 4, but for fixed dissipation α = 0.8 and decreasing values of the tunneling

amplitude, ∆/ωc = {0.05, 0.005, 0.0005} (left to right).
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FIG. 7. Weight Cn/C1 of the multi-mode coherent state

|f (n)〉 (n > 1), normalized to the weight of the main polaron

component |f (1)〉, as a function of spin-bath coupling α (upper
panels) and tunneling amplitude ∆ (lower panels). These
calculations were performed for Npols = 5 coherent states, and
∆/ωc = 0.01 in panel (a), ∆/ωc = 0.001 in panel (b), α = 0.6
in panel (c), and α = 0.8 in panel (d). The weights saturate
to finite values in the limit α→ 1 (top panels), highlighting
the non-trivial nature of the wavefunction at the quantum
critical point, while the weights vanish in the ∆ → 0 bare
polaron limit (bottom panels).

useful to add up a very large number of one-node states

with different crossover frequencies Ω
(n)
1 , as the overlap

between any pair of such one-node states will tend to
one. In fact, it instead becomes favorable to create states
that gain some combination of potential and tunneling
energy, i.e. states that can approach as close as possible
the polaron and the antipolaron branches, while being
as different as possible from the one-node states. Having
displacements with two nodes is an obvious way to cope
with these constraints, and we can envision at this stage
that the complete expansion of the wavefunction can be
rationalized in terms of displacements with an ever in-
creasing number of nodes. We also note from Fig. 4 that
such two node state may have a larger weight than the

one node displacements (for instance C7 in the bottom
left panel), which would naively imply that the correction

brought by f
(7)
k is larger than the ones obtained at the pre-

vious orders. This is not so actually, because the various
polaron states in the wavefunction decomposition are not
orthogonal to each other. Thus, a state with substantial

overlap with the main displacement f
(1)
k (as is actually

the case with the two-node state f
(7)
k ) is actually allowed

to have a large weight, although it provides in the end a
small correction to the actual complete wavefunction.

We emphasize that the weights associated with such
multi-node coherent states are rapidly suppressed for
n > 4 (see bottom panels in Fig. 4), demonstrating the
rapid convergence of our ansatz. Another observation is
that the fully optimized displacements become quanti-
tatively very close to the trial form of Eq. (24) at large
dissipation, underlining the advantage of the chosen ini-
tial parametrization. We believe, although we have not
yet proved, that such a simplification for the form of the
displacements is related to the emergent universal scal-
ing properties that are inherent in the underlying Kondo
physics3,22,27,40 for α ' 1. Our multi-polaron state thus
provides interesting insights into the nature of entangle-
ment within the Kondo cloud, taking advantage of the
simplifications brought about by the natural emergence
of coherent states in the bosonic language appropriate
here. Such a precise understanding is to our knowledge
still lacking for the fermionic Kondo model, owing to the
complexity in parametrizing particle-hole excitations in a
Fermi gas beyond the reach of perturbation theory.

We now consider the role of tunneling energy on
the microscopic nature of the many-body wavefunction.
Fig. 6 shows the k-dependence of the oscillator dis-
placements and the related weights for three values of
∆/ωc = {0.05, 0.005, 0.0005} at α = 0.8, again for a total
of Npols = 8 multi-mode coherent states. Similarities,
as well as interesting differences, appear as compared to
the effect of increasing dissipation. We observe that the
renormalized tunneling ∆R ∝ ∆1/(1−α) drops as expected
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by increasing α (Fig. 4) or by decreasing ∆ (Fig. 6), as
seen by the behavior of the characteristic energy at which
all displacements vanish together (note the difference in
frequency scales from the left to right upper plots in these
figures). For the chosen parameters in Fig. 6, the two-
node displacements become unfavorable as compared to
new one-node displacements at decreasing ∆. We thus
find that the scalings α → 1 and ∆ → 0 are not equiv-
alent, because the two-node displacements are stable in
the former. In addition, one expects that the ∆ = 0 limit
should be trivial as it amounts simply to bare polarons,
while the α → 1 limit is associated with a Kosterlitz-
Thouless quantum phase transition. The corresponding
behavior of the weights, see Fig. 7, does indeed support
this view: all Cn (n > 1) saturate to a finite value for
α → 1, emphasizing the inherently strongly entangled
nature of the wavefunction, while all Cn (n > 1) rapidly
drop to zero for ∆ → 0, recovering the expected bare
polaron limit.

G. Spectroscopy of entanglement entropy

We now wish to assess the ground state entanglement
among the environmental states, suggested by the coher-
ent state expansion (21), more directly. For this purpose,
we define two reduced density matrices from which an
“excess entropy” measure will be constructed. First, the
reduced density matrix of the spin alone is obtained from
the pure ground state density matrix ρtot =

∣∣Ψ〉〈Ψ∣∣ by
tracing out all of the bosonic environmental modes,

ρspin = Trenv

∣∣Ψ〉〈Ψ∣∣. (25)

The second reduced density matrix is obtained by tracing
out all modes except the qubit degree of freedom together
with an arbitrary bath mode with given quantum number
k; this defines a spin and k-mode excluded environment
denoted “env/spin+k”. The reduced ground state density
matrix in the joint qubit and k-mode subspace reads

ρspin+k = Trenv/spin+k|Ψ
〉〈

Ψ|. (26)

From these reduced density matrices, corresponding entan-
glement entropies can be defined. We choose to work with
the ρ2-entropy since it can be readily evaluated for the
multi-polaron ansatz wavefunction: Sspin = 1− Tr[ρ2

spin]
is the entanglement entropy of the spin with the bath,
and Sspin+k = 1−Tr[ρ2

spin+k] is the entanglement entropy
of the spin plus k-mode subsystem with the other envi-
ronmental modes. To assess the entanglement within the
bath, consider the difference between these two entropies,
Sspin+k − Sspin, the excess entropy due to the entangle-
ment of the mode k with the rest of the environment.
This quantity is plotted in Fig. 8 from both the NRG
data and the multi-polaron ansatz (see Appendix B for
details of the calculation) and reveals most sensitively the
nature of the many-body ground state.

The excess entropy is mostly negative for small dissipa-
tion, α < 0.5 (see the NRG calculations in the top panel
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FIG. 8. Excess entanglement ρ2-entropy of the subsystem
composed of the qubit with a given oscillator k-mode. The top
figure displays the NRG results for four values of dissipation
α = 0.2, 0.4, 0.6, 0.8, showing a qualitative change of behavior
for α > 0.5 (see text). The bottom panel, computed for α = 0.5
within the NRG and the coherent state expansion (21) for
increasing coherent state content (Npols = 1, 2, 8, 16), shows
that the large and positive entropy excess is built from the
entanglement generated by multi-polaronic components.

of Fig. 8), as expected from the correlations characterizing
the SH ansatz (3), which is built solely from non-entangled
environmental states within each spin-projected compo-
nent. In contrast, at strong dissipation α > 0.5, the
excess entropy becomes positive and shows a strikingly
large enhancement near the scale ∆R defined in Eq. (6),
which we interpret as being due to entanglement within
the bath of oscillators. This interpretation is confirmed
by the direct comparison with the entropy computed from
the coherent state expansion (21), see the bottom panel
of Fig. 8. Indeed, the entropy peak gradually builds up
as coherent states are added into the wavefunction thus
generating additional environmental entanglement. Note
especially the large energy window where the entropy
peak develops: the excess entanglement spreads from low
to high frequency modes. The existence of inter-mode
bosonic correlations on a wide energy range also makes an
interesting connection to the underlying (although hidden
in the spin-boson model) fermionic Kondo physics.3,27



10

100 101

Npols.

10-6

10-5

10-4

10-3

10-2

10-1

100
〈 H2

〉 −〈 H
〉 2

( 〈 H2
〉 −〈 H

〉 2) S
H

α=0.2
∆/ωc =0.001 
∆/ωc =0.01

∆/ωc =0.1

100 101

Npols.

10-6

10-5

10-4

10-3

10-2

10-1

100

∆/ωc =0.1

α=0.2

α=0.5

α=0.8 

FIG. 9. Energy variance
〈
H2

〉
−

〈
H
〉2

(normalized to the SH
result) as a function of the number Npols of coherent states
in the expansion (21) for several values of the tunneling rate
(left panel) and different dissipation strengths (right panel).

This excess entropy is thus a very sensitive measure
of the subtle non-classical correlations among the bath
modes that are generated by their coupling to the qubit.

H. Convergence properties

In the last part of this section, we address the con-
vergence properties of our coherent state expansion (21).
While the variational principle and the overcompleteness
property of the coherent state basis suggest convergence to
the full many-body ground state of the spin boson model,
we would like to check that the numerical procedure used

to determine the unknown parameters (f
(n)
k , Cn) is not

detrimental to the correct convergence. For this purpose,

we compute the energy variance
〈
H2
〉
−
〈
H
〉2

, which can
be expressed analytically from the trial state (21), see
Appendix C, and is displayed in Fig. 9.

We find that the energy variance vanishes quickly for a
large number of polarons, typically in a power-law fashion,
with an exponent that depends on the dissipation strength.
This shows that an exact eigenstate is approached by
increasing the number of coherent states in the trial wave-
function, suggesting rapid convergence of the expansion.
Such efficiency of our algorithm is rooted in two impor-
tant aspects of the polaron theory: first, the Silbey-Harris
polaron state captures the majority of the full many-body
wavefunction, so that only perturbative corrections have
to be obtained from the antipolaron states; second, the en-
ergetic constraints discussed previously reduce the phase
space of available displacements constituting the correc-
tions to the Silbey-Harris state, which guarantees fast
convergence of the polaron expansion.

III. BIASED SPIN-BOSON MODEL

A. Hamiltonian and motivation

In the second part of the paper, we extend our unbiased
multi-polaron ansatz [Eq. (21)] to incorporate the effect
of a bias ε within the spin-boson model:

Hbias =
ε

2
σz +

∆

2
σx −

σz
2

∑
k>0

gk(bk + b†k) +
∑
k>0

ωkb
†
kbk.

(27)
We again consider an Ohmic spectral density, and we
shall focus primarily on the dependence on ε of various
observables, namely the ground state spin coherence 〈σx〉
and population difference (magnetization) 〈σz〉, which
now becomes non-zero even below α = 1. In terms of
experimental realization, in the context of superconduct-
ing circuits, for example, ∆ corresponds to the Josephson
energy that couples a charge qubit to an array of su-
perconducting junctions,41–43 while ε is controlled by a
local gate that shifts the degeneracy of the two successive
charge states. On theoretical grounds, the inclusion of
bias is interesting in several ways. First, single-polaron
SH theory does a very poor job at large dissipation for bi-
ased systems, and shows strong artifacts for α > 1/2, for
instance predicting an incorrect magnetization jump.28

Proposals to cope with some of these defects have been
made,28 but were justified on the basis of physical argu-
ments rather than from a clear mathematical procedure
grounded in the variational principle, and for this reason
did not offer a fully optimized framework.

In the following we provide a generalization of the
unbiased multi-polaron ansatz to treat the ground state
of the biased spin-boson model, Eq. (27). We shall show
that our biased multi-polaron ansatz not only corrects
all pathologies associated with the SH ansatz, but also
converges to exact results obtained from the Bethe Ansatz.

B. Asymmetric Silbey-Harris theory

Let us start by considering the generalization of the
unbiased one-polaron state, Eq. (3), to the biased case. In
principle we should now allow a priori different displace-
ments (no longer equal and opposite) and weights for the
up and down components of the wavefunction, leading to
a spin-asymmetric SH trial state:

|Ψbias
aSH〉 =

1√
p2 + q2

[
p|f↑〉 ⊗ | ↑〉 − q|f↓〉 ⊗ | ↓〉

]
. (28)

The motivation for introducing this form of wavefunction
is to be able to capture both the α = 0 and ∆ = 0 limits
exactly, in contrast to the symmetric ansatz of Eq. (21),
which is in fact also used in the literature for the biased
case.23,24,28,29 Applying the variational principle leads
to simple closed-form expressions for the spin-dependent
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displacements:

f↑,↓ =
gk(ε̃∓ ωk)

2ωk(χ+ ωk)
, (29)

with the parameters ε̃ and χ (as well as the weights p
and q) determined by a set of non-linear self-consistent
equations. Clearly, the parameter χ is connected to the
renormalized tunnel amplitude, but in contrast to the
unbiased case, the displacements no longer vanish in the
ωk → 0 limit, but rather approach the renormalized value
[ε̃/(2χ)]gk/ωk. This can be understood physically from
the fact that finite positive bias, ε > 0, enforces a finite
negative value of 〈σz〉 < 0, which in turn provides a finite
and positive displacement to the oscillators due to the
linear coupling term in the spin-boson Hamiltonian (27).
We stress that the oscillators associated with the up and
down components of the wavefunction thus displace in the
same “direction” at low energy due to the bias, in contrast
to a polaron-type displacement, which has opposite values
for f↑ and f↓, as can be seen from the limit of large ωk
in Eq. (29).

C. Biased multi-polaron ground state ansatz

We shall now extend our multi-polaron ansatz, Eq. (21),
to incorporate the symmetry breaking features associated
with asymmetrically displaced oscillator states:

|Ψbias
GS 〉 =

1√
N

Npols∑
n=1

[
pn|f (n)

↑ 〉⊗| ↑〉−qn|f
(n)
↓ 〉⊗| ↓〉

]
. (30)

Here, |f (n)
↑,↓ 〉 = e

∑
k>0 f

(n)

k (↑,↓)(b
†
k−bk)|0〉. In the limit f

(n)
↑ =

−f (n)
↓ and pn = qn, the above ansatz reduces to unbiased

multi-polaron ansatz of Eq. (21), and for Npols = 1, we
recover the asymmetric SH state of Eq. (28).

As in the unbiased spin-boson model, the coherent state
basis is over complete and thus has ample flexibility to
capture the main energetic constraints at play in the
presence of bias too. These are of three types: (i) the
formation of polarons at high energy; (ii) the formation of
antipolarons at intermediate energies, with an increasingly
complex nodal structure to the displacements; and (iii)
the saturation to a finite displacement at vanishing energy
controlled by the bias field. We shall show below that
these physical considerations completely characterize the
rich entanglement content of the wavefunction in the
biased case. Again, we find that a reasonably small
number of multi-mode coherent states is sufficient for
good convergence, comparing this time to exact Bethe
Ansatz results.

D. Solving the biased multi-polaron equations

The variational multi-polaron energy for the biased spin-
boson model, Ebias

GS = 〈Ψbias
GS |Hbias|Ψbias

GS 〉/〈Ψbias
GS |Ψbias

GS 〉, is
given by

Ebias
GS =

1

N

Npols∑
n,m

[
−∆pnqm〈f (n)

↑ |f
(m)
↓ 〉+ pnpm〈f (n)

↑ |f
(m)
↑ 〉

∑
k>0

ωkf
(n)
k ↑ f

(m)
k ↑ + qnqm〈f (n)

↓ |f
(m)
↓ 〉

∑
k>0

ωkf
(n)
k ↓ f

(m)
k ↓

+ pnpm〈f (n)
↑ |f

(m)
↑ 〉

∑
k>0

gk
2

(
f

(n)
k ↑ + f

(m)
k ↑

)
− qnqm〈f (n)

↓ |f
(m)
↓ 〉

∑
k>0

gk
2

(
f

(n)
k ↓ + f

(m)
k ↓

)
+
ε

2

(
pnpm〈f (n)

↑ |f
(m)
↑ 〉 − qnqm〈f (n)

↓ |f
(m)
↓ 〉

)]
, (31)

whereN =
∑Npols

n,m

(
pnpm〈f (n)

↑ |f
(m)
↑ 〉+ qnqm〈f (n)

↓ |f
(m)
↓ 〉

)
is the normalization of the complete ground state wave-

function and 〈f (n)
↑,↓ |f

(m)
↑,↓ 〉 = e

− 1
2

∑
k>0

[
f

(n)
k ↑,↓−f

(m)
k ↑,↓

]2

is
the overlap between different coherent states. It is
straightforward to see that in the unbiased limit ε = 0,
the ground state energy of Eq. (31) reduces to the
unbiased spin-boson ground state energy of Eq. (22).
Here, we perform a variation of the energy with respect
to all free parameters within the problem, namely the

spin-polarized displacements f
(n)
↑,↓ , and their related

weights pn and qn.

All observables are determined once these parameters
are known. For instance, the spin coherence 〈σx〉 and
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magnetization 〈σz〉 are given by the compact expressions:

〈σx〉 =
−
∑Npols

n,m pnqm〈f (n)
↑ |f

(m)
↓ 〉∑Npols

n,m

[
pnpm〈f (n)

↑ |f
(m)
↑ 〉+ qnqm〈f (n)

↓ |f
(m)
↓ 〉

] ,
(32)

〈σz〉 =

∑Npols

n,m

[
pnpm〈f (n)

↑ |f
(m)
↑ 〉 − qnqm〈f (n)

↓ |f
(m)
↓ 〉

]
∑Npols

n,m

[
pnpm〈f (n)

↑ |f
(m)
↑ 〉+ qnqm〈f (n)

↓ |f
(m)
↓ 〉

] .
(33)

In the absence of bias, f
(n)
↑ = −f (n)

↓ and pn = qn, hence

we readily recover a vanishing magnetization, 〈σz〉 = 0,
from Eq. (33).

Guided by the unbiased scenario, we perform a two step
minimization of the total energy, Eq. (31). Note that the
number of free parameters to minimize here is doubled
in comparison to the unbiased multi-polaron ansatz, so
that finding a reliable and fast algorithm is quite crucial.
Again, we first parametrize the displacements using only
a small number of parameters to allow for an efficient
global optimization:

f
(n)
↑,↓ =

gk(ε̃± ωk)

2ωk(χ+ ωk)

I(n)∏
i=1

ωk − Ω
(n)
i(↑,↓)

ωk + Ω
(n)
i(↑,↓)

, (34)

where ε̃, χ, and Ω
(n)
i(↑,↓) are variational parameters, along

with the weights pn, qn. Here, Ω
(n)
i(↑,↓) denotes a set of

crossover frequencies for each coherent state, with the
index i spanning the allowed nodes. In practice, we start
the minimization procedure with the possibility of having
an arbitrary nodal structure. We also emphasize here that
this parametrization goes beyond the ansatz proposed in
Ref. 28, which is in fact not variational. Although our
parametrization is not yet fully variational at the end
of the first minimization stage, it captures the essential
energetic constraints discussed previously. In the second
stage, we then take the output of the global minimization
routine to initialize the final local optimization routine,
which performs a local search within the entire set of
parameters (displacements and weights), thereby complet-
ing the numerical variational minimization of the total
energy in Eq. (31).

E. Results and Discussion

1. Displacements.

In Fig. 10 we show the variationally-determined os-
cillator displacements calculated using the biased multi-
polaron ansatz of Eq. (27) for Npols = 6 coherent states.
Again, at high energy, ωk � ∆R, all displacements

smoothly merge with the main polaron f
(1)
k,↑/↓ (red solid

lines). At intermediate frequencies, extra nodal struc-
ture emerges, due to the energetic gains associated to
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10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

ωk

0.4
0.2
0.0
0.2
0.4

f
(n

)
k
,↓
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α=0.5

FIG. 10. Variational displacements f
(n)

k,↑/↓ for the biased spin-

boson model, Eq. (27). To facilitate comparison with Bethe
Ansatz results, all multi-polaron calculations were performed
using an exponential high-energy cutoff in the spectral density.
Thus, the displacements fall off exponentially at ωk > ωc

instead of being cut off sharply as in the previous plots in
the unbiased case (for instance in Fig. 4). We note again the
emergence of antipolaron displacements, but additional nodal
structure emerges due to the saturation of the displacements

to a finite value at ωk → 0 (for instance f
(1)
k,↑ shows a node

although it corresponds to the main polaronic component).
Here, the parameters used areNpols = 6, ∆/ωc = 0.01, α = 0.5,
ε/ωc = 10−4, and ωmax = 10ωc.

quantum tunneling. Finally, all displacements converge
to the same finite value at vanishing energy, an effect of
the finite applied bias. These fully optimized variational
parameters follow nearly quantitatively the form of the
parametrized displacements in Eq. (34), in agreement
with energetic considerations. As in the unbiased case,
the main polaronic displacement differs quantitatively
from the single-polaron (SH) prediction, with the renor-
malized tunneling scale ∆R again pushed downwards as
antipolarons are added into the trial state. This is illus-

trated for f
(1)
k,↑ in Fig. 11 at various dissipation strengths.

Additionally, notice the change in behavior at vanishing
energy, seen most clearly for α = 0.6, where the finite
displacement due to the applied bias is suppressed as
antipolarons are added to the wavefunction. The latter
occurs because for these parameters the spin is partially
polarized and poised to abruptly switch from being unpo-
larized to fully polarized (see next section), thus making
the state especially sensitive to the number of polarons
included in the wavefunction ansatz.

2. Magnetization.

In Fig. 12 we investigate the behavior of the two-level
population difference (or qubit magnetization) as a func-
tion of spin-bath coupling strength α for several different
bias values. As a benchmark, we use exact Bethe Ansatz
results, which are valid in the scaling limit (∆/ωc � 1)27

and for a (soft) exponential bosonic cutoff in the spectral
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FIG. 11. Polaronic displacement f
(1)
k,↑ computed for an increas-

ing number of coherent states, Npols = 1, 2, 4, 6, 8 (full curves,
from right to left) in Eq. (30). Parameters: ∆/ωc = 0.01 and
ε/ωc = 10−5, α = 0.3 (top), α = 0.6 (middle), and α = 0.9
(bottom). The multi-node displacements for Npols = 8 are
shown as dotted curves. As in Fig. 10, an exponential high-
energy cutoff was used in the spectral density.

density, J(ω) = 2παωe−ω/ωcθ(ωmax − ω), which we also
employ in our biased multi-polaron calculations in this
section (with ωmax = 10ωc). Indeed, because the Bethe
Ansatz solution relies on bosonization identities to map
the spin-boson model to an exactly solvable fermionic
model, we need to be careful to respect the natural cutoff
associated with bosonization in order to make quanti-
tative comparisons. This results in excellent agreement
between the Bethe Ansatz formula (solid curves) and our
multi-polaron results (circles). Here, we used Npols = 6
polarons, except for the smallest bias ε/ωc = 10−6, where
Npols = 8 polarons were required to achieve better conver-
gence. Typically, the number of coherent states required
for convergence in the expansion (30) increases at stronger
dissipation. We emphasize again that SH theory for the
biased spin-boson model fails to correctly predict the
smooth crossover in magnetization as a function of dissi-
pation,28 giving rise instead to an unphysical “jump” for
certain bias values, while in our ansatz no such discontin-
uous behavior appears.

3. Spin coherence.

The spin coherence 〈σx〉 shown in Fig. 13 is also in ex-
cellent agreement with the Bethe Ansatz results, verifying
again that we obtain the correct underlying description
of the ground state wavefunction from our multi-polaron
ansatz. While the magnetization 〈σz〉 depends only on
fixed point properties (it is a scaling function of ε/∆R),

0.0 0.2 0.4 0.6 0.8 1.0
α
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∆/ωc =0.01
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10−6
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10−4

10−3

5×10−3

FIG. 12. Two-level population difference (magnetization) 〈σz〉
as a function of dissipation strength α for increasing values
of the bias field ε/ωc (top to bottom) with ∆/ωc = 0.01:
circles (labeled Mpols) mark results from the multi-polaron
ansatz, Eq. (30), and solid lines are Bethe Ansatz (BA) results.
All circles were calculated using only Npols = 6 polarons,
except for the case ε/ωc = 10−6 where for better (but not yet
complete) convergence Npols = 8 polarons were used.
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FIG. 13. Ground state spin coherence 〈σx〉 as a function of
dissipation α for increasing values of the bias field ε/ωc (top to
bottom), as calculated using the multi-polaron (Mpols) ansatz
(circles) and the exact Bethe Ansatz (solid lines). Parameters
are the same as in Fig. 12.

the Bethe Ansatz expression for the spin coherence27 con-
tains both fixed point contributions and a non-universal
correction of the order of ∆/ωc. Looking at the essentially
perfect agreement in Fig. 13, it is clear that our multi-
polaron ansatz is flexible enough to successfully capture
both universal and non-universal features of the ground
state properties of the biased spin-boson model. Our re-
sults are also consistent with the Bethe Ansatz prediction
that the spin coherence should be 〈σx〉 ∼ ∆/ωc at the
quantum critical point, for ε→ 0.26,27

4. Convergence of the multi-polaron expansion.

Finally, we shall investigate the convergence proper-
ties of our coherent state expansion (30) in the biased
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FIG. 14. Ground state spin coherence 〈σx〉 and magnetization
〈σz〉 as a function of bias ε (in units of ωc) for α = 0.5 (top
panels), and as a function of α for ε/ωc = 10−5 (bottom panels).
The multi-polaron curves (joined circles) are calculated with
Npols = 1, 2, 4, 8, and compared to the Bethe Ansatz (solid
lines).

case. In Fig. 14 we show the bias dependence of the spin
coherence and magnetization (top panels) for α = 0.5
(the Toulouse point), using an increasing number of po-
larons. These plots demonstrate rapid convergence with
only Npols = 4 coherent states; in contrast, large quantita-
tive deviations exist for the asymmetric single-polaron SH
ansatz, Eq. (28) (labeled 1-pol). For small bias, ε� ∆R,
the spin coherence 〈σx〉 saturates, while the magnetization
〈σz〉 behaves linearly as (2/π)(ε/∆R) in accordance with
the Bethe Ansatz calculations. For large bias ε� ∆R, the
spin coherence decreases due to the complete saturation
〈σz〉 → −1. The two lower panels in Fig. 14 show the
spin coherence and magnetization for fixed ε/ωc = 10−5,
as a function of dissipation strength α. We note here
that the coherence obtained with the SH state is more
accurate at finite ε than in the ε = 0 limit (see Fig. 3),
because tunneling effects are suppressed in the presence
of a finite bias. However, the magnetization shows a very
abrupt jump as a function of increasing α, that is correctly
smoothed out in the converged multi-polaron solution.

IV. CONCLUSIONS

We have further developed a coherent state expansion
for the dissipative quantum two-level system (the spin-
boson model), and proposed a simple extension of the
method to include the effect of arbitrary magnetic fields
(transverse and longitudinal to the bath). Excellent agree-
ment is found with controlled numerical renormalization
group calculations and the exact Bethe Ansatz solution,
at relatively low computational expense. We have also

constructed a simple and appealing physical picture in
terms of displacements of the many-body wavefunction
of the bath, which turns out to be strongly entangled at
large dissipation. Several interesting directions of research
are opened with the development of this new methodol-
ogy. First, one can investigate the nature of a quantum
critical wavefunction by considering the sub-Ohmic spin-
boson model, which shows a second-order critical point
(the Ohmic case falls into the Kosterlitz-Thouless class).
More ambitious is the extension to increasingly complex
sub-systems (e.g. higher spins or several states within
the sub-system) and several baths, a problem relevant,
for example, to exciton dynamics in biological systems.44

Finally, the issue of dynamical quenches3 or photon scat-
tering in superconducting circuit setups41–43 may be con-
sidered by a time-dependent version of our variational
coherent state wavefunction.
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Appendix A: Details on the bosonic NRG
calculations

a. NRG procedure.

In order to check our unbiased multi-polaron ansatz,
Eq. (21), we perform accurate numerical renormalization
group (NRG) calculations for the Ohmic spin-boson model.
In the biased case, due to trickier convergence issues
with the NRG, we compared our results instead to the
Bethe Ansatz. We followed the standard and simplest
implementation of the NRG method, which was initially
introduced for fermionic Kondo problems.6 The key idea of
NRG is scale separation that results from the logarithmic
discretization of the bosonic energy band. The model is
subsequently solved by iterative diagonalization of only a
small number of degrees of freedom at each NRG step.

We start with the continuum expression for the spin-
boson model:

H =
∆

2
σx +

∫ ωc

0

dε ε a†εaε −
σz
2

∫ ωc

0

dε h(ε)
(
aε + a†ε

)
,

(A1)
where h(ε) is related to the spectral density, Eq. (2),
by J(ε) = πh(ε)2. Next, the bosonic bath is dis-
cretized logarithmically in the interval [0, ωc], with dn =
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ωcΛ
−n(1 − Λ−1) the width of each interval and Λ the

Wilson parameter, typically Λ = 2. In the next step,
the bosonic fields are expanded in Fourier modes in each
interval:

a†ε =
∑
n,p

1√
dn
ei

2πpε
dn a†n,p, (A2)

with p an integer. The Hamiltonian [Eq. (A1)] is then
re-expressed in the Fourier basis, and because the p 6= 0
terms are decoupled from the impurity, they are dropped,
which is vindicated for large enough Λ. We then end up
with the so-called star Hamiltonian in terms of the p = 0
mode only:

Hstar =
∆

2
σx +

∞∑
n=0

ξn a
†
nan −

σz
2
√
π

∞∑
n=0

γn (an + a†n),

(A3)
where the energy of each bosonic mode and the impurity
coupling strength are given, respectively, by

ξn =
1

γ2
n

∫ Λ−nωc

Λ−(n+1)ωc

J(ω)ω dω, (A4)

γ2
n =

∫ Λ−nωc

Λ−(n+1)ωc

J(ω) dω. (A5)

For an Ohmic spectral density (with hard cut-off), these
parameters read

ξn =
2

3

1− Λ−3

1− Λ−2
ωcΛ−n, γ2

n = παω2
c

(
1− Λ−2

)
Λ−2n.

(A6)
The next, but not obligatory, step of NRG is to represent
the star Hamiltonian by a semi-infinite chain:

Hchain =
∆

2
σx −

σz
2

√
η0

π

(
b0 + b†0

)
+

+

∞∑
n=0

[
εnb
†
nbn + tn(b†nbn+1 + h.c.)

]
, (A7)

where η0 =
∫
J(ω) dω, and εn and tn are the on-site

energy and the hopping amplitude between different sites
of the chain, respectively, which can readily be calculated.
Within the chain representation, the spin is only coupled
to the first site, and all other bosonic sites are coupled
successively to each other with exponentially decreasing
hopping energies. The bosonic NRG procedure starts
by diagonalizing the coupled system of spin and the first
chain site, and the renormalization follows by adding extra
sites successively, while truncating the Hilbert space at
each step (justified by the property of scale separation).
This ensures stability of the NRG, which can then reach
very small energy scales in a linear effort. Typically, in
all our NRG calculations we construct the local Hilbert

space of a given site with up to Nb = 10 bosons, and
we truncate the total Hilbert space at each stage to 200
states (the matrices to be diagonalized then do not exceed
2000× 2000 in size).

b. Convergence speed-up to the Λ→ 1 limit.

In principle, the NRG is exact for a dense spectrum
Λ→ 1, but in that case the scale separation breaks down
and the truncation becomes unmanageable. On the other
hand, having a larger Λ improves scale separation, but
leads to a poor approximation of the bath states. A
compromise must therefore be found, and typically cal-
culations with Λ = 2 ensure good quality NRG results.
An easy improvement to the convergence can be made
by adjusting the dissipation strength in an appropriate
manner. One possibility is to fine tune α in order to
identify the universal scale of the continuum limit with
the slightly different value obtained on the Wilson dis-
cretization. Constraining ∆Λ=1

R = ∆NRG
R gives:

∆ exp

[
−2

∫
J(ω)

(ω + ∆R)2

]
= ∆ exp

[
−2

+∞∑
n=0

(γn)2

(ξn + ∆R)2

]

⇒
∫ ωc

0

α

(ω + ∆R)2
=

9

8 ln Λ

(1− Λ−2)3

(1− Λ−3)2
×

×
+∞∑
n=0

αNRG

1 + ∆RΛn
.

In the scaling limit ∆� ωc, ∆R is very small, and both
the sum and integral behave logarithmically. We can then
relate the dissipation strengths as

α =
9

8 ln Λ

(1− Λ−2)3

(1− Λ−3)2
αNRG ' 0.894αNRG, (A8)

for Λ = 2. Thus, the NRG dissipation strength αNRG

must be renormalized by about 10% if one wants to make
quantitative comparisons to NRG calculations performed
with a Wilson parameter Λ = 2. We emphasize that this
prescription is not rigorous, as it depends slightly on which
physical quantity is used in making the identification of
the coupling α.

Appendix B: Computing the entanglement entropy

1. From the coherent state expansion

We consider first the spin entanglement entropy. From
the total density matrix associated with the pure ground
state, ρtot =

∣∣Ψ〉〈Ψ∣∣, we deduce the reduced density
matrix of the spin alone, obtained by tracing over all
environmental modes:
ρspin = Trenv

∣∣Ψ〉〈Ψ∣∣.
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In the spin state basis (σ =↑, ↓) this reads:

ρspin =
1〈

Ψ
∣∣Ψ〉

[
+
∑
n,m CnCm

〈
+ f (n)

∣∣+ f (m)
〉
−
∑
n,m CnCm

〈
+ f (n)

∣∣− f (m)
〉

−
∑
n,m CnCm

〈
− f (n)

∣∣+ f (m)
〉

+
∑
n,m CnCm

〈
− f (n)

∣∣− f (m)
〉 ] . (B1)

Obviously Trspinρspin = 1, but Trspinρ
2
spin < 1 as we now have a mixed state. This allows us to define the ρ2-entropy

(qualitatively similar to the usual von Neumann entropy), Sspin = 1−Tr[ρ2
spin]. Using symmetry properties of coherent

states, we readily find a compact expression in terms of the trial wavefunction:

Sspin = 1− 2[〈
Ψ
∣∣Ψ〉]2

(∑
n,m

CnCme
− 1

2

∑
q(f

(n)
q −f

(m)
q )2

)2

+

(∑
n,m

CnCme
− 1

2

∑
q(f

(n)
q +f(m)

q )2

)2
 . (B2)

We now consider the reduced density matrix, Eq. (26), obtained by tracing out all modes except the qubit degree of
freedom together with an arbitrary bath mode with given quantum number k. Its matrix elements in the combined
qubit (σ =↑, ↓) and Fock basis of mode-k (

∣∣l〉
k
, with l = 0, . . . ,∞) are:

[ρspin+k]σ,σ′;l,l′ =
〈
Ψ
∣∣[∣∣l〉

k

∣∣σ〉〈σ′∣∣
k

〈
l′
∣∣]∣∣Ψ〉 (B3)

=
1〈

Ψ
∣∣Ψ〉∑

n

Cn

[〈
+ f (n)

∣∣〈 ↑ ∣∣− 〈− f (n)
∣∣〈 ↓ ∣∣]∣∣l〉

k

∣∣σ〉∑
m

Cm k

〈
l′
∣∣〈σ∣∣[∣∣+ f (m)

〉∣∣ ↑ 〉− ∣∣− f (m)
〉∣∣ ↓ 〉]

=
1〈

Ψ
∣∣Ψ〉∑
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〉
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〈
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〉
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〈
l′
∣∣− f (m)

〉
k

=
1〈

Ψ
∣∣Ψ〉∑
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CnCm (δσ↑δσ′↑ + δσ↓δσ′↓) e
− 1

2

∑
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(m)
q )2 [f

(n)
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′

√
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1
2 (f

(n)
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(m)
k )2
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− 1

2

∑
q 6=k(f(n)
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(n)
k ]l[−f (m)

k ]l
′

√
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e−
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,

where the last equation results from straightforward coherent state algebra. We finally obtain the spin+mode entropy:

Sspin+k = 1− Tr[ρ2
spin+k] = 1−

∑
σ,σ′;l,l′

(ρσ,σ′;l,l′)
2 (B4)

= 1− 2

(
〈
Ψ
∣∣Ψ〉)2

∑
l,l′

[(∑
n,m

CnCme
− 1

2

∑
q 6=k(f(n)

q −f
(m)
q )2 [f

(n)
k ]l[f

(m)
k ]l

′

√
l!l′!

e−
1
2 (f

(n)
k )2− 1

2 (f
(m)
k )2

)2

(B5)

+

(∑
n,m

CnCme
− 1

2

∑
q 6=k(f(n)

q +f(m)
q )2 [f

(n)
k ]l[−f (m)

k ]l
′

√
l!l′!

e−
1
2 (f

(n)
k )2− 1

2 (f
(m)
k )2

)2 ]
.

Eqs. (B2) and (B5) were used to compute the entanglement mode spectroscopy in the bottom panel of Fig. 8.

2. From the NRG

The strategy used for the NRG entanglement entropy computation (shown in Sec. II G) relies on first obtaining the
reduced density matrix ρspin+k, which acts within the subspace spanned by the qubit and a single bosonic mode k. We

start by defining the joint spin and Fock projection operator O
(k)
σi;m,m′

= σi|m
〉
k k

〈
m′|, so that matrix elements of the

ground state density matrix simply read

ρ
(k)
σi,m,m′

=
〈
Ψ|O(k)

σi;m,m′
|Ψ
〉
. (B6)

This quantity is a ground state average, hence readily computable by letting the operator O
(k)
σi;m,m′

evolve along the

complete NRG flow. Tracing the squared matrix ρ
(k)
σi,m,m′

allows us to obtain the desired entanglement entropy, shown
in the top panel of Fig. 8.
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Appendix C: Computing the energy variance

Here we provide an explicit formula for the energy variance in terms of the coherent state expansion (21). We start
by squaring the spin-boson Hamiltonian (1), and use normal ordering of the bosonic operators:

H2 = −∆σx
∑
k

ωkb
†
kbk +

∆2

4
+
∑
k

ω2
kb
†
kbk +

∑
k,k′

ωkωk′b
†
kb
†
k′bkbk′ +

1

4

∑
k

g2
k +

1

4

∑
k,k′

gkgk′(b
†
kb
†
k′ + bkbk′ + b†kbk′ + bkb

†
k′)

+
σz
2

∑
k

gkωk(bk + b†k) + σz
∑
k,k′

gk′ωk(b†kbk′bk + b†kb
†
k′bk). (C1)

Coherent state algebra then enables us to compute the expectation value for the trial state (21):

〈
H2
〉

= 2
∑
n,m

CnCm
〈
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∑
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k f
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4
+
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k f

(m)
k
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k f
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k′ f

(n)
k′ f
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k +

1

4
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1

4

∑
k,k′

gkgk′
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f

(n)
k + f

(m)
k

)(
f

(n)
k′ + f

(m)
k′

)

+
1

2
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gkωk

(
f

(n)
k + f

(m)
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k,k′

gk′ωkf
(n)
k f

(m)
k

(
f

(n)
k′ + f

(m)
k′

)}
. (C2)

The energy variance
〈
H2
〉
−
〈
H
〉2

can finally be obtained by combining Eq. (C2) above and Eq. (22) for the ground
state energy.
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