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We describe a large disorder renormalization group (LDRG) method for the Anderson model of
localization in one dimension which decimates eigenstates based on the size of their wavefunctions
rather than their energy. We show that our LDRG scheme flows to infinite disorder, and thus
becomes asymptotically exact. We use it to obtain the disorder-averaged inverse participation ratio
and density of states for the entire spectrum. A modified scheme is formulated for higher dimensions,
which is found to be less efficient, but capable of improvement.
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Pioneering work on the application of renormalization
group (RG) methods to highly disordered antiferromag-
netic quantum spin systems in one dimension [1, 2] as well
as higher dimensions [2, 3] was initially greeted with skep-
ticism. It appeared to be another real-space RG scheme,
which was known to give poor results in uniform lat-
tice models because of uncontrolled approximations, in
contrast to Wilson’s original k-space method for (4 − ǫ)
dimensions [4]. However, for disordered systems (unlike
uniform systems), there exists a perfectly justified ex-
pansion parameter: the ratio of weak couplings to large
couplings, or equivalently, the inverse width of the dis-
tribution of the logarithm of the couplings (see e.g. Fig.
1a of [3]); this provided a small parameter to allow a
perturbative approach, and examine the RG flow.

While an analytic justification of the approach and
the proof of its asymptotic exactness in one dimension
took another decade and a half [5], numerically the re-
sult was already apparent in the early work (see Fig.
7 of [2]). In the past two decades, the method of
strong or large-disorder-renormalization group (LDRG)
has been used to study several disorder models, especially
in one dimension, including mixed antiferromagnetic-
ferromagnetic couplings [6], disordered binary chain
[7], random transverse field Ising chain [8, 9], Ashkin-
Teller random quantum spin chain [10], phase cou-
pled oscillators [11], bosons with strong disorder [12],
superconductor-metal transition[13], and disordered sys-
tems with dissipation[14, 15]. A review summarizing
some of these developments has appeared [16].

In this work, we apply the LDRG approach to the An-
derson model of localization [17]. Most aspects of the
Anderson model, especially the localization transition,
are well-known using techniques such as the non-linear
sigma model as well as numerical approaches (see [18–
20] for a review of recent results). However, it was re-
cently discovered numerically [21, 22] that the original
model of Anderson with diagonal disorder described by
a uniform bounded distribution, in the localized phase
at moderate to high disorder, far from being featureless,
exhibits a very abrupt, apparently singular, change in
the nature of eigenstates as a function of energy. This
feature arises due to a switch from typical Anderson lo-

calized states near the center of the band to a regime
of resonant states near the edge of the band. It reveals
itself in a sharp change in the first derivative of the den-
sity of states (DOS), and more prominently, the inverse
participation ratio (IPR). Given the relatively few quan-

titative tests of LDRG, the Anderson model, by being
a non-interacting model computable in polynomial time
(i.e., essentially solvable numerically to very high preci-
sion), thus provides an ideal testing ground for a check
on the accuracy of LDRG methods.
Here we formulate a novel LDRG scheme appropriate

for studying the localized phase of the Anderson model.
Our method is based on eigenfunction characteristics, in
contrast to RG schemes for uniform systems based on
eigenvalues. Because of the non-monotonic dependence
of the spatial extent of wavefunctions with energy in the
Anderson model, as well as the explicit use of the LDRG
philosophy, our method differs from previous position-
space RG studies of the Anderson model (e.g. [23–27]).
For moderate to large disorder, our method accurately
captures the sharp change from typical Anderson local-
ized states to resonant states (the latter eventually lead
to the Lifshitz tail near the band edge). It provides ac-
curate and quantitatively controllable results for the en-
semble averaged density of states as well as the size of the
wavefunctions for the entire spectrum. In one dimension,
the scheme we propose flows to infinite disorder and thus
errors remain controlled. Though the more approximate
method we use in higher dimensions does not share such
a simple flow, it still affords significant speed-up over
exact diagonalization and sparse matrix methods; more
significantly, it allows going to much larger sizes. Further
refinements are likely to yield greater accuracy.
The tight-binding Anderson model Hamiltonian on a

d-dimensional hypercubic lattice [17] is

H0 = Σi(ǫi|i〉〈i|+ (Vi,i+1|i〉〈i+ 1|+ h.c..)) (1)

where |i〉 are (orthonormal) states localized on sites i of
a simple hypercubic lattice. The onsite energies ǫi are
independent random variables, with a distribution P (ǫ).
As in the original Anderson work [17], we take the initial
P (ǫ) to be a uniform distribution with width w, symmet-
ric around ǫ = 0 and set all nearest neighbour hoppings



2

Vi,i+1 = 1, which sets the overall energy scale. w should
be compared with the full bandwidth in the absence of
disorder, which is 2Z, where Z is the coordination num-
ber of the lattice. We define x = w/(2Z) which is thus a
measure of the disorder strength in the system. We use
periodic boundary conditions. However, the RG method
outlined below can be applied for all boundary conditions
and initial probability distributions. During the course
of the RG, the distributions of both ǫ and V will be mod-
ified.
The IPR for a wavefunction Ψ = Σiai|i〉 is defined as

Iψ =
(

Σi|ai|
4
)

/
(

Σi|ai|
2
)2

(2)

Iψ is thus inversely proportional to the number of sites
where the wavefunction has significant amplitude.
The basic idea of our LDRG scheme is to extract eigen-

states from the system starting with the most localized

ones, irrespective of the energy of the eigenstate. For
zero hopping (or equivalently infinite disorder w), all
eigenstates are restricted to one site only. For large w,
we calculate the size of the eigenstate wavefunctions to
first order using perturbation theory. We define the ef-
fective “bond” between the states at i0 and i0 + 1 by
mi0,i0+1 = Vi0,i0+1/(Ei0 − Ei0+1). For small bonds m,
the perturbed state at site i0 has wavefunction and en-
ergy given by:

Ψ′

i0
= |i0〉+mi0,i0+1|i0 + 1〉 −mi0−1,i0 |i0 − 1〉

d′i0 = Ei0 +mi0,i0+1Vi0,i0+1 −mi0−1,i0Vi0−1,i0 (3)

giving rise to an IPR Ii0 = (1+m4
i0−1,i0

+m4
i0,i0+1)/(1+

m2
i0−1,i0 + +m2

i0,i0+1)
2. Since IPR is inversely propor-

tional to the size of the wavefunction, and we want to
flow in the direction of increasing wavefunction size, we
start the RG at the site with the highest Ii. Since
Ii = 1 − 2(m2

i,i+1 + m2
i−1,i) + O(m4) for small m, we

use as our RG flow parameter m = min(m2
i,i+1+m

2
i−1,i).

We remove and store the wavefunction and energy ob-
tained in Eq. 3. The lattice now has one less site. We
also renormalize the energies and wavefunctions of the
erstwhile neighbours of |i0〉. The left neighbour of |i0〉 is
perturbed as:

ΨL = |i0 − 1〉+mi0−1,i0 |i0〉

EL = Ei0−1 +mi0−1,i0Vi0−1,i0 , (4)

and similarly for the right neighbour ΨR. The perturba-
tion theory generates a hopping between these renormal-
ized states, VLR =< ψL|H |ψR〉, where H is the modified
Hamiltonian at this stage of the LDRG. With these new
values, we also recalculate the bonds for the nearest and
next-nearest neighbors of the removed site. We repeat
this procedure for all sites with both bonds less than m0,
flowing in the direction of increasing m. m0 is a cut-off
which should be smaller than 1. The smaller the value
of m0, the more accurate the energies and wavefunctions
obtained by this method.
Once there are no more sites with both bonds less

than m0 left in the lattice, we start removing “2-site”
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FIG. 1: The fraction of the total system size, fcl that is deci-
mated as a function of cluster size Ncl during the LDRG flow
for the one dimensional Anderson model with initial system
size L = 105. LDRG data is averaged over 100 runs.

clusters in a similar fashion. Once all the 2-site clusters
are finished, we remove the 3-site ones and so on. The
procedure to remove an n-site cluster is similar in spirit
to the one for a single site. Consider the cluster which
consists of sites from i0 to i0 + n − 1 where mi0−1,i0

and mi0+n−1,i0+n are smaller than m0, and all other
bonds in between are greater than m0. We diagonal-
ize the “cluster-Hamiltonian”: H(i0) = Σi0+n−2

i=i0
(ǫi|i〉〈i|+

(Vi,i+1|i〉〈i+1|+h.c.))+ǫi0+n−1|i0+n−1〉〈i0+n−1| to give

eigenstates Ψ
(i0)
j = Σi0+n−1

k=i0
c
(i0,j)
k |k〉 with corresponding

eigenvalues d
(i0)
j , where j goes from 1 to n. Perturbation

of these wavefunctions with the rest of the lattice gives:

Ψ
′(i0)
j = Ψ

(i0)
j −mi0−1,i0c

(i0,j)
i0

|i0 − 1〉

+ mi0+n−1,i0+nc
(i0,j)
i0+n−1|i0 + n〉

d
′(i0)
j = d

(i0)
j −mi0−1,i0Vi0−1,i0c

(i0,j)
i0

+ mi0+n−1,i0+nVi0+n−1,i0+nc
(i0,j)
i0+n−1 (5)

We remove and store these n energies and wavefunctions.
The number of sites decreases by n after this step. The
site that was to the immediate left of the cluster is now
perturbed as:

ΨL = |i0 − 1〉+mi0−1,i0(Σ
n
j=1c

(i0,j)
i0

)|i0〉

EL = Ei0−1 +mi0−1,i0Vi0−1,i0(Σ
n
j=1c

(i0,j)
i0

) (6)

and similarly for the site to the immediate right. A hop-
ping is generated between ΨL and ΨR like in the one-site
case. In order to select which cluster to remove first, we
calculate Ii0 with mi0,i0+1 replaced by mi0+n−1,i0+n.
In one dimension, the LDRG does not destroy the lat-

tice structure, i.e. each site always has two nearest neigh-
bours. However, the states at each site may become com-
binations of several of the original tight-binding states,
and the basis is no longer orthonormal. Thus when each
cluster is diagonalized as in Eq. 5, a generalized eigen-
value equation has to be solved.
Fig. 1 plots the number of sites removed during the

N-site cluster decimation process, fcl(N) = (LN−1 −
LN)/L0, where LN is the number of sites remaining in
the system after all clusters of size N have been deci-
mated. Since the definition of a cluster depends on the
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FIG. 2: (a) IPR (in blue, left y-axis) and DOS (in green, right
y-axis) for the Anderson model in one dimension with x = 2.5
(w = 10) from exact diagonalization (solid lines) and from
LDRG with initial system size L = 105, using different values
of the cut-off m0. (b) The error in the IPR (as defined in the
text) obtained using LDRG with initial system size L = 105

as a function of disorder, x = w/4 for the one dimensional
Anderson model. Line is a guide to the eye. LDRG data is
averaged over 100 runs. A similar measure can be defined for
the DOS and lies below 0.1% for the values of w shown here.

bond cut-off m0, the number of large clusters is smaller
for larger m0. Large disorder also results in smaller clus-
ters. An exponential decay of fcl with Ncl is a conse-
quence of independent random on-site energies (i.e. a
Poisson distribution); this basic dependence appears to
be retained within our LDRG scheme.

Fig. 2(a) compares the disorder-averaged IPR and
DOS for w = 10 in one dimension from exact diagonal-
ization (ED) and LDRG. Results from different values
of the cutoff m0 are shown. The accuracy decreases as
m0 is increased, because higher-order perturbations be-
come more significant when bonds are stronger. It may
be seen that the resonant states leading to the Lifshitz
tail are well captured by the LDRG. This is because the
resonant states are in fact a set of strongly coupled sites,
which are loosely coupled to the rest of the system, i.e.
the clusters in our LDRG. Resonant states composed of
sites with energies close to the disorder edge (w/2) give
rise to states with energies |E| > w/2, i.e towards the
band edge. We remark, however, that most clusters are
not resonant states, and have energies all across the spec-
trum.

To determine the accuracy of the LDRG, we eval-
uate the difference between its results and those ob-
tained by exact diagonalization. For the DOS, we find
that that the average error across the entire band at
w = 12 is 0.1% for m0 = 0.2, and significantly lower
for m0 = 0.05. Both errors decrease monotonically as
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FIG. 3: (a) Evolution of the distribution of the logarithms of
bond values mij as the LDRG progresses for the one dimen-
sional Anderson model with x = 2.5 (w = 10) and m0 = 0.2.
Initial system size is L = 105. Ncl is the size of the clusters
decimated just before the distribution was measured. Ncl = 0
is thus the initial distribution. LDRG data is averaged over
100 runs. The vertical line marks Γ0. The straight lines
are fits to ln(R(Γ)) = bΓ + ln(a). (b) The inset shows that
λ = a

b
eΓ0b is approximately constant. (c) The evolution of

the fitting parameter a as a function of cluster size Ncl for
w = 10, 14, 18, 22 and cut-off m0 = 0.2.

w increases. For the average IPR, we define the follow-
ing measure of the error within a given interval (E1, E2):

δIE1,E2
= 1

E2−E1

∫ E2

E1

|IRG(E) − IED(E)|dE, where IRG
and IED are the IPR obtained using the RG scheme and
exact diagonalization respectively. We divide the band
into two parts - the main central portion, corresponding
to E1 = −w/2 and E2 = +w/2, and the edge of the band,
defined by E1 = w/2 and E2 = w/2 + 2d, plus the cor-
responding particle-hole conjugate E1 = −w/2− 2d and
E2 = −w/2. We denote the average errors for the two
regions by δIcentral and δIedge. Fig. 2(b) plots δIcentral
and δIedge as a function of disorder w for different val-
ues of m0. (In practice δIedge is cut off a little before
w/2 + 2d when there is insufficient data due to the low
density of states near the band-edge.) As can be clearly
seen, δIedge is smaller; however both errors decrease as
w increases, and as m0 decreases, clearly delineating the
path for increased accuracy.
Since new bonds are generated during the RG flow by

multiplying decimated bonds, it is convenient to consider
the logarithmic variable Γij = ln(mij). Fig. 3(a) shows
the evolution of of the distribution of this variable, R(Γ),
as the RG progresses. The initial distribution is the blue
curve. The distributions can clearly be divided into two
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parts on either side of Γ = Γ0 = ln(m0). R(Γ > Γ0)
does not change as the RG progresses, because the prob-
ability of any of the strong bonds being removed inside
a cluster is equal. R(Γ < Γ0) can be fitted by an expo-
nential of the form a exp(bΓ), i.e. straight lines in Fig.
3. This implies that the mij have a power-law proba-
bility distribution given by F (m) = amb−1 [7]. a and
b are related since the integral over the probability dis-
tribution is equal to 1. Approximately, we can see that
a
b
em0b = λ, where λ is some constant which does not

change during the RG flow. Fig. 3(b) shows that this
is true within error bounds of the fitting estimate for a
and b. Thus, the width of the distribution is given by
1/a. Fig. 3(c) shows that the parameter a decreases as
the LDRG evolves, showing that the RG flows to infi-
nite disorder. This again strongly suggests that within
this scheme, which is much faster than standard diago-
nalization, and applicable to much larger system sizes,
there is a systematic method for decreasing errors in (at
least) disorder-averaged quantities related to eigenvalues
and eigenfunctions. For two such quantities, the density
of states and the inverse participation ratio, the scheme
can be implemented practically down to sufficient accu-
racy as to capture their salient features, for reasonably
high disorder.

We now turn to higher dimensions. The RG scheme
implemented in one dimension does not generate addi-
tional couplings, and leads to a convergent result as a
consequence of flow to increasing disorder. In higher di-
mensions, the topology of the lattice changes under the
RG, and leads to large connectivity with increasing com-
plexity. The number of nearest neighbors is not fixed
and a systematic delineation into clusters is unclear. The
perturbative approach also breaks down because of con-
structively interfering paths. However, for large disorder
values, we are still successful in obtaining IPR and DOS
using a modified approach described below, which should
in principle be applicable in any dimension. We perform
two kinds of decimation:

1. Site Decimation: We remove single sites by the same
method as in 1D, with the modification that each site can
now have any number of bonds.

2. Bond Decimation: We eliminate bonds mij larger
thanm0 by diagonalizing the 2×2 matrix Hij = ǫi|i〉〈i|+
ǫj |j〉〈i|+ Vij |i〉〈j| + h.c.. This will change the basis and
generate extra bonds, which may be weaker. We set a
floor, mmin on the minimum value of stored bonds, and
do not decimate bonds that have already been affected by
a rotation. This ensures that rotations are independent
from each other and effective at removing only the largest
bonds. The procedure is continued till the total number
of bonds stored is equal to a maximum Nm.

Rotations increase the number of bonds stored, and
therefore increase both the memory consumption and the
time required during each decimation step. Therefore,
we exit step 2 and restart step 1 when the total number
of bonds stored becomes greater than Nm, and place a
cut-off on the minimum value of a bond mmin.
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FIG. 4: IPR for Anderson model in two dimensions with x =
6.25 (w = 50) from exact diagonalization (solid line) and from
LDRG with different values of the cutoff m0. LDRG data is
averaged over 100 runs of systems with 100× 100 sites.

Fig. 4 compares IPR and DOS from exact diagonaliza-
tion (ED) and this scheme for the square lattice in two
dimensions for x = 6.25 (w = 50) with mmin = 10−4. As
in the one-dimensional case, smaller values ofm0 produce
more accurate results. In our data, we observed that for
this value of disorder, the size of the lattice could be re-
duced by 90% before there was a significant increase in
the number of bonds. A practical method to obtain in-
formation about wavefunctions of such a system would
then be to utilize the RG to reduce the system to sizes
where ED could work.

In conclusion, we have proposed and implemented a
LDRG scheme for the Anderson model of localization
based on wavefunction size rather than any energy scale.
This LDRG is especially useful when length and energy
scales are not monotonically related, as is often true in
disordered localized systems. The method provides ac-
cess to essentially all eigenstates and eigenvalues of the
system computed approximately using the perturbative
RG approach. While more approximate, this method
is significantly faster than either exact numerical diago-
nalization, or sparse matrix methods of diagonalization
(the latter has to be performed repeatedly for computing
quantities across the spectrum). Further, by using the
perturbative parameter as a control, we are able to re-
duce errors and provide quite accurate results for ensem-
ble averaged quantities such as the density of states and
the inverse participation ratio at moderately high disor-
der in the localized phase. In one dimension, the RG is
controlled as it flows to large disorder, and the scheme
becomes more accurate as the RG proceeds. In higher
dimensions, we use a modified approach which reduces
the size of the system to a small fraction, at which point
exact diagonalization may become feasible. Our method
may also be useful for other problems such as many-body
localization where the “size” of the wavefunction is mea-
sured in Fock space.
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