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In three-dimensional materials with a Dirac spectrum, weak short-ranged disorder is essentially
irrelevant near the Dirac point. This is manifestly not the case for Coulomb disorder, where the
long-ranged nature of the potential produced by charged impurities implies large fluctuations of
the disorder potential even when impurities are sparse, and these fluctuations are screened by the
formation of electron/hole puddles. In this paper I present a theory of such nonlinear screening of
Coulomb disorder in three-dimensional Dirac systems, and I derive the typical magnitude of the
disorder potential, the corresponding density of states, and the size and density of electron/hole
puddles. The resulting conductivity is also discussed.

I. INTRODUCTION

Due to its long-ranged nature, Coulomb disorder of-
ten has dramatic consequences even in situations where
short-ranged disorder does not. Thus, for example,
Coulomb disorder has always deserved special considera-
tion in the physics of semiconductors,1 and such studies
have revealed a great number of diverse and interesting
scientific phenomena over the preceding half-century.

The large qualitative difference between short-ranged
and Coulomb disorder is particularly pronounced for
three-dimensional (3D) Dirac materials, in which the
electron kinetic energy ε is linearly proportional to the

momentum ~~k according to ε = ~v|~k|. To see this
difference between short-ranged and Coulomb disorder
qualitatively, one can compare the behavior of long-
wavelength (small-k) electron states in a 3D Dirac sys-
tem (3DDS) for the two cases. Suppose, for example,
that the 3DDS has some concentration N of positive
and negative impurities per unit volume, each with ran-
dom position and random sign, and that these are taken
to be either short-ranged, with finite range a and typ-
ical potential ±V0, or Coulomb, with charge ±e. In
the short-ranged case, an electron wavepacket with size
λ � N−1/3 � a experiences disorder from ∼ Nλ3

impurities. The average value of the disorder poten-
tial created by these impurities is zero, since impurities
with opposite signs are equally plentiful, but statistical
fluctuations in the impurity concentration create a typ-
ical excess of ∼

√
Nλ3 impurities with one of the two

signs. Thus, the volume-averaged disorder potential ex-
perienced by the electron is ∼ V0

√
Nλ3/(λ/a)3 ∝ 1/λ3/2.

The electron kinetic energy, on the other hand, scales
as ε ∝ k ∝ 1/λ. One can therefore conclude that
short-ranged disorder has a perturbatively small effect on
the electron energy for large-wavelength electron states
(i.e., for states close to the Dirac point). This robust-
ness of the 3D Dirac point against short-ranged disor-
der has long been understood theoretically,2–7 and con-
sequently “Dirac semimetal” phases with vanishing den-
sity of states (DOS) are generally predicted to survive
short range disorder. (In fact, a very recent paper8 has
suggested that rare resonances between short-ranged im-

purities can create an exponentially small DOS at the
Dirac point.)

Now consider the case of disorder produced by long-
ranged Coulomb impurities. As before, an electron
wavepacket with large size λ encloses many impuri-
ties of both signs, and the net charge of these is ∼
±e
√
Nλ3. If one naively calculates the potential energy

created by these impurities, one finds that the typical
Coulomb potential energy experienced by the electron
is ∼ e2

√
Nλ3/κλ (in Gaussian units), where κ is the

dielectric constant. Thus, the disorder potential grows
with increasing wavelength as λ1/2, rather than falling off
quickly and becoming irrelevant. Clearly, such Coulomb
impurities must have a large and nonperturbative effect
near the Dirac point at any finite concentration. As
one might expect, the growth of the Coulomb poten-
tial at large length scales is in fact truncated by the
formation of electron and hole puddles that screen the
disorder potential, as is the case with narrow band gap
semiconductors1,9–11 and two-dimensional Dirac systems
like graphene12,13 and topological insulators.14,15 This
disorder-induced puddling is shown schematically in Fig.
1. It is the purpose of this paper to calculate the typical
size and density of these puddles, as well as the corre-
sponding disorder potential amplitude, DOS, and con-
ductivity.
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FIG. 1. Schematic illustration of electron/hole puddles in a
3DDS at the Dirac point. The Coulomb potential energy eφ
is shown as a function of some coordinate r. Coulomb im-
purities create potential fluctuations with typical size rs and
amplitude Γ. Regions of positive eφ correspond to electron
puddles, while negative eφ implies hole puddles.
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The question of disorder effects in 3DDSs has ac-
quired a particular relevance in recent months, fol-
lowing the experimental discovery of two different 3D
Dirac materials16–19 not long after their theoretical
prediction.20–24 While the existence of a Dirac disper-
sion in these materials has been established, largely by
photoemission experiments, it remains to be thoroughly
understood how closely the Dirac point can be probed
and to what extent its behavior is masked by disorder.
As shown below, the presence of Coulomb impurities has
the effect of “smearing” the Dirac point via the creation
of electron and hole puddles, and this smearing typically
occurs over tens of meV.

The structure and primary results of this paper are as
follows. In Sec. II, a self-consistent theory is developed
to describe the disorder potential based on the Thomas-
Fermi (TF) approximation. Corresponding expressions
are derived for the magnitude of the disorder potential
[Eq. (7)], the DOS [Eq. (8)], the size of electron/hole pud-
dles [Eq. (9)], and the concentration of electrons/holes
in puddles [Eq. (10)]. While the primary focus of this
section is on the behavior near the Dirac point, results
are also presented for the case when the chemical po-
tential is away from the Dirac point. In Sec. III, the
zero-temperature conductivity is discussed, and a result
is presented for the conductivity [Eq. (16)] and its mini-
mum value [Eq. (17)]. Sec. IV concludes with a summary
and some discussion of recent experiments.

II. SELF-CONSISTENT THEORY OF
DISORDER AND SCREENING

This paper focuses on a model of disorder in which N
monovalent Coulomb impurities per unit volume are ran-
domly distributed throughout the bulk of a 3DDS. Such
impurities create a random Coulomb potential, and this
potential induces an electron/hole concentration n(~r),
where n > 0 for electrons and n < 0 for holes. The
value of n(~r) at a given spatial coordinate ~r is related to
the self-consistent magnitude of the Coulomb potential
φ(~r). In this paper, the primary tool for describing this
relationship is the TF approximation:

Ef [n(~r)]− eφ(~r) = µ. (1)

Here, Ef (n) = ~vkf (n) sgn(n) is the local Fermi en-
ergy, where kf is the Fermi wave vector and µ is the
chemical potential of the 3DDS measured relative to
the Dirac point. Assuming, generically, that the Dirac
point has a degeneracy g (which for Weyl semimet-
als is equal to the number of degenerate Dirac points),
the Fermi wave vector is kf = (6π2|n|/g)1/3, so that

Ef (n) = (6π2/g)1/3~v|n|1/3 sgn(n).
If the chemical potential µ is large enough in abso-

lute value that |eφ| � |µ|, one can think that the elec-
tron density is relatively uniform spatially, and the corre-
sponding electron DOS ν = dn/dEf = gE2

f/(2π
2~3v3) '

gµ2/(2π2~3v3) is also uniform. In this case, one can
straightforwardly define a TF screening radius

rs =

√
κ

4πe2ν
=

√
π

2αg
k−1f . (2)

Here, α = e2/κ~v is the effective fine structure constant.
The TF approximation is valid in cases where the Fermi
wavelength ∼ k−1f is much shorter than the typical scale
over which the potential varies, rs. As can be seen in Eq.
(2), this corresponds to αg � 1. For comparison, the
3DDS Cd3As2 has ~v ≈ 5–10 eV·Å,16,17,19 κ ≈ 36, and
g = 2, so that αg ≈ 0.08–0.16 and this approximation
is justified. As shown below, the same criterion αg � 1
justifies the use of the TF approximation for the case of
µ = 0.

If |µ| is not large, so that the 3DDS is close to the
Dirac point, then one cannot consider the electron den-
sity to be uniform and the typical screening radius rs
must be found self-consistently. In particular, one can
assume that the disorder potential is screened with some
unknown screening radius rs and then calculate analyt-
ically the corresponding magnitude of the disorder po-
tential and the resulting average density of states 〈ν〉.
Inserting the result for ν into Eq. (2), one arrives at a
self-consistent relationship for rs, which can be solved to
give a result for rs, 〈ν〉, and the magnitude of the disor-
der potential.25 This procedure is carried out explicitly
in the remainder of the present section.

In a medium with screening radius rs, the screened
potential produced by a single impurity with charge ±e
is the Yukawa-like potential26

φ1(r) = ± e

κr
exp[−r/rs]. (3)

If one assumes that impurity positions are uncorrelated,
then the mean squared value of the electron potential
energy, Γ2, can be found by integrating the square of the
potential created by a single impurity, (eφ1)2, over all
possible impurity positions. This gives

Γ2 =

∫
(eφ1(r))

2
Nd3r = 2πe4Nrs/κ. (4)

For cases where rs � N−1/3 (justified below), the po-
tential at each point in space is the sum of the potentials
produced by many independently-located impurities. By
the central limit theorem, then, one can assume that the
distribution of values of the potential across the system
is Gaussian with variance Γ2/e2. Within the TF approx-
imation, the value of the DOS at a point with potential
φ is ν(φ) = (g/2π2~3v3)(µ + eφ)2, so that the spatially-
averaged DOS is

〈ν〉 =

∞∫
−∞

ν(φ)
exp

[
−e2φ2/2Γ2

]√
2πΓ2/e2

dφ

=
g

2π2~3v3
(Γ2 + µ2). (5)
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Inserting this expression for ν in Eq. (2) and plugging
the resulting expression for rs into Eq. (4) gives the fol-
lowing self-consistent expression for the amplitude Γ of
the disorder potential:

Γ4(Γ2 + µ2) =
2π3

gα3

(
e2N1/3

κ

)6

. (6)

Equation (6) can be solved for generic values of the
chemical potential µ, but it is worth considering specifi-
cally the cases of µ = 0 (when the 3DDS is at the Dirac
point) and large |µ|. When µ = 0, Eq. (6) gives

Γ ≡ Γ0 =

(
2π3

gα3

)1/6
e2N1/3

κ
. (7)

It is perhaps worth noting that this value for the disor-
der potential amplitude is smaller than the correspond-
ing result for the surface of a disordered 3D topological
insulator27 by a factor ∼ α1/6. This smaller disorder for
3DDSs is a consequence of stronger screening in three
dimensions.

Inserting the value of Γ0 from Eq. (7) into Eq. (5) gives
the corresponding DOS at µ = 0:

ν0 =

(
α3g2

4π3

)1/3
N2/3

~v
. (8)

In this case, the screening radius rs, which is generically
equal to the correlation length of the disorder potential,
defines the typical size of electron and hole puddles (as
illustrated in Fig. 1). By Eq. (2), its value is given by

rs =

(
1

4gα3

)1/3

N−1/3. (9)

The typical concentration of electrons/holes in puddles
np is found by equating Γ0 with Ef (np), which gives

np =

√
gα3

18π
N, (10)

so that the corresponding number of electrons/holes per
puddle is

Mp ≈
4π

3
r3snp =

√
π/162

gα3
. (11)

When gα � 1, there are many electrons per puddle:
Mp � 1. Intriguingly, this value for Mp is independent
of the impurity concentration, so that the number of elec-
trons per puddle is independent of the details of the dis-
order. This universality is reminiscent of the problem of
a single supercritical nucleus in a 3DDS, where the maxi-
mum observable “nuclear charge” also obtains a universal
value ∼ 1/α3/2.28

Notice also that at gα � 1, the correlation length of
the potential rs is much longer than the typical Fermi

wavelength kf (np)−1 ∼ N−1/3g1/6/α1/2, so that the
TF approximation is justified. This same condition also
guarantees rs � N−1/3, which validates the assumption
of a Gaussian-distributed potential.

It is worth noting that Eqs. (7)–(11) can be derived
qualitatively using the following very simple argument
(which for simplicity uses g ∼ 1). Consider a volume
of size ∼ rs within the 3DDS; this volume is effectively
a single electron/hole puddle. Those impurities within
the volume can be said to contribute to the potential
within it, while others are effectively screened out. The
net charge of impurities in the volume is Q ∼ e

√
Nr3s

(with a random sign), and this impurity charge is com-
pensated by the charge of electrons/holes, which have
total number Mp ∼ npr

3
s . Equating Mp with Q/e gives

n2p ∼ N/r3s . Now one can note that the typical kinetic

energy of electrons within the volume, ∼ ~vn1/3p , must
be similar in magnitude to the typical Coulomb energy
∼ Qe/κrs. This equality gives n2p ∼ α6N3r3s . Combining

the two equations for np gives rs ∼ N−1/3/α, as in Eq.
(9), and the other relevant quantities can be found by
substitution.

As the chemical potential µ is moved away from the
Dirac point, the magnitude of the disorder potential de-
creases, as dictated by Eq. (6), and correspondingly the
screening radius rs shrinks. At |µ| � Γ0, puddles of
electrons (for µ < 0) or holes (for µ > 0) dry up, and
the system is well-described by linear screening with a
spatially-uniform DOS. In this case the disorder poten-
tial magnitude becomes

Γ '
(

2π3

gα3

)1/4(
e2N1/3/κ

|µ|

)1/2
e2N1/3

κ
. (12)

The corresponding DOS approaches that of the non-
disordered system,

ν ' g

2π2

µ2

(~v)3
(13)

and the correlation length of the disorder potential is

rs '
√

π

2αg

~v
|µ|
. (14)

Equations (7)–(11) and (12)–(14) describe the system
in the limits of µ = 0 and |µ| � Γ0, respectively. The
crossover between these two regimes can be described by
evaluating Eqs. (5) and (6). The result of this process is
shown in Fig. 2, where the variance of the disorder poten-
tial and the DOS are plotted as a function of the chemical
potential µ. As one can see, these self-consistent equa-
tions predict a smooth, monotonic crossover from the
puddle-dominated µ = 0 result to the linear screening
regime at large µ. It is worth noting, however, that Γ
may in fact exhibit weakly nonmonotonic behavior as a
function of µ, achieving a weak maximum at |µ|/Γ0 ∼ 1.
Such behavior is predicted theoretically for topological



4

insulators,27 and arises because at |µ|/Γ0 ∼ 1 the dis-
tribution of values of the Coulomb potential becomes
skewed toward those values that bring the system locally
closer to the Dirac point, where screening is poorer.
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FIG. 2. a) The variance in the disorder potential as a func-
tion of the chemical potential µ. The dashed line corresponds
to the linear screening regime of Eq. (12). b) The spatially-
averaged density of states as a function of the chemical po-
tential. The dashed line corresponds to Eq. (13), which is the
DOS for a non-disordered system. Γ0 and ν0 are given by
Eqs. (7) and (8), respectively.

III. CONDUCTIVITY

The previous section discussed the disorder potential
produced by random Coulomb impurities using a self-
consistent theory of screening. In this section I briefly
discuss the implications of this screening for the low-
temperature conductivity.

In situations where the mean free path ` for electron
scattering is relatively large, kf `� 1, the electron trans-
port is well-described by the Boltzmann equation. In
particular, the momentum relaxation time τ satisfies

~
τ

= πNν

∞∫
0

dθ sin θ
∣∣∣φ̃1(q)

∣∣∣2 (1− cos θ)
1 + cos θ

2
(15)

(see, e.g., Ref. 29). Here, q = 2kf sin(θ/2) is the mo-
mentum change resulting from scattering by an angle θ

and φ̃1(q) = 4πe2/[κ(q2 + r−2s )] is the Fourier transform
of φ1(r) evaluated at wave vector q. The final factor of
(1 + cos θ)/2 in Eq. (15) arises when backscattering is
suppressed as a consequence of the spin texture at the
Dirac point, as in Weyl semimetals; omitting this factor
does not change the results to leading order in kfrs � 1.

Evaluating the integral in Eq. (15) gives

~
τ
' 8π3Nνe4

κ2k4f
ln(2kfrs)

assuming kfrs � 1, which is a condition of validity for
the screened potential used here, and, again, corresponds
to αg � 1.

One can arrive at an expression for the conductiv-
ity σ by combining the expression for τ with the Ein-
stein relation for conductivity, σ = e2ν(v2τ/3).30 If one
assumes a relatively large and uniform electron den-
sity n (i.e., a large chemical potential |µ| � Γ0), then
kf ' (6π2n/g)1/3 and

σ =

(
3

4π

)1/3
1

α2g4/3 ln(2π/αg)

n

N

e2n1/3

~
. (16)

This expression was previously derived in Ref. 29 for the
case where N = n (i.e., where electrons are provided by
uncompensated donors).

As the electron density is reduced (the chemical po-
tential is brought closer to the Dirac point), the number
of carriers is reduced and the conductivity declines. At
µ = 0, the conductivity achieves a minimum whose value
is determined by the concentration of electrons and holes
in puddles. The value of this conductivity minimum,
σmin, can be estimated by inserting n ∼ np into Eq. (16),
which gives

σmin ≈
1

6π(2g2)1/3 ln(2π/αg)

e2N1/3

~
. (17)

Finally, one can check that the derived expressions
indeed correspond to the Boltzmann semiclassical limit
kf ` � 1. As expected, the value of τ correspond-
ing to the minimum conductivity, where n ∼ np, gives

kf ` = kfvτ ∼ g2/3/αg � 1. Thus, kf ` � 1, provided
that αg � 1. At larger n the mean free path only in-
creases, so that the Boltzmann equation is a good de-
scription everywhere.

IV. CONCLUDING REMARKS

This paper has presented a simple picture of self-
consistent screening of Coulomb impurities in 3DDSs
through the formation of electron and hole puddles. Such
effects are manifestly not perturbative near the Dirac
point, regardless of the impurity concentration, and they
have a prominent effect on both the observed DOS and
the conductivity. The DOS, for example, vanishes only as
the 2/3 power of the impurity concentration, which sug-
gests that a true Dirac semimetal phase with vanishing
DOS may remain frustratingly elusive experimentally.

While the experimental study of 3DDSs is still very
young, one can get a sense of the typical scales of the
disorder potential by using parameters for the recently-
discovered bulk Dirac material Cd3As2 , which has α ≈
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0.04 and g = 2. Thus far, experimentally studied sam-
ples are n-type, apparently resulting from uncontrolled
doping by As vacancies.16,17,19 For example, Ref. 19 re-
ports relatively large µ ≈ 200 meV, with a corresponding
carrier concentration n ∼ 2× 1018 cm−3; one can expect
that the concentration of donor impurities N is similar in
magnitude. Inserting these parameters into Eqs. (12) and
(14) gives an estimated disorder potential of Γ ≈ 20 meV
and a screening radius rs ≈ 20 nm. The latter seems
consistent with the scale of disorder fluctuations seen by
scanning tunneling microscopy measurements.19 By Eq.
(16) [see also Eq. (84) of Ref. 29], this level of disorder
corresponds to a mobility σ/(en) ∼ 30 000 cm2/Vs, which
also closely matches the value seen in experiment.17

Future efforts to bring the bulk chemical potential of
3DDSs to the Dirac point will presumably require com-
pensation of donors by acceptors. By Eqs. (10) and (11),
the resulting disorder landscape can be expected to have
a typical concentration np ∼ 10−3N ∼ 10−15 cm−3 of
electrons in puddles and ∼ 10 electrons/holes per pud-
dle, with a disorder potential of magnitude Γ0 ∼ 45 meV,
assuming the impurity concentration N remains of order

1018 cm−3. Equation (17) suggests a corresponding min-
imum conductivity σmin ∼ 1 S/cm.

Finally, one can note that existing 3DDS materials
seem to have anisotropic Dirac cones, with a Dirac veloc-
ity in one particular direction, vz, that is as much as ten
times smaller than the velocity in the transverse direc-
tions, v⊥.17 This anisotropy can be accounted for at the
level of the present theory by substituting for v the geo-
metric mean velocity (v2⊥vz)1/3, so that the fine structure
constant α ∝ 1/v is also modified.

ACKNOWLEDGMENTS

I am grateful to R. Nandkishore, S. Gopalakrishnan,
J. C. W. Song, B. I. Shklovskii, and E. B. Kolomeisky
for helpful discussions and comments. Work at Argonne
National Laboratory was supported by the U.S. Depart-
ment of Energy, Office of Basic Energy Sciences under
contract no. DE-AC02-06CH11357.

1 B. I. Shklovskii and A. L. Efros, Electronic Properties of
Doped Semiconductors (Springer-Verlag, New York, 1984).

2 P. Goswami and S. Chakravarty, Physical Review Letters
107, 196803 (2011).

3 P. Hosur, S. A. Parameswaran, and A. Vishwanath, Phys-
ical Review Letters 108, 046602 (2012).

4 K. Kobayashi, T. Ohtsuki, K.-I. Imura, and I. F. Herbut,
Physical Review Letters 112, 016402 (2014).

5 S. V. Syzranov, L. Radzihovsky, and V. Gurarie,
arXiv:1402.3737 [cond-mat] (2014).

6 B. Sbierski, G. Pohl, E. J. Bergholtz, and P. W. Brouwer,
arXiv:1402.6653 [cond-mat] (2014).

7 Y. Ominato and M. Koshino, Physical Review B 89,
054202 (2014).

8 R. Nandkishore, D. A. Huse, and S. L. Sondhi,
arXiv:1405.2336 [cond-mat] (2014).

9 B. I. Shklovskii and A. L. Efros, Sov. Phys.-JETP 35, 610
(1972).

10 E. Rossi and S. Das Sarma, Physical Review Letters 107,
155502 (2011).

11 B. Skinner, T. Chen, and B. I. Shklovskii, Physical Review
Letters 109, 176801 (2012).

12 B. I. Shklovskii, Phys. Rev. B 76, 233411 (2007).
13 V. M. Galitski, S. Adam, and S. Das Sarma, Physical

Review B 76, 245405 (2007).
14 H. Beidenkopf, P. Roushan, J. Seo, L. Gorman, I. Drozdov,

Y. S. Hor, R. J. Cava, and A. Yazdani, Nature Physics 7,
939 (2011).

15 B. Skinner, T. Chen, and B. I. Shklovskii, Journal of Ex-
perimental and Theoretical Physics 117, 579 (2013).

16 S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy,
B. Buechner, and R. J. Cava, arXiv:1309.7978 [cond-mat]

(2013).
17 M. Neupane, S. Xu, R. Sankar, N. Alidoust, G. Bian,

C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin,
A. Bansil, F. Chou, and M. Z. Hasan, arXiv:1309.7892
[cond-mat] (2013).

18 Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng,
D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai,
Z. Hussain, and Y. L. Chen, Science 343, 864 (2014),
PMID: 24436183.

19 S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi,
A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath,
and A. Yazdani, arXiv:1403.3446 [cond-mat] (2014).

20 S. Murakami, New Journal of Physics 9, 356 (2007).
21 X. Wan, A. M. Turner, A. Vishwanath, and S. Y.

Savrasov, Physical Review B 83, 205101 (2011).
22 A. A. Burkov and L. Balents, Physical Review Letters 107,

127205 (2011).
23 A. M. Turner and A. Vishwanath, arXiv:1301.0330 [cond-

mat] (2013).
24 S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J.

Mele, and A. M. Rappe, Physical Review Letters 108,
140405 (2012).

25 F. Stern, Phys. Rev. B 9, 45974598 (1974).
26 G. D. Mahan, Many-Particle Physics (Plenum, New York,

1990).
27 B. Skinner and B. I. Shklovskii, Physical Review B 87,

075454 (2013).
28 E. B. Kolomeisky, J. P. Straley, and H. Zaidi, Physical

Review B 88, 165428 (2013).
29 A. A. Burkov, M. D. Hook, and L. Balents, Physical Re-

view B 84, 235126 (2011).
30 Abrikosov, Alexei A, Fundamentals of the Theory of Metals

(Elsevier, New York, 1988).

http://dx.doi.org/10.1103/PhysRevLett.107.196803
http://dx.doi.org/10.1103/PhysRevLett.107.196803
http://dx.doi.org/10.1103/PhysRevLett.108.046602
http://dx.doi.org/10.1103/PhysRevLett.108.046602
http://dx.doi.org/10.1103/PhysRevLett.112.016402
http://arxiv.org/abs/1402.3737
http://arxiv.org/abs/1402.6653
http://dx.doi.org/10.1103/PhysRevB.89.054202
http://dx.doi.org/10.1103/PhysRevB.89.054202
http://arxiv.org/abs/1405.2336
http://dx.doi.org/10.1103/PhysRevLett.107.155502
http://dx.doi.org/10.1103/PhysRevLett.107.155502
http://dx.doi.org/10.1103/PhysRevLett.109.176801
http://dx.doi.org/10.1103/PhysRevLett.109.176801
http://dx.doi.org/10.1103/PhysRevB.76.233411
http://dx.doi.org/10.1103/PhysRevB.76.245405
http://dx.doi.org/10.1103/PhysRevB.76.245405
http://dx.doi.org/10.1038/nphys2108
http://dx.doi.org/10.1038/nphys2108
http://dx.doi.org/10.1134/S1063776113110150
http://dx.doi.org/10.1134/S1063776113110150
http://arxiv.org/abs/1309.7978
http://arxiv.org/abs/1309.7978
http://arxiv.org/abs/1309.7892
http://arxiv.org/abs/1309.7892
http://dx.doi.org/10.1126/science.1245085
http://arxiv.org/abs/1403.3446
http://dx.doi.org/10.1088/1367-2630/9/9/356
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://dx.doi.org/10.1103/PhysRevLett.107.127205
http://arxiv.org/abs/1301.0330
http://arxiv.org/abs/1301.0330
http://dx.doi.org/ 10.1103/PhysRevLett.108.140405
http://dx.doi.org/ 10.1103/PhysRevLett.108.140405
http://dx.doi.org/10.1103/PhysRevB.9.4597
http://dx.doi.org/10.1103/PhysRevB.87.075454
http://dx.doi.org/10.1103/PhysRevB.87.075454
http://dx.doi.org/10.1103/PhysRevB.88.165428
http://dx.doi.org/10.1103/PhysRevB.88.165428
http://dx.doi.org/10.1103/PhysRevB.84.235126
http://dx.doi.org/10.1103/PhysRevB.84.235126

	Coulomb disorder in three-dimensional Dirac systems
	Abstract
	Introduction
	Self-consistent theory of disorder and screening
	Conductivity
	Concluding remarks
	Acknowledgments
	References


