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It is important to know the decoherence mechanism of a qubit based on Josephson junctions. At low tem-

peratures, as quasiparticle concentration becomes exponentially small, one needs to consider energy transfer

from tunneling electrons to other degrees of freedom to find dissipation in Josephson junctions and decoherence

in qubits. Here we discuss the energy transfer to two-level systems, i.e. the transitions between two different

configurations of ions inside insulating layer separated by a potential barrier. We derive a general equation

of motion for the phase difference between two superconducting electrodes and we find a retarded dissipation

term due to electromagnetic mechanism and also contribution due to electron tunneling mechanism. Using the

equation of motion we calculate the decay of Rabi oscillations and frequency shift in qubits due to the presence

of the two-level systems. In the long time limit our results coincide with those obtained by Martinis et al. [J. M.

Martinis et al.. Phys. Rev. Lett. 95, 210503 (2005)] within the Fermi’s Golden rule approach up to a numerical

factor.

PACS numbers: 74.78.-w, 74.50.+r, 85.25.Pb

I. INTRODUCTION

A Josephson tunneling junction can operate effectively as a

phase qubit if one can achieve a long coherence time by re-

ducing dissipation and the corresponding noise.1–4 It is well

established that dissipation in tunneling Josephson junctions

near the critical temperature Tc and at intermediate tempera-

ture is caused by quasiparticles.5,6 However, at very low tem-

peratures, T ≪ 2∆g, the quasiparticles are frozen out and their

contribution to dissipation is exponentially small being pro-

portional to exp(−2∆g/T ), where ∆g is the superconducting

gap.7,8 Here we have assumed that the electrodes are made of

s-wave superconductors. Hence, another mechanism of irre-

versible energy transfer from tunneling Cooper pairs to other

degrees of freedom should be at work as experimental data

confirm the existence of dissipation and phase decoherence in

qubits at very low temperatures.1,2,9 We consider in the follow-

ing only sources of dissipation intrinsic to Josephson junctions

excluding external sources such as photon induced tunneling

discussed in Ref. 10. Dissipation due to excitation of phonons

discussed in Refs. 11–14 is not effective at very low energies

and we will not account for it here.

Following the discussions by Martinis et al.1 we will con-

sider the dissipation at low temperatures T ≪ ∆g originat-

ing from two-level systems, i.e. the transitions between two

different configurations of ions inside amorphous insulating

layer separated by a potential barrier. It was well established

experimentally that two-level systems are responsible for spe-

cific heat and ac dielectric losses at low temperatures and fre-

quencies below 20 GHz in amorphous dielectrics15 which are

inevitably present inside Josephson junctions.

In Ref. 1, the decay of Rabi oscillations was obtained using

the Fermi’s Golden rule approach. The dynamics of Joseph-

son junctions is governed by an equation of motion for the

gauge invariant phase difference. Such an equation account-

ing for the presence of the two-level systems is not available

to date. In the present work, we derive such an equation of

motion by accounting for both the electromagnetic and tun-

neling mechanism for the dissipation caused by the two-level

systems. The resulting general equation of motion can be used

to describe the dynamics of junction at arbitrary time after the

junction is perturbed away from equilibrium.

We will derive a general form of the dissipation term in

the equation of motion for the phase difference in tunneling

junctions with amorphous dielectric layer. We model this di-

electric layer as an ensemble of two-level systems. Interac-

tion of the phase difference with the two-level systems is elec-

tromagnetic in nature and results in retarded dissipation, i.e.

the dissipative term in the equation for the phase difference is

nonlocal in time and the corresponding equation for the phase

difference is an integral one with respect to time. We also con-

sider the tunneling mechanism for dissipation and show that

it is less effective than the electromagnetic one. We then treat

a qubit as a two-level system and use the Bloch equations for

a “spin” to describe the qubit and two-level systems in the

insulating layer. We show that in the long time limit the dis-

sipation of the low-amplitude Rabi oscillation in qubit differs

from the results of Martinis et al.1 only by a numerical factor

and a weakly frequency-dependent logarithmic factor.

II. ELECTROMAGNETIC MECHANISM

We consider low energy excitations inherent to two-level

systems in amorphous dielectrics (i.e. SiO2 and SiNx) be-

tween junction electrodes. Specifically, oxygen ions in SiO2

or nitrogen ions in SiNx may occupy two close positions in

Si matrix separated by a distance bα of the order of atomic

length. In energy space these two configurations are separated

by a potential barrier. We denote these positions as L and R,

we take the energy of such states as ǫLL = ∆α and ǫRR = −∆α.
In the space of states |L〉 and |R〉 tunneling of ion between

these two configurations results in the off-diagonal matrix el-

ements ǫLR = −ǫRL = ∆0,α in the Hamiltonian describing the

two-level systems. The value of ∆0,α is related to the distance

bα between the two ions in the states |L〉 and |R〉 as

2∆0,α(bα) = ǫa exp(−bα/a), (1)
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where ǫa is of the order of atomic energy and a is a characteris-

tic atomic length. For a given junction, we assume that ǫa and

a are fixed while bα varies from site to site with an index α. In

the presence of an electric field E = ~φ̇/2ed between junction

electrodes, the diagonal energies admit additional contribu-

tions±e∗bαE cos ηα for ǫLL and ǫRR, respectively. Here φ is the

superconducting phase difference and φ̇ is its first time deriva-

tive. d is the junction thickness, e∗ is the effective charge of

tunneling ions and ηα is the angle between the vector bα and

the direction of the electric field between electrodes, z. These

contributions due to the electric field describe the interaction

Hint between the two-level systems and the phase difference

φ(t). The eigenstates of the two-level system are

|−〉 = sin(θα/2)|L〉 − cos(θα/2)|R〉, (2)

|+〉 = sin(θα/2)|L〉 + cos(θα/2)|R〉, (3)

with the eigenvalues±~Ωα/2 ≡ ±(∆2
α+∆

2
0,α

)1/2. Here tan θα =

∆0,α/∆α. The dipole moment of the two-level systems is

(e∗bα) cos θα(|+〉 − |−〉). The matrix element Hint between

states |±〉 is 〈−|Hint|+〉 = Ee∗bα sin θα cos ηα. The distribu-

tion of two-level system parameters ∆α and bα is assumed to

be uniform,

P(∆α, bα)d∆αdbα = Pd∆αdbα, (4)

where the normalization parameter P will be defined later.

Such a tunneling model describes the experimental data on

the specific heat and electric losses in amorphous dielectrics

quite well up to frequencies about 20 GHz.15 This frequency

is much higher than the Josephson frequency and we take this

frequency as a cutoff frequency in our theory. In the |±〉 repre-

sentation the Hamiltonian of interaction between the two-level

system with the index α and the phase difference φ is

Hs = ~[ΩαŜ z + λαφ̇(cot θαŜ z + Ŝ x), (5)

λα = (2e∗bα/ed) sin θα cos ηα, (6)

where Ŝ k = σ̂k/2 and σ̂k are Pauli matrices with k = x, y, z.

The junction Hamiltonian is

HJ = J0A[1 − cosφ + ω−2
J φ̇

2/2 − Iφ], (7)

where J0 is the Josephson coupling density, A is the junction

area, ωJ is the Josephson frequency and I is the bias current

IB via the junction in units of the Josephson critical current Ic,

I ≡ IB/Ic.

Using the Heisenberg equation, we obtain the Bloch equa-

tions for “spin” variables Sα

Ṡ x,α = −(Ωα + λαφ̇ cot θα)S y,α, (8)

Ṡ y,α = (Ωα + λαφ̇ cot θα)S x,α − λαφ̇S z,α. (9)

The solution in the case of weak coupling, i.e. small

S x,α, S y,α ≪ 1 and S z,α ≈ 1 when λαφ̇≪ Ωα, is

S x,α = λα

∫ t

0

dt′φ̇(t′) sin[Ωα(t − t′)], (10)

Ṡ x,α = λαΩα

∫ t

0

dt′φ̇(t′) cos[Ωα(t − t′)],

and the two-level system frequency is renormalized from Ωα
toΩα+φ̇λα cot θα. We replaceΩα+φ̇λα cot θα byΩα in the fol-

lowing discussions. Initially the junction is assumed in equi-

librium, φ̇(t = 0) = 0. In the equation for the phase difference

we obtain the dissipation contribution due to the two-level sys-

tems:

ω−2
J φ̈ + sin φ −

∑

α

(~λα/J0A)Ṡ x,α = I. (11)

We replace summation over α by integration over ∆ and b

with a uniform distribution function Eq. (4). In the integral

over ∆ and b we replace variables ∆ and b by new variables

~Ω = (∆2
+ ∆

2
0
)1/2 and sin θ = ∆0/(~Ω):

d∆db = − a

∆0

d∆d∆0 =
a~

∆0||W ||
dΩd(sin θ), (12)

||W || = ~(∂∆Ω∂∆0
sin θ − ∂∆0

Ω∂∆ sin θ) = cos θ/(~Ω), (13)

The last term in the left hand side of Eq. (11) gives the dissi-

pation term

2~µσd

J0Ωm

∫

Ωm

0

dΩΩd(sin θ)dη tan θ ln2
(

ǫa

~Ω sin θ

)

cos2 η ×
∫ t

0

dt′φ̇(t′) cos[Ω(t − t′)]

≈
∫

Ωm

0

dΩ

Ωm

E(Ω)

∫ t

0

dt′φ̇(t′) cos[Ω(t − t′)], (14)

E(Ω) =
π~µσΩd

2J0

ln2

(

Ωa

Ω

)

=
ΩΓ0

ω2
J

ln2

(

Ωa

Ω

)

,

Γ0 =
2π2µσd2e2

ǫd~
, Ωa =

ǫa

~
, (15)

where µ = 2e∗a/ed, while the cutoff frequency is Ωm ≈ 20

GHz and σ is the volume density of the two-level systems.

Here ǫd is the high frequency dielectric function. In obtain-

ing Eq. (14), we have neglected sin θ inside logarithm. It

only results in a numerical factor of the order of unity inside

the logarithm, ln2(ǫa/~Ω), which is omitted within logarith-

mic accuracy. The logarithmic factor ln(Ωa/Ω) is valid only

for Ω > ω0 ≈ Ωa exp(−1/σ1/3a) as we have assumed that the

two-level systems do not overlap. At lower frequencies, Ω

inside the logarithmic factor should be replaced by ω0.

III. TUNNELING MECHANISM

Displacements of ions described by the two-level system

model induce the electric field inside the dielectric and thus

change the electric potential V barrier for tunneling electron.

The electron tunneling integral β is given as

β = ǫa exp

[

−~−1

∫ d

0

dz(2me[eV(z) − ǫe])1/2

]

, (16)

where me is the electron mass and ǫe is its energy. We consider

the case that the frequenciesΩ of two-level systems are much
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lower than the inverse transversal time for tunneling, 1/τT ,

where τT is given by the quasiclassical formula

τT =

∫ d

0

dz

√

me

2[eV(z) − ǫe]
. (17)

The change of β due to ion displacements, δβ = β − β0, is

δβ

β0

=
meed

~2 ln(ǫa/β0)

∫ d

0

dzδV(z) =
ln(ǫa/β0)

V0d

∫ d

0

dzδV(z),

(18)

where V0 ≈ e/a. The change of potential, δV(z), induced

by the dipoles pα = e∗bα of two-level systems positioned at

rα, zα, with rα = (xα, yα), is

δV(z) =
e∗

ǫd
(b · ∇)

[

1

[(r − rα)2 + (z − zα)2]1/2

]

. (19)

The change in the Josephson coupling density δJ0 caused by

the change in electron tunneling δβ is δJ0/J0 ≈ 2δβ/β0. For

the tunneling mechanism the Hamiltonian for the interaction

between the two-level systems with index α and the phase dif-

ference is

HT,α = −J0

∫

dr
ln(ǫa/β0)

V0d
(1 − cosφ)Ŝ x

∫ d

0

dzδV(r, z) =

J0A
ln(ǫa/β0)

V0d
(1 − cosφ)Ŝ x

∫ d

0

dzδV(r = 0, z). (20)

Using the Bloch equations for a “spins” we find

S x,α(t) = −ΩαBα
∫ t

0

dt′[1 − cosφ(t′)] sin[Ωα(t − t′)] =

−Bα
∫ t

0

dt′ sinφ(t′) cos[Ωα(t − t′)], (21)

Bα =
∫ d

0

dz[bz,α(z − zα) − (bx,αxα − by,αyα)]R
−3(z),

R2(z) = (z − zα)
2
+ r2
α. (22)

The coordinates rα, zα are defined up to the size of the two-

level system dipole b. In the equation for the phase difference,

Eq. (11), we have an additional two-level system contribution

due to the tunneling mechanism

[

e∗ ln(ǫa/β0)

ǫdV0d

]2
∑

α

Aα sin φ(t)

∫ t

0

dt′ sin φ(t′) cos[Ω(t − t′)],

Aα =
∫ d

0

du

∫ d

0

dv
b2

z,α(u − zα)(v − zα) + (bx,αxα + by,αyα)
2

R3(u)R3(v)
.

We replace the summation
∑

α by integration over coordinates

rα, zα of two-level systems

A =
∑

α

Aα ⇒ σ
∫

drα

∫ d

0

dzαA(rα, zα). (23)

Integration over rα and averaging over directions of two-level

system dipoles bα gives

A = πb
2σ

2

∫ d

0

dz

∫ d−z

−z

∫ d−z

−z

dudv

[

2uv

|u||v|(|u|+ |v|)2
+

√
2(u4
+ v4)1/2

(u2 + v2)2 +
√

2(u2 + v2)(u4 + v4)1/2













≈

π2b2σd ln

(

d

b

)

. (24)

We estimate the contribution to the dissipation due to the tun-

neling mechanism in the equation for the phase difference, Eq.

(11), as
∫

Ωm

0

dΩ

Ωm

T (Ω) sinφ(t)

∫ t

0

dt′φ̇(t′) sinφ(t′) cos[Ω(t − t′)].

T (Ω) =

(

πe∗ ln(ǫa/β0)

ǫde

)2
a4σ ln(d/a)

d
ln2

(

Ωa

Ω

)

. (25)

The ratio r of the tunneling contribution to the dissipation and

that of the electromagnetic mechanism at a givenΩ and small

φ is

r ≈ φ2 π
2 ln(ǫα/β0)

ǫ2
d

(

a

d

)













~dω2
J

e2Ω













ln

(

d

a

)

. (26)

Due to a ≪ d and ωJ ≪ e2/(~d) the tunneling mechanism

contribution is small everywhere except at low Ω, where it re-

mains nonzero in the limit Ω → 0, while the electromagnetic

contribution vanishes in this limit. The different behavior for

both mechanisms in this limit is because the two-level system

interacts directly with the phase difference via cos φ for the

tunneling mechanism as shown in Eq. (20), while in the elec-

tromagnetic mechanism it interacts with φ̇ as shown in Eq. (5).

We note that the tunneling mechanism gives contribution to

the dissipation which is nonlinear in the phase difference and

thus it is negligible at small deviations from the equilibrium.

IV. DECAY OF RABI OSCILLATIONS IN THE ABSENCE

OF BIAS CURRENT

We consider dissipation for small-amplitude oscillations at

IB = 0 neglecting the tunneling contribution. We need to solve

the equation

ω−2
J φ̈ + φ +

∫

Ωm

0

dΩ

Ωm

E(Ω)

∫ t

0

dt′φ̇(t′) cos[Ω(t − t′)] = 0. (27)

Note that if E is frequency independent and Ωm is infinite, we

would obtain for the last term in the left-hand side the standard

dissipation term γ̃φ̇.

Neglecting the logarithmic factor in E(Ω), we integrate over

Ω. After changing variables t − t′ = u/Ωm, we get

ω−2
J φ̈ + φ +

Γ0

ω2
J

∫

Ωm t

0

duφ̇(t − u/Ωm) f (u) = 0, (28)

f (u) = sin u/u − (1 − cos u)/u2.
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To understand the long-time behavior we take φ(t) = exp(iωt)

in Eq. (28) and obtain for the left-hand side












−ω−2
J ω

2φ + φ +
iωΓ0

ω2
J

∫

Ωmt

0

du exp(−iωu/Ωm) f (u)













exp(iωt).

We see that φ(t) = exp(iωt) is indeed the solution of Eq. (28)

in the long time limit Ωmt ≫ 1 if we take the complex number

ω as ω = ωJ + δω + iγ with

γ ≈ πωJΓ0

4Ωm

, δω ≈ Γ0ωJ

2Ωm

ln

(

Ωm

ωJ

)

(29)

for ωJ ≪ Ωm. The parameter γ is the dissipation rate and

δω is the shift of Rabi oscillation frequency due to interaction

with two-level systems. Accounting for the logarithmic factor,

we obtain

γ ≈ πωJΓ0

4Ωm

ln2

(

Ωa

Ωm

)

, (30)

δω ≈ Γ0ωJ

2Ωm

ln

(

Ωm

ωJ

)

ln2

(

Ωa

Ωm

)

. (31)

Thus the retardation effect is not important at Ωm ≫ ωJ in the

stationary solution which is established in the long-time limit

Ωmt ≫ 1.

V. DISSIPATION OF RABI OSCILLATIONS IN A QUBIT

We consider now a Josephson junction in the presence of

a bias current. Then energy levels in the quantum regime be-

come non-equidistant and we consider the operation only be-

tween the ground state and the first excited state by ignoring

the other energy levels valid for a sufficiently high bias current

IB. We replace φ̇ by the momentum operator and the Hamil-

tonian for a qubit takes the form

HJ = J0A(1 − cos φ) − 4Ec∂
2/∂φ2 − ~IBφ/(2e), (32)

where Ec = e2/2C and C is the junction capacitance. The bias

current consists of a dc and an ac component, IB = Iac + Idc.

We find the Hamiltonian of interaction between the oscillator

and two-level systems by replacing φ̇ by the momentum oper-

ator P̂ = i∂/∂φ according to the relation φ̇ → 8P̂Ec/~. Then

the qubit is described by a two-level system with the Pauli

matrices Q̂ for a qubit “spin”. The matrix element of the op-

erator P̂ between the ground state and the first excited state of

the oscillator is given by the expression i(~ω10e2/2C)1/2 and

we write the total Hamiltonian for the qubit and the two-level

systems as

H = ~














ω10

2
Q̂z − IacQ̂y/(2e) +

∑

α

Ωα

2
Ŝ z,α















+Hint, (33)

Hint =
1

2

∑

α

PαQ̂xŜ x,α, Pα = i
4bz,α

d

(

~ω10ee∗

2C

)1/2

,(34)

where ω10 is the energy difference between the first excited

state and the ground state of the qubit. This Hamiltonian

describes the transfer of energy from the qubit to the two-

level systems, and then back from the two-level systems to

the qubit. Experimentally, a coherent state of qubit oscillation

between the ground and the first excited state is prepared at

time t = 0 and then probability to find the qubit in the excited

state at time t is measured. Using the Heisenberg equation of

motion for “spin” operators, we obtain the Bloch equations

for the system

Q̇x = −ω10Qy − IacQz/e, Q̇y = ω10Qx −
∑

α

PαS x,αQz/~,

Ṡ x,α = −ΩαS y,α, Ṡ y,α = ΩαS x,α + PαS z,αQx/~. (35)

These equations describe the dynamics of a qubit in the pres-

ence of Iac and two-level systems in the insulating layer. For

weak excitations, Qx, Qy ≪ 1, S x,α, S y,α ≪ 1 and Qz ≈ 1,

S z,α ≈ 1 at Iac = 0, after excluding the operators for the two-

level systems, we obtain the equation for the qubit

Q̈x + ω
2
10Qx +

∑

α

|Pα|2
~2

∫ t

0

dt′Qx(t′) sin[Ωα(t − t′)] = 0.

After summation over all two-level systems, this equation

within a logarithmic accuracy takes the form

ω−2
10 Q̈x + Qx +

Γ0 ln2

(

Ωa

Ωm

) ∫ t

0

dt′Qx(t′)
1 − cos[Ωm(t − t′)]

Ωm(t − t′)
= 0. (36)

We assume that the qubit is perturbed away from equilibrium

state at time t = 0, i.e. Qx(t = 0) , 0. For time t < Ω−1
m dis-

sipation is absent due to its retarded nature. In the stationary

state at time t ≫ Ω−1
m , the retardation becomes ineffective and

we take the solution as Qx(t) ∼ exp(iωt) withω = ω10+δω+iγ

determined by

1 − ω
2

ω2
10

+
Γ0

Ωm

ln2

(

Ωa

Ωm

) ∫ ∞

0

du exp

[

iωu

Ωm

]

g(u) = 0, (37)

g(u) = (1 − cos u)/u.

We then obtain for the dissipation rate and the frequency shift

γ ≈ πω10Γ0

2Ωm

ln2

(

Ωa

Ωm

)

. (38)

δω ≈ ω10Γ0

Ωm

ln

(

Ωm

ω10

)

ln2

(

Ωa

Ωm

)

. (39)

At intermediate time t ∼ Ω−1
m , one needs to solve Eq. (36).

Result for γ coincides with that of Martinis et al.1, γ ≈
πω10Γ0/(6Ωm), except for a numerical factor and the logarith-

mic factor ln2(Ωa/Ωm) missed in their treatment. In our ap-

proach, as well as that of Ref. 1, transfer of energy to noninter-

acting two-level systems was assumed, i.e. the dipole-dipole

interaction of two-level systems was neglected. As shown in

Ref. 16, this is possible if the amplitude of Rabi oscillations,

Qx(t = 0), is small, i.e. (4πσ/~Ωm)(e∗a)2
√

Qx(t = 0) ≪ 1.

For σ/~Ωm ≈ 3× 1029 (erg · cm3)−1, see Ref. 1, this condition

is fulfilled very well.

Excitation of Rabi oscillations by an ac current is described

by Eqs. (35). For short external current pulses with duration
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τ, the retarded dissipation due to two-level systems may be

neglected at any current ifΩmτ≪ 1. Otherwise, the condition

of ignoring dissipation is Idc/e ≫ γ. For stationary solutions,

the retarded nature of dissipation term is not important.

VI. CONCLUSIONS

In conclusion, we have derived a general form of two-level

systems driven dissipative terms in equation of motion for the

phase difference in tunneling junctions with an amorphous

dielectric layer at very low temperatures when dissipation

caused by quasiparticles is negligible. We account for the di-

rect electromagnetic mechanisms of phase and two-level sys-

tems interaction and also for the effect of two-level systems on

electron tunneling in junctions. We show that they give terms

which are nonlinear and linear in phase, respectively. We find

that the dissipation from the tunneling mechanism is less ef-

fective than the electromagnetic one. Finally we have derived

the decay rate of the Rabi oscillations due to the presence of

two-level systems in the insulating layer of Josephson junc-

tions. Our results are consistent with those obtained in Ref.

1 up to a numerical factor and a weakly frequency-dependent

logarithmic factor.

VII. ACKNOWLEDGMENTS

We acknowledge helpful discussions with V. B. Geshken-

bein, G. Blatter, J. Martinis, L. Ioffe, A. Golubov, A. Ustinov,

V. Ryazanov and D. Khmel’nitskii. L.N.B. thanks the Pauli

Cenetr, ETH, Zurich for hospitality. The work was carried

out under the auspices of the NNSA of the US DOE at LANL

under Contract No. DE-AC52-06NA25396.

1 J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ans-

mann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Sim-

monds, and C.C. Yu, Phys. Rev. Lett. 95, 210503 (2005).
2 J.M. Martinis, S. Nam, J. Aumentado, K.M. Lang, and C. Urbina,

Phys. Rev. B 67, 094510 (2003).
3 Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357

(2001).
4 C.H. van der Wal, F.K. Wilhelm, C.J.P.M. Harmans, and J.E.

Mooij,, Eur. Phys. J. B 31, 111 (2003).
5 K.K. Likharev, Dynamics of Josephson Junctions and Circuits

(Gordon and Breach, New York, 1996).
6 I.O. Kulik, JETP Lett, 2, 84 (1965).
7 U. Eckern, G. Schön, V. Ambegaokar, Phys. Rev. B 30, 6419

(1984).
8 A.I. Larkin, Yu.N. Ovchinnikov, Phys. Rev. B 28, 6281 (1983).
9 I. Chioresku, Y. Nakamura, C.J.P.M. Harmans, and J.E. Mooij,

Science 299, 1869 (2003).

10 J.P. Pekola, V.F. Maisi, S. Kafanov, N. Chekurov, A. Kemppinen,
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